1
|
Ogagayere LO, Naiho AO, Emojevwe V, Igweh JC. Quercetin flavonoid and vitamin C recuperate kidney functions in potassium bromate-induced renal dysfunction in Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3789-3796. [PMID: 37341785 DOI: 10.1007/s00210-023-02571-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Studies into the functions and mechanisms of action of quercetin may be able to help dispel the negative effects of toxicants on renal toxicity due to its anti-inflammatory potential, as well as provide a simple, low-cost alternative for treating renal toxicity in developing nations. Therefore, the present study evaluated the ameliorative and renal protective activities of quercetin dihydrate in potassium bromate-induced, renal-toxic Wistar rats. Forty-five (45) mature female Wistar rats (180-200 g) were randomly grouped into nine (9) (n = 5). Group A served as general control. Nephrotoxicity was induced in groups B to I with the administration of potassium bromate. While group B served as a negative control, groups C-E received graded doses of quercetin (40, 60, and 80 mg/kg, respectively). Group F received 2.5 mg/kg/day of vitamin C, while groups G-I received vitamin C (2.5 mg/kg/day) and co-administration of a graded dose of quercetin (40, 60, and 80 mg/kg, respectively). Daily urine levels and final blood samples by retro-orbital techniques were collected for GFR, urea, and creatinine level assessment. The collected data were subjected to ANOVA and Tukey's post hoc test, and the results were presented as mean SEM with a p < 0.05 level considered significant. Body and organ weight and GFR were significantly reduced (p < 0.05), while serum and urine creatinine and urea were decreased in renotoxic animals. However, treatment with QCT reversed the renotoxic effects. We, therefore, concluded that quercetin administered alone or with vitamin C conferred renal protection by reversing KBrO3-induced renal toxicity in rats. Further studies to corroborate the present findings are recommended.
Collapse
Affiliation(s)
- Lucky Omamuzo Ogagayere
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
- Department of Physiology, Achievers University, Owo, Ondo State, Nigeria
| | - Alexander Obidike Naiho
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
- Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Victor Emojevwe
- Department of Physiology, University of Medical Sciences, Ondo City, Ondo State, Nigeria.
| | - John Chukwuka Igweh
- Department of Physiology, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
2
|
Liu C, Chen K, Wang H, Zhang Y, Duan X, Xue Y, He H, Huang Y, Chen Z, Ren H, Wang H, Zeng C. Gastrin Attenuates Renal Ischemia/Reperfusion Injury by a PI3K/Akt/Bad-Mediated Anti-apoptosis Signaling. Front Pharmacol 2020; 11:540479. [PMID: 33343341 PMCID: PMC7740972 DOI: 10.3389/fphar.2020.540479] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/24/2020] [Indexed: 12/25/2022] Open
Abstract
Ischemic/reperfusion (I/R) injury is the primary cause of acute kidney injury (AKI). Gastrin, a gastrointestinal hormone, is involved in the regulation of kidney function of sodium excretion. However, whether gastrin has an effect on kidney I/R injury is unknown. Here we show that cholecystokinin B receptor (CCKBR), the gastrin receptor, was significantly up-regulated in I/R-injured mouse kidneys. While pre-administration of gastrin ameliorated I/R-induced renal pathological damage, as reflected by the levels of serum creatinine and blood urea nitrogen, hematoxylin and eosin staining and periodic acid-Schiff staining. The protective effect could be ascribed to the reduced apoptosis for gastrin reduced tubular cell apoptosis both in vivo and in vitro. In vitro studies also showed gastrin preserved the viability of hypoxia/reoxygenation (H/R)-treated human kidney 2 (HK-2) cells and reduced the lactate dehydrogenase release, which were blocked by CI-988, a specific CCKBR antagonist. Mechanistically, the PI3K/Akt/Bad pathway participates in the pathological process, because gastrin treatment increased phosphorylation of PI3K, Akt and Bad. While in the presence of wortmannin (1 μM), a PI3K inhibitor, the gastrin-induced phosphorylation of Akt after H/R treatment was blocked. Additionally, wortmannin and Akt inhibitor VIII blocked the protective effect of gastrin on viability of HK-2 cells subjected to H/R treatment. These studies reveals that gastrin attenuates kidney I/R injury via a PI3K/Akt/Bad-mediated anti-apoptosis signaling. Thus, gastrin can be considered as a promising drug candidate to prevent AKI.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Huaixiang Wang
- Department of Lishilu Outpatient, General Hospital of the PLA Rocket Force, Beijing, China
| | - Ye Zhang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Xudong Duan
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Yuanzheng Xue
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hongye He
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Yu Huang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Zhi Chen
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hongyong Wang
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Army Medical University, Chongqing, China.,Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China.,Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Abstract
The metabolic syndrome is a cluster of risk factors (central obesity, hyperglycaemia, dyslipidaemia and arterial hypertension), indicating an increased risk of diabetes, cardiovascular disease and premature mortality. The gastrointestinal tract is seldom discussed as an organ system of principal importance for metabolic diseases. The present overview connects various metabolic research lines into an integrative physiological context in which the gastrointestinal tract is included. Strong evidence for the involvement of the gut in the metabolic syndrome derives from the powerful effects of weight-reducing (bariatric) gastrointestinal surgery. In fact, gastrointestinal surgery is now recommended as a standard treatment option for type 2 diabetes in obesity. Several gut-related mechanisms that potentially contribute to the metabolic syndrome will be presented. Obesity can be caused by hampered release of satiety-signalling gut hormones, reduced meal-associated energy expenditure and microbiota-assisted harvest of energy from nondigestible food ingredients. Adiposity per se is a well-established risk factor for hyperglycaemia. In addition, a leaky gut mucosa can trigger systemic inflammation mediating peripheral insulin resistance that together with a blunted incretin response aggravates the hyperglycaemic state. The intestinal microbiota is strongly associated with obesity and the related metabolic disease states, although the mechanisms involved remain unclear. Enterorenal signalling has been suggested to be involved in the pathophysiology of hypertension and postprandial triglyceride-rich chylomicrons; in addition, intestinal cholesterol metabolism probably contributes to atherosclerosis. It is likely that in the future, the metabolic syndrome will be treated according to novel pharmacological principles interfering with gastrointestinal functionality.
Collapse
Affiliation(s)
- L Fändriks
- Department of Gastrosurgical Research and Education, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|