1
|
Iraçabal L, Barbosa MR, Selvatti AP, Russo CADM. Molecular time estimates for the Lagomorpha diversification. PLoS One 2024; 19:e0307380. [PMID: 39241029 PMCID: PMC11379240 DOI: 10.1371/journal.pone.0307380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 09/08/2024] Open
Abstract
Despite their importance as members of the Glires group, lagomorph diversification processes have seldom been studied using molecular data. Notably, only a few phylogenetic studies have included most of the examined lagomorph lineages. Previous studies that included a larger sample of taxa and markers used nonconservative tests to support the branches of their proposed phylogeny. The objective of this study was to test the monophyly of families and genera of lagomorphs and to evaluate the group diversification process. To that end, this work expanded the sampling of markers and taxa in addition to implementing the bootstrap, a more rigorous statistical test to measure branch support; hence, a more robust phylogeny was recovered. Our supermatrix included five mitochondrial genes and 14 nuclear genes for eighty-eight taxa, including three rodent outgroups. Our maximum likelihood tree showed that all tested genera and both families, Leporidae and Ochotonidae, were recovered as monophyletic. In the Ochotona genus, the subgenera Conothoa and Pika, but not Ochotona, were recovered as monophyletic. Six calibration points based on fossils were used to construct a time tree. A calibration test was performed (via jackknife) by removing one calibration at a time and estimating divergence times for each set. The diversification of the main groups of lagomorphs indicated that the origin of the order's crown group was dated from the beginning of the Palaeogene. Our diversification time estimates for Lagomorpha were compared with those for the largest mammalian order, i.e., rodent lineages in Muroidea. According to our time-resolved phylogenetic tree, the leporids underwent major radiation by evolving a completely new morphospace-larger bodies and an efficient locomotor system-that enabled them to cover wide foraging areas and outrun predators more easily than rodents and pikas.
Collapse
Affiliation(s)
- Leandro Iraçabal
- Departamento de Genética, Rio de Janeiro, Universidade Federal do Rio de Janeiro, CCS, Instituto de Biologia, Rio de Janeiro, Brazil
| | - Matheus R Barbosa
- Departamento de Genética, Rio de Janeiro, Universidade Federal do Rio de Janeiro, CCS, Instituto de Biologia, Rio de Janeiro, Brazil
| | - Alexandre Pedro Selvatti
- Departamento de Zoologia, Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto Alcântara Gomes, Maracanã, Rio de Janeiro, Brazil
| | - Claudia Augusta de Moraes Russo
- Departamento de Genética, Rio de Janeiro, Universidade Federal do Rio de Janeiro, CCS, Instituto de Biologia, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Saha A, Baca M, Popović D, Mohammadi Z, Olsson U, Roycroft E, Fostowicz-Frelik Ł. The first complete mitochondrial genome data of the Afghan pika Ochotona rufescens (Lagomorpha, Ochotonidae), near the type locality. Data Brief 2024; 53:110246. [PMID: 38533117 PMCID: PMC10964060 DOI: 10.1016/j.dib.2024.110246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
The Afghan pika Ochotona rufescens (Gray, 1842) is widely distributed across the mountains of Afghanistan, Iran, Pakistan, and southwestern Turkmenistan, most often at elevations between 2,000 and 3,000 m. Here we present, for the first time, the complete mitochondrial genomes of two specimens of the nominotypical subspecies Ochotona rufescens rufescens, de novo assembled from Illumina short reads of fragmented probe-enriched DNA. The lengths of the circular mitogenomes are 16,408 bp and 16,407 bp, respectively. Both mitogenomes contain 13 protein-coding genes (PCGs), two ribosomal RNAs (16S rRNA and 12S rRNA), 22 transfer RNA genes, and a control region. The gene NAD6 and the tRNA (Gln), tRNA (Ala), tRNA (Asn), tRNA (Cys), tRNA (Tyr), tRNA (Ser), tRNA (Glu), and tRNA (Pro) are encoded on the light strand while the rest are encoded on the heavy strand. The overall nucleotide composition was ∼30% for A, 25% for T, 15% for G, and 29% for C. The mitogenome data are available in the GenBank under the accession numbers ON859136 and ON859137.
