1
|
Ragone MI, Bayley M, López S, Díaz RG, Consolini AE. Nebivolol in oral subacute treatment prevents cardiac post-ischemic dysfunction in rats, but hyperthyroidism reduces this protection: mechanisms involved. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3093-3109. [PMID: 37878045 DOI: 10.1007/s00210-023-02791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023]
Abstract
Nebivolol could prevent dysfunction in patients suffering myocardial ischemia. However, influence of hyperthyroidism is not known. Consequences and mechanisms of nebivolol treatment were investigated in isolated hearts from euthyroid (EuT) and hyperthyroid (HpT) rats. Rats were orally treated during 1 week with 20 mg/kg/day nebivolol (O-Neb), 30 mg/kg/day atenolol (O-Ate), or not treated (C). Isolated perfused hearts were exposed to global ischemia and reperfusion (I/R) inside a flow calorimeter. Left diastolic ventricular pressure, developed contractile pressure (P), and total heat rate (Ht) were continuously measured, while infarct size was measured after 2-h R. EuT-C and HpT-C hearts developed similarly low post-ischemic contractile recovery and economy (P/Ht). Nebivolol totally prevented dysfunction and reduced infarction size in EuT hearts, but partially improved recovery in HpT rat hearts. Contrarily, oral atenolol totally prevented dysfunction in HpT hearts but partially in EuT hearts. Nebivolol effects were reversed by perfusing L-NAME in both conditions, but partially reduced by aminoguanidine in HpT. However, L-NAME increased P and P/Ht recoveries in EuT-C and HpT-C rat hearts, as well as melatonin. Oral nebivolol prevented post-ischemic dysfunction and infarction in EuT hearts due to adrenergic β1 blockade and activation of iNOS and/or eNOS, but the effect was attenuated in HpT hearts by excessive iNOS-dependent nitrosative pathways.
Collapse
Affiliation(s)
- María Inés Ragone
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, La Plata, Argentina
| | - Matías Bayley
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, La Plata, Argentina
| | - Sofía López
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, La Plata, Argentina
| | - Romina G Díaz
- Centro de Investigaciones Cardiovasculares (CIC-UNLP-CONICET), La Plata, Argentina
| | - Alicia E Consolini
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, La Plata, Argentina.
| |
Collapse
|
2
|
Ando N, Shingu Y, Suno K, Wakasa S. Trehalose preconditioning for transient global myocardial ischemia in rats. Biochem Biophys Res Commun 2021; 548:14-19. [PMID: 33631668 DOI: 10.1016/j.bbrc.2021.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/06/2021] [Indexed: 01/06/2023]
Abstract
Autophagy is an intracellular pathway that degrades unnecessary proteins and organelles and provides energy substrates during cellular ischemic conditions. Although pharmacological myocardial preconditioning with an autophagy inducer has been reported to protect cells against ischemic reperfusion (I/R), the effects of preconditioning using naturally occurring substances are still unknown. We aimed to examine whether autophagic preconditioning with trehalose improves cardiac function after myocardial stunning by global ischemia in rats. Rat hearts were perfused by oxygenized Krebs Henseleit (KH) solution in Langendorff system. Ten rats were randomized into the following two groups according to the perfusates during the preconditioning: control (KH solution only, n = 5) and trehalose (KH + 2% trehalose, n = 5). After the 35-min preconditioning period and subsequent 20 min of global ischemia, the hearts were reperfused for 60 min. Cardiac function was assessed during the reperfusion. To evaluate autophagy, myocardial protein expression of microtubule-associated protein light chain 3 (LC3) II was evaluated by western blotting. During I/R, a systolic functional parameter, maximum dP/dt was significantly higher; meanwhile, coronary flow tended to be higher in the trehalose group than in the control group. Myocardial LC3-II expression after preconditioning was higher in the trehalose group than in the control group and decreased to the control level after I/R. In conclusion, in a rat model of global myocardial ischemia, trehalose preconditioning improved cardiac function during I/R. Further studies would be needed to identify the mechanism and effects of trehalose preconditioning.
