1
|
Dinh DD, Wan H, Lidington D, Bolz SS. Female mice display sex-specific differences in cerebrovascular function and subarachnoid haemorrhage-induced injury. EBioMedicine 2024; 102:105058. [PMID: 38490104 PMCID: PMC10955634 DOI: 10.1016/j.ebiom.2024.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In male mice, a circadian rhythm in myogenic reactivity influences the extent of brain injury following subarachnoid haemorrhage (SAH). We hypothesized that female mice have a different cerebrovascular phenotype and consequently, a distinct SAH-induced injury phenotype. METHODS SAH was modelled by pre-chiasmatic blood injection. Olfactory cerebral resistance arteries were functionally assessed by pressure myography; these functional assessments were related to brain histology and neurobehavioral assessments. Cystic fibrosis transmembrane conductance regulator (CFTR) expression was assessed by PCR and Western blot. We compared non-ovariectomized and ovariectomized mice. FINDINGS Cerebrovascular myogenic reactivity is not rhythmic in females and no diurnal differences in SAH-induced injury are observed; ovariectomy does not unmask a rhythmic phenotype for any endpoint. CFTR expression is rhythmic, with similar expression levels compared to male mice. CFTR inhibition studies, however, indicate that CFTR activity is lower in female arteries. Pharmacologically increasing CFTR expression in vivo (3 mg/kg lumacaftor for 2 days) reduces myogenic tone at Zeitgeber time 11, but not Zeitgeber time 23. Myogenic tone is not markedly augmented following SAH in female mice and lumacaftor loses its ability to reduce myogenic tone; nevertheless, lumacaftor confers at least some injury benefit in females with SAH. INTERPRETATION Female mice possess a distinct cerebrovascular phenotype compared to males, putatively due to functional differences in CFTR regulation. This sex difference eliminates the CFTR-dependent cerebrovascular effects of SAH and may alter the therapeutic efficacy of lumacaftor compared to males. FUNDING Brain Aneurysm Foundation, Heart and Stroke Foundation and Ted Rogers Centre for Heart Research.
Collapse
Affiliation(s)
- Danny D Dinh
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, Canada
| | - Hoyee Wan
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, Canada
| | - Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto Centre for Microvascular Medicine at The Ted Rogers Centre for Heart Research Translational Biology and Engineering Program, University of Toronto, Toronto, Canada; Heart & Stroke / Richard Lewar Centre of Excellence for Cardiovascular Research, University of Toronto, Toronto, Canada.
| |
Collapse
|
2
|
Prendergast C, Wray S, Dungate D, Martin C, Vaida A, Brook E, Chioma CA, Wallace H. Investigating the role of CFTR in human and mouse myometrium. Curr Res Physiol 2024; 7:100122. [PMID: 38501132 PMCID: PMC10945125 DOI: 10.1016/j.crphys.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/20/2024] Open
Abstract
Background Abnormal cystic fibrosis transmembrane conductance regulator (CFTR) function in cystic fibrosis (CF) has been linked to airway smooth muscle abnormalities including bronchial hyperresponsiveness. However, a role for CFTR in other types of smooth muscle, including myometrium, remains largely unexplored. As CF life expectancy and the number of pregnancies increases, there is a need for an understanding of the potential role of CFTR in myometrial function. Methods We investigated the role of CFTR in human and mouse myometrium. We used immunofluorescence to identify CFTR expression, and carried out contractility studies on spontaneously contracting term pregnant and non-pregnant mouse myometrium and term pregnant human myometrial biopsies from caesarean sections. Results CFTR was found to be expressed in term pregnant mouse myometrium. Inhibition of CFTR, with the selective inhibitor CFTRinh-172, significantly reduced contractility in pregnant mouse and human myometrium in a concentration-dependent manner (44.89 ± 11.02 term pregnant mouse, 9.23 ± 4.75 term-pregnant human; maximal effect at 60 μM expressed as a percentage of the pre-treatment control period). However, there was no effect of CFTRinh-172 in non-pregnant myometrium. Conclusion These results demonstrate decreased myometrial function when CFTR is inhibited, which may have implications on pregnancy and labour outcome and therapeutic decisions for labour in CF patients.