Collapse
Affiliation(s)
- Anwesha Saha
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00–818 Warsaw, Poland
- Centre of New Technologies (CeNT), University of Warsaw, S. Banacha 2c, 02–097 Warsaw, Poland
| | - Mateusz Baca
- Centre of New Technologies (CeNT), University of Warsaw, S. Banacha 2c, 02–097 Warsaw, Poland
| | - Danijela Popović
- Centre of New Technologies (CeNT), University of Warsaw, S. Banacha 2c, 02–097 Warsaw, Poland
| | | | - Urban Olsson
- Systematics and Biodiversity, Department of Biology and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30 Gothenburg, Sweden
| | - Emily Roycroft
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Acton, ACT 2601, Australia
| | - Łucja Fostowicz-Frelik
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00–818 Warsaw, Poland
| |
Collapse
|
3
|
Dahal N, Romine MG, Khatiwara S, Ramakrishnan U, Lamichhaney S. Gene flow drives genomic diversity in Asian Pikas distributed along the core and range-edge habitats in the Himalayas. Ecol Evol 2023; 13:e10129. [PMID: 37250448 PMCID: PMC10208896 DOI: 10.1002/ece3.10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
Studying the genetic variation among different species distributed across their core and range-edge habitats can provide valuable insights into how genetic variation changes across the species' distribution range. This information can be important for understanding local adaptation, as well as for conservation and management efforts. In this study, we have carried out genomic characterization of six species of Asian Pikas distributed along their core and range-edge habitats in the Himalayas. We utilized a population genomics approach using ~28,000 genome-wide SNP markers obtained from restriction-site associated DNA sequencing. We identified low nucleotide diversity and high inbreeding coefficients in all six species across their core and range-edge habitats. We also identified evidence of gene flow among genetically diverse species. Our results provide evidence of reduced genetic diversity in Asian pikas distributed across the Himalayas and the neighboring regions and indicate that recurrent gene flow is possibly a key mechanism for maintaining genetic diversity and adaptive potential in these pikas. However, full-scale genomics studies that utilize whole-genome sequencing approaches will be needed to quantify the direction and timing of gene flow and functional changes associated with introgressed regions in the genome. Our results represent an important step toward understanding the patterns and consequences of gene flow in species, sampled at the least studied, yet climatically vulnerable part of their habitat that can be further used to inform conservation strategies that promote connectivity and gene flow between populations.
Collapse
Affiliation(s)
- Nishma Dahal
- Biotechnology DivisionCSIR‐Institute of Himalayan Bioresource TechnologyPalampurHimachal PradeshIndia
- National Centre for Biological Sciences, TIFRBangaloreIndia
| | - Melia G. Romine
- School of Biomedical SciencesKent State UniversityKentOhioUSA
| | - Sunita Khatiwara
- Forest and Environment Department, Government of SikkimGangtokIndia
| | | | - Sangeet Lamichhaney
- School of Biomedical SciencesKent State UniversityKentOhioUSA
- Department of Biological SciencesKent State UniversityKentUSA
| |
Collapse
|
4
|
Phylogeography of the Plateau Pika (Ochotona curzoniae) in Response to the Uplift of the Qinghai-Tibet Plateau. DIVERSITY 2023. [DOI: 10.3390/d15020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The evolution and current distribution of species on the Qinghai-Tibet Plateau have been significantly impacted by historical occurrences, including the uplift of the plateau and the Quaternary climate upheaval. As a remnant species, the plateau pika (Ochotona curzoniae) is a great model for researching historical events. In this study, 302 samples from 42 sample sites were utilized to analyze the impact of historical events on the evolution and distribution pattern of plateau pikas. The genetic diversity, patterns of differentiation, and historical dynamics of the plateau pika were investigated using molecular markers that included four mitochondrial genes (COI, D-loop, Cytb, and 12S rRNA) and three nuclear genes (GHR, IRBP, and RAG1). The results showed that: (1) The genetic diversity of the plateau pika was high in the Tibetan Plateau (Hd = 0.9997, π = 0.01205), and the plateau pika evolved into five lineages that occupied different geographical areas, with lineage 1 (Group 1) in the south of the Yarlung Zangbo River, lineage 2 (Group 2) in the hinterland of the plateau, lineage 3 (Group 3) in the northeastern part of the plateau, lineage 4 (Group 4) in the Hengduan Mountains, and lineage 5 (Group 5) in the eastern part of the plateau. (2) The gene flow among the five lineages was low, and the differentiation level was high (Nm < 0.25; Fst > 0.25), indicating that the geographical barriers between the five lineages, such as the Yarlung Zangbo River, the Qaidam-Ghuong-Guide Basin, and the Lancang River, effectively promoted the population differentiation of the plateau pika. (3) The plateau pika first spread from the Hengduan Mountains to the entire Qinghai-Tibet Plateau and then conducted small-scale migration and dispersal in several refuges across the plateau in response to climate changes during the glacial and interglacial periods. (4) Except for Group 1 and Group 4, all the other populations exhibited a rapid expansion between 0.06 and 0.01 Mya, but the expansion was considerably delayed or halted by the effects of climate change during the last glacial maximum (0.02 Mya). Overall, the plateau pika on the Qinghai-Tibet Plateau exhibits high genetic diversity, and topographic obstacles, including mountains, valleys, and basins, created by the uplift of the plateau and climatic changes since the Quaternary period have played an important role in the differentiation and historical dynamics of the plateau pika population.
Collapse
|