Collapse
Affiliation(s)
- Norihiro Ando
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasushige Shingu
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenichiro Suno
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoru Wakasa
- Department of Cardiovascular and Thoracic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
3
|
The mKATP Channels and protein-kinase C Are Involved in the Cardioprotective Effects of Genistein on Estrogen-Deficient Rat Hearts Exposed to Ischemia/Reperfusion: Energetic Study. J Cardiovasc Pharmacol 2020; 75:460-474. [PMID: 32195757 DOI: 10.1097/fjc.0000000000000816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Estrogenic deficiency is considered a risk of coronary disease in women. The phytoestrogen genistein could be a safe preventive strategy. The first aim of this work was to validate a model of cardiac stunning in which natural estrogenic deficiency rats, ie, adult young male (YM) and aged female (AgF), are compared with young female rats (YF). The second aim was to study whether the in vivo administration of genistein prevents the stunning in estrogenic deficiency rats. The third aim was to evaluate whether in our estrogenic deficiency model exists a synergy between genistein and estradiol. The fourth aim was to characterize the underlying mechanisms of genistein. Stunning was induced by ischemia/reperfusion (I/R) in isolated hearts inside a calorimeter. The left ventricular pressure (P) and total heat rate (Ht) were simultaneously measured, while diastolic contracture and muscle economy (P/Ht) were calculated. During R, P/Ht and P recovered less in AgF and YM than in YF rat hearts. Genistein through i.p. (GST-ip) improved P and P/Ht in AgF and YM, but not in YF. In YM, the cardioprotections of GST-ip and estradiol were synergistic. After ischemia, GST-ip increased SR Ca leak causing diastolic contracture. The GST-ip cardioprotection neither was affected by blockade of PI3K-Akt, NO synthases, or phosphatases, but it was sensitive to blockade of protein-kinase C and mKATP channels. Results suggest that (1) estrogenic deficiency worsens cardiac stunning, (2) GST-ip was more cardioprotective in estrogenic deficiency and synergistic with estradiol, and (3) cardioprotection of GST-ip depends on the protein-kinase C and mKATP channel pathway activation.
Collapse
|
4
|
Evaluation of the Effects of Schisandra chinensis on the Myocardium of Rats with Hyperthyroid Heart Disease by Using Velocity Vector Imaging Combined with the Estimation of p53 Expression and Calmodulin Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5263834. [PMID: 32802128 PMCID: PMC7414329 DOI: 10.1155/2020/5263834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022]
Abstract
Schisandra chinensis (SC) is reported to improve myocardial ischemia. Velocity vector imaging (VVI) is a noninvasive technique for evaluating myocardial function in humans, while few reported on the application in animals. In this study, we aimed to evaluate the improved effects of SC on the myocardium of Sprague Dawley rats having hyperthyroid heart disease (HHD) using VVI technique. HHD models were established by injecting daily with subcutaneous levothyroxine (0.5 mg/kg). Then, the SC group was administered the aqueous extract of SC (2 g/kg) once daily, while the HHD and control (CON) groups were administered the same amount of distilled water daily. All the rats were provided the same amount of food and water daily, and the intervention was stopped after 28 days. The efficacy of SC in HHD rats was evaluated by ultrasound VVI. The serum total triiodothyronine level, total thyroxine level, N-terminal pro-brain natriuretic peptide expression, p53 expression, and calmodulin (CaM) activity were assessed by western blotting, Hematoxylin-Eosin and Masson staining, and electron microscopy. The results indicated that SC significantly improved the systolic velocity, diastolic velocity, strain, systolic strain rate, and diastolic strain rate of the heart by significantly reducing p53 expression and CaM activity (P < 0.05), improving myocardial fibrosis in HHD rats. Also, VVI can be a valuable tool for the evaluation of myocardial function in HHD rats.