Collapse
Affiliation(s)
- Clodagh Prendergast
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Susan Wray
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Daniella Dungate
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Christine Martin
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andra Vaida
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Elizabeth Brook
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Cecilia Ani Chioma
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Helen Wallace
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Nie X, Zhou Z, Chen Y, Chen S, Chen Y, Lei J, Wu X, He S. VEPH1 suppresses the progression of gastric cancer by regulating the Hippo-YAP signalling pathway. Dig Liver Dis 2024; 56:187-197. [PMID: 37244789 DOI: 10.1016/j.dld.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Ventricular zone-expressed PH domain-containing protein homologue 1 (VEPH1) is a recently discovered intracellular adaptor protein that plays an important role in human development. It has been reported that VEPH1 is closely related to the process of cellular malignancy, but its role in gastric cancer has not been elucidated. This study investigated the expression and function of VEPH1 in human gastric cancer (GC). METHODS We performed qRT‒PCR, Western blotting, and immunostaining assays in GC tissue samples to evaluate VEPH1 expression. Functional experiments were used to measure the malignancy of GC cells. A subcutaneous tumorigenesis model and peritoneal graft tumour model were established in BALB/c mice to determine tumour growth and metastasis in vivo. RESULTS VEPH1 expression is decreased in GC and correlates with the overall survival rates of GC patients. VEPH1 inhibits GC cell proliferation, migration, and invasion in vitro and suppresses tumour growth and metastasis in vivo. VEPH1 regulates the function of GC cells by inhibiting the Hippo-YAP signalling pathway, and YAP/TAZ inhibitor-1 treatment reverses the VEPH1 knockdown-mediated increase in the proliferation, migration and invasion of GC cells in vitro. Loss of VEPH1 is associated with increased YAP activity and accelerated epithelial-mesenchymal transition (EMT) in GC. CONCLUSION VEPH1 inhibited GC cell proliferation, migration, and invasion in vitro and in vivo and exerted its antitumour effects by inhibiting the Hippo-YAP signalling pathway and EMT process in GC.
Collapse
Affiliation(s)
- Xubiao Nie
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Zhihang Zhou
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Ying Chen
- Department of Medical Examination Center, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Siyuan Chen
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Yongyu Chen
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Jing Lei
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Xiaoling Wu
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China
| | - Song He
- Department of Gastroenterology, Affiliated the Second Affiliated Hospital of Chongqing Medical University, PR. China.
| |
Collapse
|
4
|
Tarhuni M, Fotso MN, Gonzalez NA, Sanivarapu RR, Osman U, Latha Kumar A, Sadagopan A, Mahmoud A, Begg M, Hamid P. Estrogen's Tissue-Specific Regulation of the SLC26A6 Anion Transporter Reveal a Phenotype of Kidney Stone Disease in Estrogen-Deficient Females: A Systematic Review. Cureus 2023; 15:e45839. [PMID: 37881392 PMCID: PMC10597593 DOI: 10.7759/cureus.45839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/24/2023] [Indexed: 10/27/2023] Open
Abstract
Kidney stone formation is an intricate process that involves a disruption in the interplay of the multiple organs and systems involved in regulating the concentration of specific ions in the body. Women who have gone through menopause are susceptible to kidney stone disease. This systematic review aims to investigate the potential influence of estrogen on kidney function and oxalate homeostasis, notably through the anion transporter SLC26A6 (also known as putative anion transporter 1 or PAT1) in females. In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 checklist, a systematic search of online databases included Pubmed, ScienceDirect Journals, and Ingenta Connect Journals. Predetermined criteria to include and exclude papers, gathering articles published between 2012 and 2022, were determined. After a thorough analysis, eight articles (three cohorts, one case-control, one in vivo, one in vitro, and two cross-sectional studies) were identified for the final quality assessment review. The eight selected and quality-assessed articles provided evidence of a directly proportional connection between estrogen and kidney function. A correlation between serum estrogen levels and the development of kidney stone disease was confirmed. Administration of β-estradiol was shown to effectively inhibit the function of the anion transporter PAT1 in a tissue-specific manner. In the case of the kidney, estrogen was observed to down-regulate PAT1, which led to a reduction in oxalate transporting activity and, consequently, a decrease in kidney stone formation. Consensus suggests that serum estrogen levels and optimal kidney functioning are interrelated. Furthermore, analysis of the quality-assessed articles and a comprehensive literature review revealed estrogen's tissue-specific regulation of the PAT1 anion transporter aids in maintaining kidney function and anion homeostasis. Additional research is needed to solidify estrogen's role in kidney stone disease to determine its therapeutic value in clinical practice.