Collapse
|
5
|
孔 令, 孙 娜, 魏 兰, 张 丽, 陈 玉, 常 利, 苏 兴. [Melatonin protects against myocardial ischemia-reperfusion injury by inhibiting contracture in isolated rat hearts]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:958-964. [PMID: 32895155 PMCID: PMC7386215 DOI: 10.12122/j.issn.1673-4254.2020.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the protective effect of melatonin against myocardial ischemia reperfusion (IR) injury in isolated rat hearts and explore the underlying mechanisms. METHODS The isolated hearts from 40 male SD rats were randomly divided into 4 groups (n=10): the control group, where the hearts were perfused with KH solution for 175 min; IR group, where the hearts were subjected to global ischemia for 45 min followed by reperfusion for 120 min; IR+melatonin (Mel+IR) group, where melatonin (5 μmol/L) was administered to the hearts 1 min before ischemia and during the first 5 min of reperfusion, followed by 115 min of reperfusion; and IR+2, 3-butanedione monoxime (IR+BDM) group, where the hearts were treated with BDM (20 mmol/L) in the same manner as melatonin treatment. Myocardial injury in the isolated hearts was assessed based on myocardial injury area, caspase-3 activity, and expressions of cytochrome C and cleaved caspase-3 proteins. Cardiac contracture was assessed using HE staining and by detecting lactate dehydrogenase (LDH) activity and the content of cardiac troponin I (cTnI) in the coronary outflow, measurement of left ventricular end-diastolic pressure (LVEDP) and electron microscopy. The content of ATP in the cardiac tissue was also determined. RESULTS Compared with those in the control group, the isolated hearts in IR group showed significantly larger myocardial injury area and higher caspase-3 activity and the protein expressions of cytochrome C and cleaved caspase-3 with significantly increased LDH activity and cTnI content in the coronary outflow and elevated LVEDP at the end of reperfusion; HE staining showed obvious fractures of the myocardial fibers and the content of ATP was significantly decreased in the cardiac tissue; electron microscopy revealed the development of contraction bands. In the isolated hearts with IR, treatment with Mel or BDM significantly reduced the myocardial injury area, caspase-3 activity, and protein expressions of cytochrome C and cleaved caspase-3, obviously inhibited LDH activity, lowered the content of cTnI and LVEDP, reduced myocardial fiber fracture, and increased ATP content in the cardiac tissue. Both Mel and BDM inhibited the formation of contraction bands in the isolated hearts with IR injury. CONCLUSIONS Mel can alleviate myocardial IR injury in isolated rat hearts by inhibiting cardiac contracture, the mechanism of which may involve the upregulation of ATP in the cardiac myocytes to lessen the tear of membrane and reduce cell content leakage.
Collapse
Affiliation(s)
- 令恒 孔
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 娜 孙
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 兰兰 魏
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 丽君 张
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 玉龙 陈
- 西安医学院基础与转化医学研究所,陕西 西安 710061Institute of Basic and Translational Medicine, Xi'an Medical College, Xi'an 710061, China
| | - 利 常
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| | - 兴利 苏
- 西安医学院基础部基础医学研究所,陕西 西安 710061Institute of Basic Medical Science, School of Basic Medical Sciences, Xi'an Medical College, Xi'an 710061, China
| |
Collapse
|
6
|
Valverde CA, Mazzocchi G, Di Carlo MN, Ciocci Pardo A, Salas N, Ragone MI, Felice JI, Cely-Ortiz A, Consolini AE, Portiansky E, Mosca S, Kranias EG, Wehrens XHT, Mattiazzi A. Ablation of phospholamban rescues reperfusion arrhythmias but exacerbates myocardium infarction in hearts with Ca2+/calmodulin kinase II constitutive phosphorylation of ryanodine receptors. Cardiovasc Res 2020; 115:556-569. [PMID: 30169578 DOI: 10.1093/cvr/cvy213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS Abnormal Ca2+ release from the sarcoplasmic reticulum (SR), associated with Ca2+-calmodulin kinase II (CaMKII)-dependent phosphorylation of RyR2 at Ser2814, has consistently been linked to arrhythmogenesis and ischaemia/reperfusion (I/R)-induced cell death. In contrast, the role played by SR Ca2+ uptake under these stress conditions remains controversial. We tested the hypothesis that an increase in SR Ca2+ uptake is able to attenuate reperfusion arrhythmias and cardiac injury elicited by increased RyR2-Ser2814 phosphorylation. METHODS AND RESULTS We used WT mice, which have been previously shown to exhibit a transient increase in RyR2-Ser2814 phosphorylation at the onset of reperfusion; mice with constitutive pseudo-phosphorylation of RyR2 at Ser2814 (S2814D) to exacerbate CaMKII-dependent reperfusion arrhythmias and cardiac damage, and phospholamban (PLN)-deficient-S2814D knock-in (SDKO) mice resulting from crossbreeding S2814D with phospholamban knockout deficient (PLNKO) mice. At baseline, S2814D and SDKO mice had structurally normal hearts. Moreover none of the strains were arrhythmic before ischaemia. Upon cardiac I/R, WT, and S2814D hearts exhibited abundant arrhythmias that were prevented by PLN ablation. In contrast, PLN ablation increased infarct size compared with WT and S2814D hearts. Mechanistically, the enhanced SR Ca2+ sequestration evoked by PLN ablation in SDKO hearts prevented arrhythmogenic events upon reperfusion by fragmenting SR Ca2+ waves into non-propagated and non-arrhythmogenic events (mini-waves). Conversely, the increase in SR Ca2+ sequestration did not reduce but rather exacerbated I/R-induced SR Ca2+ leak, as well as mitochondrial alterations, which were greatly avoided by inhibition of RyR2. These results indicate that the increase in SR Ca2+ uptake is ineffective in preventing the enhanced SR Ca2+ leak of PLN ablated myocytes from either entering into nearby mitochondria and/or activating additional CaMKII pathways, contributing to cardiac damage. CONCLUSION Our results demonstrate that increasing SR Ca2+ uptake by PLN ablation can prevent the arrhythmic events triggered by CaMKII-dependent phosphorylation of RyR2-induced SR Ca2+ leak. These findings underscore the benefits of increasing SERCA2a activity in the face of SR Ca2+ triggered arrhythmias. However, enhanced SERCA2a cannot prevent but rather exacerbates I/R cardiac injury.
Collapse
Affiliation(s)
- Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Gabriela Mazzocchi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Mariano N Di Carlo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Nehuen Salas
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - María Ines Ragone
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alicia E Consolini
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Enrique Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - Susana Mosca
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine (in Cardiology), Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| |
Collapse
|
7
|
Fang L, Xu Z, Lu J, Hong L, Qiao S, Liu L, An J. Cardioprotective effects of triiodothyronine supplementation against ischemia reperfusion injury by preserving calcium cycling proteins in isolated rat hearts. Exp Ther Med 2019; 18:4935-4941. [PMID: 31798715 DOI: 10.3892/etm.2019.8114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/26/2019] [Indexed: 11/05/2022] Open
Abstract
Hypothyroidism is associated with profound left ventricular dysfunction. Triiodothyronine (T3) supplementation may improve cardiac function after ischemic reperfusion (I/R) injury. In the present study, the effect of T3 on major calcium cycling proteins and high-energy phosphate content during I/R was evaluated. Isolated perfused rat hearts were divided into 5 groups: Sham Control (Sham, n=10), Control (n=8), T3 10 nM (T3-10, n=10), T3 25 nM (T3-25, n=10) and T3 50 nM (T3-50, n=10). T3 was administrated for 60 min before 30 min of ischemia and 120 min of reperfusion. The protein contents of Ca2+-release channels (RyR2), Ca2+-adenosine triphosphatase (SERCA2a), phospholamban (PLB), sarcolemmal Ca2+-adenosine triphosphatase (PMCA) and sodium-calcium exchanger (NCX), as well as the high-energy phosphate content in heart tissues were measured by western blot analysis. The results revealed that T3 improved the contractile recovery (left ventricular developed pressure; +dP/dt, -dP/dt) after I/R. Western blotting assays demonstrated that I/R depressed the contents of RYR2, SERCA2a and phosphorylated RYR2 and PLB; there were no effects on the contents of PLB, PMCA and NCX. T3 reversed I/R-induced degradation of RyR2 and SERCA2a, restored the phosphorylation of RyR2 and PLB, and preserved the high-energy phosphate contents of ATP and creatine phosphate. T3 supplementation protected the heart against I/R injury via the preservation of Ca2+-cycling proteins and high-energy phosphate content.