Collapse
Affiliation(s)
- Mawada Tarhuni
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Monique N Fotso
- Obstetrics and Gynecology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Natalie A Gonzalez
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Raghavendra R Sanivarapu
- Pulmonary and Critical Care Medicine, Texas Tech University Health Sciences Center, Odessa, USA
- Pulmonary and Critical Care Medicine, Nassau University Medical Center, East Meadow, USA
| | - Usama Osman
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Geriatrics, Michigan State University College of Human Medicine, East Lansing, USA
| | - Abishek Latha Kumar
- Internal Medicine and Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aishwarya Sadagopan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Anas Mahmoud
- Internal Medicine, St. Joseph's University Medical Center, Paterson, USA
| | - Maha Begg
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Pousette Hamid
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
5
|
Chen T, Qian B, Zou J, Luo P, Zou J, Li W, Chen Q, Zheng L. Oxalate as a potent promoter of kidney stone formation. Front Med (Lausanne) 2023; 10:1159616. [PMID: 37342493 PMCID: PMC10278359 DOI: 10.3389/fmed.2023.1159616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Kidney stones are among the most prevalent urological diseases, with a high incidence and recurrence rate. Treating kidney stones has been greatly improved by the development of various minimally invasive techniques. Currently, stone treatment is relatively mature. However, most current treatment methods are limited to stones and cannot effectively reduce their incidence and recurrence. Therefore, preventing disease occurrence, development, and recurrence after treatment, has become an urgent issue. The etiology and pathogenesis of stone formation are key factors in resolving this issue. More than 80% of kidney stones are calcium oxalate stones. Several studies have studied the formation mechanism of stones from the metabolism of urinary calcium, but there are few studies on oxalate, which plays an equally important role in stone formation. Oxalate and calcium play equally important roles in calcium oxalate stones, whereas the metabolism and excretion disorders of oxalate play a crucial role in their occurrence. Therefore, starting from the relationship between renal calculi and oxalate metabolism, this work reviews the occurrence of renal calculi, oxalate absorption, metabolism, and excretion mechanisms, focusing on the key role of SLC26A6 in oxalate excretion and the regulatory mechanism of SLC26A6 in oxalate transport. This review provides some new clues for the mechanism of kidney stones from the perspective of oxalate to improve the understanding of the role of oxalate in the formation of kidney stones and to provide suggestions for reducing the incidence and recurrence rate of kidney stones.