Collapse
Affiliation(s)
- Lichao Fang
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Intensive Care Unit, Suzhou Xiangcheng People Hospital, Suzhou, Jiangsu 215131, P.R. China
| | - Zhiping Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jian Lu
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Lijun Liu
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jianzhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
8
|
Ragone MI, Bayley M, Colareda GA, Bonazzola P, Consolini AE. Cardioprotective Mechanisms of Hypothyroidism on Ischemia/Reperfusion in Rats and Effects of Carvedilol: Energetic Study. J Cardiovasc Pharmacol Ther 2019; 25:72-85. [DOI: 10.1177/1074248419872957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hypothyroidism is considered a cardiac risk factor, but there is controversial evidence about its effects on coronary disease. The aim of this work was to evaluate the influence of hypothyroidism in rat hearts exposed to 2 degrees of stunning due to ischemia and reperfusion (I/R) as well as the underlying mechanisms. Hypothyroid (HypoT) rats were obtained by drinking 0.02% methimazole during 15 days. Isolated hearts were perfused and introduced in a flow calorimeter to measure contractile performance (P), total heat rate (Ht), and muscle economy (P/Ht). Hearts were exposed to 2 models of I/R, moderate and severe (respectively 20 or 30 minutes I/45 minutes R). Moreover, free cytosolic and mitochondrial calcium changes were measured by confocal fluorometry on cardiomyocytes. Comparison to euthyroid (EuT) hearts was done. Hypothyroidism was cardioprotective, but HypoT hearts were more sensitive than EuT hearts to the preischemic blockade of mitochondrial transporters mNCX and mKATPchannels. Moreover, the postischemic recovery of P and P/Ht in HypoT hearts was strongly reduced by inhibition of the cellular pathways of PI3K/Akt and protein kinase C (PKC), and it was increased by nitric oxide synthase (NOS) inhibition. However, physiological concentrations of adrenaline reduced the cardioprotection of HypoT, but oral treatment with 20 mg/kg/day carvedilol prevented it. Results show that hypothyroidism reduces the mitochondrial Ca2+overload during I/R by mKATPchannel activation and Ca2+extrusion through mNCX, while the PI3K/Akt and PKC pathways are involved in that cardioprotection. Contrarily, NOS activation and adrenaline blunt such cardioprotection, but carvedilol prevented the adrenergic dysfunction. These results would explain why hypothyroidism is a clinical risk factor in angor patients under adrenergic exacerbation but reduced the incidence of acute episodes of coronary syndrome in hospitalized patients. Results suggest that a treatment with carvedilol could be a potential therapeutic agent to prevent cardiac postischemic dysfunction in hypothyroid patients.
Collapse
Affiliation(s)
- María Inés Ragone
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Matías Bayley
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Germán A. Colareda
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Patricia Bonazzola
- Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Alicia E. Consolini
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
9
|
Colareda GA, Consolini AE. Low-flow ischaemia and reperfusion in rat hearts: energetic of stunning and cardioprotection of genistein. J Pharm Pharmacol 2018; 70:1174-1187. [DOI: 10.1111/jphp.12945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/19/2018] [Indexed: 01/04/2023]
Abstract
Abstract
Objectives
Low-flow ischemia (LFI) is consequent to coronary disease and produces cardiac stunning during reperfusion (R). Energetic performance and mechanisms of Ca2+ handling during LFI/R are not known. Moreover, cardioprotection of the phytoestrogen genistein (Gen) remains to be demonstrated in LFI/R. The aim was to study the mechanisms of the stunning consequent to LFI/R and the effects of Gen on both sexes.
Methods
Rat ventricles were perfused inside a calorimeter to measure maximal pressure development (P) and total heat rate (Ht) before and during exposition to LFI/R. The mechanisms of stunning were evaluated with selective drugs.
Key findings
Female hearts (FH) developed higher postischemic contractile recovery (PICR) and muscle economy (P/Ht) than males (MH). Cardioprotection was sensitive to blockade of mKATP channels, UCam and NOS. Perfusion of 20 μmol/l Gen reduced PICR and P/Ht during LFI/R in FH, and dysfunction was increased by mNCX blockade with mPTP opening. However, intraperitoneal 5 mg/kg Gen (Gen-ip) was cardioprotective in both sexes, and the beneficial effect of Gen-ip was blocked by 100 μmol/l 5-HD.
Conclusions
FH are more protected than MH against the LFI/R dysfunction, which involves mitochondrial Ca2+ loss; Gen-ip was more cardioprotective in MH than in FH, mainly by activation of the mKATP channels.
Collapse
Affiliation(s)
- Germán A Colareda
- Grupo de Farmacología Experimental y Energética Cardíaca, Cátedra de Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Alicia E Consolini
- Grupo de Farmacología Experimental y Energética Cardíaca, Cátedra de Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
10
|
Hernández JJ, Ragone MI, Bonazzola P, Bandoni AL, Consolini AE. Antitussive, antispasmodic, bronchodilating and cardiac inotropic effects of the essential oil from Blepharocalyx salicifolius leaves. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:107-117. [PMID: 28811222 DOI: 10.1016/j.jep.2017.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/03/2017] [Accepted: 08/09/2017] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Blepharocalyx salicifolius (Kunth) O. Berg (Myrtaceae) is a tree native to Argentina and Uruguay that grows and is cultivated along the riverside of the Rio de la Plata. The leaves of this plant species, locally known as "anacahuita" are used in South America to prepare infusions for the empiric treatment of cough and bronchospasm, as well as diarrhoea and other intestinal disorders. Although previous phytochemical studies have been performed with the essential oil extracted from Blepharocalyx salicifolius, pharmacological evidence supporting its traditional use is still lacking. AIM OF THE STUDY To experimentally evaluate the pharmacological properties of Blepharocalyx salicifolius based on its traditional use. The studies were performed with tincture (T-Bs) and essential oil (EO-Bs) prepared from its leaves, in isolated rat trachea, intestine and heart preparations. METHODS The ex-vivo effects of T-Bs and EO-Bs were evaluated with the agonists carbachol (CCh) and calcium chloride (Ca2+) in the contractile concentration-response curves (CRC) of the isolated intestine. The muscle relaxant effect of EO-Bs was evaluated in the isolated trachea and compared with the effect achieved with papaverine as a positive control. The T-Bs and EO-Bs cardiac effects were analysed by perfusion of an isolated rat heart before a period of ischemia/reperfusion (stunning model). The antitussive effect of both T-Bs and EO-Bs was evaluated in mice exposed to ammonia using codeine as a positive control. RESULTS Both T-Bs and EO-Bs induced a non-competitive inhibition of the CCh-CRC in the rat intestine, with IC50 values of 170.3 ± 48.5µg T-Bs/mL (n = 6) and 5.9 ± 1.6µg EO-Bs/mL (n = 6), respectively. EO-Bs also inhibited non-competitively the Ca2+-CRC, with IC50 value of 1.8 ± 0.3µg EO-Bs/mL (n = 8). A similar effect was obtained with the main active component of the EO-Bs 1,8-cineole. In isolated trachea, EO-Bs induced the relaxation of the CCh-contracted tissue (1.7 ± 0.2µg EO-Bs/mL, n = 11) up to a maximal relaxation that was 1.9 times higher than that of papaverine. In the isolated heart, EO-Bs induced a poor negative inotropic response, and did not improve the contractile and energetic recovery after ischemia and reperfusion. In the mouse cough model, EO-Bs (90mg/Kg) was as effective as codeine (30mg/Kg) in reducing cough frequency. CONCLUSIONS The results indicate that the preparations from Blepharocalyx salicifolius leaves were effective as central antitussive, bronchodilating and antispasmodic agents, suggestive of a mechanism associated with the inhibition of Ca2+ influx into smooth muscle. The EO-Bs displayed only a poor ability to reduce cardiac inotropism, and was devoid of any cardioprotective properties. Thus, the present study validates the traditional use of this South American plant for asthma, cough and bronchospasm, shedding new light into its potency and putative mechanism of action.
Collapse
Affiliation(s)
- Jehison Jiménez Hernández
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC) y Maestría en Plantas Medicinales, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Inés Ragone
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC) y Maestría en Plantas Medicinales, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Argentina
| | - Patricia Bonazzola
- Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, Argentina; Instituto de Investigaciones Cardiológicas, UBA-CONICET, Argentina
| | - Arnaldo L Bandoni
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Farmacognosia C.A. de Buenos Aires, Argentina
| | - Alicia E Consolini
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca (GFEYEC) y Maestría en Plantas Medicinales, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
11
|
Guaricci AI, Bulzis G, Pontone G, Scicchitano P, Carbonara R, Rabbat M, De Santis D, Ciccone MM. Current interpretation of myocardial stunning. Trends Cardiovasc Med 2017; 28:263-271. [PMID: 29221768 DOI: 10.1016/j.tcm.2017.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/16/2017] [Accepted: 11/19/2017] [Indexed: 12/11/2022]
Abstract
Myocardial stunning is a temporary post-ischemic cardiac mechanical dysfunction. As such, it is a heterogeneous entity and different conditions can promote its occurrence. Transient coronary occlusion, increased production of catecholamines and endothelin, and myocardial inflammation are all possible causes of myocardial stunning. Possible underlying mechanisms include an oxyradical hypothesis, calcium overload, decreased responsiveness of myofilaments to calcium, and excitation-contraction uncoupling due to sarcoplasmic reticulum dysfunction. The aim of this review is to summarize the clinical conditions that may be responsible for stunned myocardium.