Collapse
Affiliation(s)
- Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Ganna Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
6
|
Romero-Martínez BS, Sommer B, Solís-Chagoyán H, Calixto E, Aquino-Gálvez A, Jaimez R, Gomez-Verjan JC, González-Avila G, Flores-Soto E, Montaño LM. Estrogenic Modulation of Ionic Channels, Pumps and Exchangers in Airway Smooth Muscle. Int J Mol Sci 2023; 24:ijms24097879. [PMID: 37175587 PMCID: PMC10178541 DOI: 10.3390/ijms24097879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 02/28/2023] [Indexed: 05/15/2023] Open
Abstract
To preserve ionic homeostasis (primarily Ca2+, K+, Na+, and Cl-), in the airway smooth muscle (ASM) numerous transporters (channels, exchangers, and pumps) regulate the influx and efflux of these ions. Many of intracellular processes depend on continuous ionic permeation, including exocytosis, contraction, metabolism, transcription, fecundation, proliferation, and apoptosis. These mechanisms are precisely regulated, for instance, through hormonal activity. The lipophilic nature of steroidal hormones allows their free transit into the cell where, in most cases, they occupy their cognate receptor to generate genomic actions. In the sense, estrogens can stimulate development, proliferation, migration, and survival of target cells, including in lung physiology. Non-genomic actions on the other hand do not imply estrogen's intracellular receptor occupation, nor do they initiate transcription and are mostly immediate to the stimulus. Among estrogen's non genomic responses regulation of calcium homeostasis and contraction and relaxation processes play paramount roles in ASM. On the other hand, disruption of calcium homeostasis has been closely associated with some ASM pathological mechanism. Thus, this paper intends to summarize the effects of estrogen on ionic handling proteins in ASM. The considerable diversity, range and power of estrogens regulates ionic homeostasis through genomic and non-genomic mechanisms.
Collapse
Affiliation(s)
- Bianca S Romero-Martínez
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Bettina Sommer
- Laboratorio de Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Ciudad de México 14080, Mexico
| | - Héctor Solís-Chagoyán
- Neurociencia Cognitiva Evolutiva, Centro de Investigación en Ciencias Cognitivas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Eduardo Calixto
- Departamento de Neurobiología, Dirección de Investigación en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México 14370, Mexico
| | - Arnoldo Aquino-Gálvez
- Laboratorio de Biología Molecular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, México City 14080, Mexico
| | - Ruth Jaimez
- Laboratorio de Estrógenos y Hemostasis, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Juan C Gomez-Verjan
- Dirección de Investigación, Instituto Nacional de Geriatría (INGER), Ciudad de México 10200, Mexico
| | - Georgina González-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", México City 14080, Mexico
| | - Edgar Flores-Soto
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
7
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
8
|
Wang J, Wang W, Wang H, Tuo B. Physiological and Pathological Functions of SLC26A6. Front Med (Lausanne) 2021; 7:618256. [PMID: 33553213 PMCID: PMC7859274 DOI: 10.3389/fmed.2020.618256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/30/2020] [Indexed: 12/26/2022] Open
Abstract
Solute Carrier Family 26 (SLC26) is a conserved anion transporter family with 10 members in human (SLC26A1-A11, A10 being a pseudogene). All SLC26 genes except for SLC26A5 (prestin) are versatile anion exchangers with notable ability to transport a variety of anions. SLC26A6 has the most extensive exchange functions in the SLC26 family and is widely expressed in various organs and tissues of mammals. SLC26A6 has some special properties that make it play a particularly important role in ion homeostasis and acid-base balance. In the past few years, the function of SLC26A6 in the diseases has received increasing attention. SLC26A6 not only participates in the development of intestinal and pancreatic diseases but also serves a significant role in mediating nephrolithiasis, fetal skeletal dysplasia and arrhythmia. This review aims to explore the role of SLC26A6 in physiology and pathophysiology of relative mammalian organs to guide in-depth studies about related diseases of human.