Collapse
Affiliation(s)
- Andrea Igoren Guaricci
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital "Policlinico" of Bari, Bari, Italy; Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Gabriella Bulzis
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital "Policlinico" of Bari, Bari, Italy
| | | | | | - Rossella Carbonara
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital "Policlinico" of Bari, Bari, Italy
| | - Mark Rabbat
- Loyola University of Chicago, Chicago, IL; Edward Hines Jr. VA Hospital, Hines, IL
| | - Delia De Santis
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital "Policlinico" of Bari, Bari, Italy
| | - Marco Matteo Ciccone
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital "Policlinico" of Bari, Bari, Italy
| |
Collapse
|
12
|
Ragone MI, Bonazzola P, Colareda GA, Lazarte ML, Bruno F, Consolini AE. Cardioprotection of stevioside on stunned rat hearts: A mechano-energetical study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 35:18-26. [PMID: 28991641 DOI: 10.1016/j.phymed.2017.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 07/12/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The sweetener and hypoglycemic properties of stevioside (STV) are well known, as the main component of the plant Stevia rebaudiana. Given its extensive use in diabetic patients, it was of interest to evaluate its effects on the most frequent cardiovascular disease, the coronary insufficiency. PURPOSE To study whether STV could be cardioprotective against ischemia-reperfusion (I/R) in a model of "stunning" in rat hearts. STUDY DESIGN A preclinical study was performed in isolated hearts from rats in the following groups: non-treated rats whose hearts were perfused with STV 0.3 mg/ml and their controls (C) exposed to either moderate stunning (20 min I/45 min R) or severe stunning (30 min I/45 min R), and a group of rats orally treated with STV 25 mg/kg/day in the drink water during 1 week before the experiment of severe stunning in the isolated hearts were done. METHODS The mechano-calorimetrical performance of isolated beating hearts was recorded during stabilization period with control Krebs perfusion inside a calorimeter, with or without 0.3 mg/ml STV before the respective period of I/R. The left ventricular maximal developed pressure (P) and total heat rate (Ht) were continuously measured. RESULTS Both, orally administered and perfused STV improved the post-ischemic contractile recovery (PICR, as % of initial control P) and the total muscle economy (P/Ht) after the severe stunning, but only improved P/Ht in moderate stunning. However, STV increased the diastolic pressure (LVEDP) during I/R in both stunning models. For studying the mechanism of action, ischemic hearts were reperfused with 10 mM caffeine-36 mM Na+-Krebs to induce a contracture dependent on sarcorreticular Ca2+ content, whose relaxation mainly depends on mitochondrial Ca2+ uptake. STV at 0.3 mg/ml increased the area-under-curve of the caffeine-dependent contracture (AUC-LVP). Moreover, at room temperature STV increased the mitochondrial Ca2+ uptake measured by Rhod-2 fluorescence in rat cardiomyocytes, but prevented the [Ca2+]m overload assessed by caffeine-dependent SR release. CONCLUSIONS Results suggest that STV is cardioprotective against I/R under oral administration or direct perfusion in hearts. The mechanism includes the regulation of the myocardial calcium homeostasis and the energetic during I/R in several sites, mainly reducing mitochondrial Ca2+ overload and increasing the sarcorreticular Ca2+ store.
Collapse
Affiliation(s)
- María I Ragone
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Patricia Bonazzola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Instituto de Investigaciones Cardiológicas, Facultad de Medicina, Universidad de Buenos Aires (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Germán A Colareda
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - María Lara Lazarte
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Fiorella Bruno
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina
| | - Alicia E Consolini
- Cátedra de Farmacología, Grupo de Farmacología Experimental y Energética Cardíaca, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
| |
Collapse
|
13
|
Mitochondrial Bioenergetics During Ischemia and Reperfusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:141-167. [PMID: 28551786 DOI: 10.1007/978-3-319-55330-6_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During ischemia and reperfusion (I/R) mitochondria suffer a deficiency to supply the cardiomyocyte with chemical energy, but also contribute to the cytosolic ionic alterations especially of Ca2+. Their free calcium concentration ([Ca2+]m) mainly depends on mitochondrial entrance through the uniporter (UCam) and extrusion in exchange with Na+ (mNCX) driven by the electrochemical gradient (ΔΨm). Cardiac energetic is frequently estimated by the oxygen consumption, which determines metabolism coupled to ATP production and to the maintaining of ΔΨm. Nevertheless, a better estimation of heart energy consumption is the total heat release associated to ATP hydrolysis, metabolism, and binding reactions, which is measurable either in the presence or the absence of oxygenation or perfusion. Consequently, a mechano-calorimetrical approach on isolated hearts gives a tool to evaluate muscle economy. The mitochondrial role during I/R depends on the injury degree. We investigated the role of the mitochondrial Ca2+ transporters in the energetic of hearts stunned by a model of no-flow I/R in rat hearts. This chapter explores an integrated view of previous and new results which give evidences to the mitochondrial role in cardiac stunning by ischemia o hypoxia, and the influence of thyroid alterations and cardioprotective strategies, such as cardioplegic solutions (high K-low Ca, pyruvate) and the phytoestrogen genistein in both sex. Rat ventricles were perfused in a flow-calorimeter at either 30 °C or 37 °C to continuously measure the left ventricular pressure (LVP) and total heat rate (Ht). A pharmacological treatment was done before exposing to no-flow I and R. The post-ischemic contractile (PICR as %) and energetical (Ht) recovery and muscle economy (Eco: P/Ht) were determined during stunning. The functional interaction between mitochondria (Mit) and sarcoplasmic reticulum (SR) was evaluated with selective mitochondrial inhibitors in hearts reperfused with Krebs-10 mM caffeine-36 mM Na+. The caffeine induced contracture (CIC) was due to SR Ca2+ release, while relaxation mainly depends on mitochondrial Ca2+ uptake since neither SL-NCX nor SERCA are functional under this media. The ratio of area-under-curves over ischemic values (AUC-ΔHt/AUC-ΔLVP) estimates the energetical consumption (EC) to maintain CIC. Relaxation of CIC was accelerated by inhibition of mNCX or by adding the aerobic substrate pyruvate, while both increased EC. Contrarily, relaxation was slowed by cardioplegia (high K-low Ca Krebs) and by inhibition of UCam. Thus, Mit regulate the cytosolic [Ca2+] and SR Ca2+ content. Both, hyperthyroidism (HpT) and hypothyroidism (HypoT) reduced the peak of CIC but increased EC, in spite of improving PICR. Both, CIC and PICR in HpT were also sensitive to inhibition of mNCX or UCam, suggesting that Mit contribute to regulate the SR store and Ca2+ release. The interaction between mitochondria and SR and the energetic consequences were also analyzed for the effects of genistein in hearts exposed to I/R, and for the hypoxia/reoxygenation process. Our results give evidence about the mitochondrial regulation of both PICR and energetic consumption during stunning, through the Ca2+ movement.
Collapse
|
14
|
Colareda GA, Ragone MI, Consolini AE. Sex differences in the mechano-energetic effects of genistein on stunned rat and guinea pig hearts. Clin Exp Pharmacol Physiol 2015; 43:102-15. [PMID: 26452245 DOI: 10.1111/1440-1681.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 09/12/2015] [Accepted: 10/02/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Germán A Colareda
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
| | - María I Ragone
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
- National Council of Scientific and Technical Research (CONICET); La Plata Argentina
| | - Alicia E Consolini
- Experimental Pharmacology Group (GFEYEC); Department of Biological Sciences, School of Exactas Sciences; National University of La Plata; La Plata Argentina
| |
Collapse
|