Collapse
Affiliation(s)
- Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wenkang Wang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi City), Zunyi Medical University, Zunyi, China
| | - Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
9
|
Estrogen Regulates Duodenal Calcium Absorption Through Differential Role of Estrogen Receptor on Calcium Transport Proteins. Dig Dis Sci 2020; 65:3502-3513. [PMID: 31974908 DOI: 10.1007/s10620-020-06076-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/12/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Intestinal calcium absorption from the diet plays important role in maintaining calcium homeostasis in the body. Estrogen exerts wide physiological and pathological effects in the human. Previous studies have shown that estrogen is involved in the intestinal calcium absorption. In this study, we made investigation on the mechanism of estrogen action on duodenal calcium absorption. METHODS The experiments were performed in mice, human, and human duodenal epithelial cells, SCBN cells. Murine duodenal calcium absorption was measured by using single pass perfusion of the duodenum in vivo. The calcium absorption of SCBN cells was evaluated by calcium imaging system. The expression of calcium transport proteins, transient receptor potential cation channel (TRPV6) and plasma membrane calcium pump (PMCA1b), in the duodenum or SCBN cells were analyzed by western blot. RESULTS The duodenal calcium absorption in ovariectomized mice was significantly decreased, compared with control female mice, which returned to control level after 17β-estradiol replacement treatment. Estrogen regulated the expressions of TRPV6 and PMCA1b in murine and human duodenal mucosae and SCBN cells. The further results from SCBN cells showed that 17β-estradiol regulated calcium influx through the respective effects of estrogen receptor (ER) ɑ and β on TRPV6 and PMCA1b. CONCLUSION Estrogen regulates duodenal calcium absorption through differential role of ERɑ and ERβ on duodenal epithelial cellular TRPV6 and PMCA1b. The study further elucidates the mechanism of estrogen on the regulation of intestinal calcium absorption.
Collapse
|
10
|
Takeuchi K, Ohashi Y, Amagase K. Roles of Up-Regulated Expression of ASIC3 in Sex Difference of Acid-Induced Duodenal HCO3 - Responses. Curr Pharm Des 2020; 26:3001-3009. [PMID: 32303171 DOI: 10.2174/1381612826666200417170319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/12/2020] [Indexed: 11/22/2022]
Abstract
Although the morbidity of ulcers is statistically higher in males than females, the mechanism of this difference remains unknown. Recent studies show that duodenal HCO3 - response to mucosal acidification is higher in females than males, and this may be a factor responsible for the sex difference in the mucosal protective mechanisms. In this article, we examined the duodenal HCO3 - responses to various stimuli in male and female rats, including estrogen, and reviewed the mechanisms responsible for the sex difference in the acid-induced HCO3 - secretion. Mucosal acidification was performed by exposing the duodenum to 10 mM HCl for 10 min. PGE2 was administered intravenously, while capsaicin was applied topically to the duodenum for 10 min. Tamoxifen was given s.c. 30 min before the acidification. Ovariectomy was performed 2 weeks before the experiments; half of the animals were given estrogen i.m. after the operation. Mucosal acidification increased duodenal HCO3 - secretion in male rats, and this response was inhibited by indomethacin and sensory deafferentation. Although no sex difference was found in HCO3 - responses to PGE2 and capsaicin, the response to acid was significantly greater in female than male rats. The different HCO3 - response to acid disappeared on ovariectomy, and this effect was totally reversed by the repeated administration of estrogen. The gene expression of ASIC3 in female rats was greater than in male rats and down-regulated by ovariectomy or tamoxifen treatment in an estradiol- dependent manner, while no sex difference was observed in TRPV1 and CFTR expressions. In conclusion, the acid-induced HCO3 - response is greater in female than male rats, and this phenomenon is not due to changes in PGE2 sensitivity or TRPV1/CFTR expressions but may be accounted for by increased expression of ASIC3 on sensory neurons, which is associated with the chronic influence of estrogen.
Collapse
Affiliation(s)
- Koji Takeuchi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan,General Incorporated Association, Kyoto Research Center for Gastrointestinal Diseases, Karasuma-Oike,
Kyoto 604-8106, Japan
| | - Yumi Ohashi
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kikuko Amagase
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan,Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan
University, Shiga 525-8577, Japan
| |
Collapse
|
11
|
Seidler U, Nikolovska K. Slc26 Family of Anion Transporters in the Gastrointestinal Tract: Expression, Function, Regulation, and Role in Disease. Compr Physiol 2019; 9:839-872. [DOI: 10.1002/cphy.c180027] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|