1
|
Chatzinikolaou PN, Margaritelis NV, Paschalis V, Theodorou AA, Vrabas IS, Kyparos A, D'Alessandro A, Nikolaidis MG. Erythrocyte metabolism. Acta Physiol (Oxf) 2024; 240:e14081. [PMID: 38270467 DOI: 10.1111/apha.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Our aim is to present an updated overview of the erythrocyte metabolism highlighting its richness and complexity. We have manually collected and connected the available biochemical pathways and integrated them into a functional metabolic map. The focus of this map is on the main biochemical pathways consisting of glycolysis, the pentose phosphate pathway, redox metabolism, oxygen metabolism, purine/nucleoside metabolism, and membrane transport. Other recently emerging pathways are also curated, like the methionine salvage pathway, the glyoxalase system, carnitine metabolism, and the lands cycle, as well as remnants of the carboxylic acid metabolism. An additional goal of this review is to present the dynamics of erythrocyte metabolism, providing key numbers used to perform basic quantitative analyses. By synthesizing experimental and computational data, we conclude that glycolysis, pentose phosphate pathway, and redox metabolism are the foundations of erythrocyte metabolism. Additionally, the erythrocyte can sense oxygen levels and oxidative stress adjusting its mechanics, metabolism, and function. In conclusion, fine-tuning of erythrocyte metabolism controls one of the most important biological processes, that is, oxygen loading, transport, and delivery.
Collapse
Affiliation(s)
- Panagiotis N Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Ioannis S Vrabas
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
2
|
Kristiani L, Kim Y. The Interplay between Oxidative Stress and the Nuclear Lamina Contributes to Laminopathies and Age-Related Diseases. Cells 2023; 12:cells12091234. [PMID: 37174634 PMCID: PMC10177617 DOI: 10.3390/cells12091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Oxidative stress is a physiological condition that arises when there is an imbalance between the production of reactive oxygen species (ROS) and the ability of cells to neutralize them. ROS can damage cellular macromolecules, including lipids, proteins, and DNA, leading to cellular senescence and physiological aging. The nuclear lamina (NL) is a meshwork of intermediate filaments that provides structural support to the nucleus and plays crucial roles in various nuclear functions, such as DNA replication and transcription. Emerging evidence suggests that oxidative stress disrupts the integrity and function of the NL, leading to dysregulation of gene expression, DNA damage, and cellular senescence. This review highlights the current understanding of the interplay between oxidative stress and the NL, along with its implications for human health. Specifically, elucidation of the mechanisms underlying the interplay between oxidative stress and the NL is essential for the development of effective treatments for laminopathies and age-related diseases.
Collapse
Affiliation(s)
- Lidya Kristiani
- Department of Biomedicine, School of Life Science, Indonesia International Institute for Life Science, Jakarta 13210, Indonesia
| | - Youngjo Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bioscience, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
3
|
Bianchetti G, Rizzo GE, Serantoni C, Abeltino A, Rizzi A, Tartaglione L, Caputo S, Flex A, De Spirito M, Pitocco D, Maulucci G. Spatial Reorganization of Liquid Crystalline Domains of Red Blood Cells in Type 2 Diabetic Patients with Peripheral Artery Disease. Int J Mol Sci 2022; 23:ijms231911126. [PMID: 36232429 PMCID: PMC9570208 DOI: 10.3390/ijms231911126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
In this work, we will investigate if red blood cell (RBC) membrane fluidity, influenced by several hyperglycemia-induced pathways, could provide a complementary index of HbA1c to monitor the development of type 2 diabetes mellitus (T2DM)-related macroangiopathic complications such as Peripheral Artery Disease (PAD). The contextual liquid crystalline (LC) domain spatial organization in the membrane was analysed to investigate the phase dynamics of the transition. Twenty-seven patients with long-duration T2DM were recruited and classified in DM, including 12 non-PAD patients, and DM + PAD, including 15 patients in any stage of PAD. Mean values of RBC generalized polarization (GP), representative of membrane fluidity, together with spatial organization of LC domains were compared between the two groups; p-values < 0.05 were considered statistically significant. Although comparable for anthropometric characteristics, duration of diabetes, and HbA1c, RBC membranes of PAD patients were found to be significantly more fluid (GP: 0.501 ± 0.026) than non-PAD patients (GP: 0.519 ± 0.007). These alterations were shown to be triggered by changes in both LC microdomain composition and distribution. We found a decrease in Feret diameter from 0.245 ± 0.281 μm in DM to 0.183 ± 0.124 μm in DM + PAD, and an increase in circularity. Altered RBC membrane fluidity is correlated to a spatial reconfiguration of LC domains, which, by possibly altering metabolic function, are associated with the development of T2DM-related macroangiopathic complications.
Collapse
Affiliation(s)
- Giada Bianchetti
- Department of Neuroscience, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | | | - Cassandra Serantoni
- Department of Neuroscience, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Alessio Abeltino
- Department of Neuroscience, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Alessandro Rizzi
- Diabetes Care Unit, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Linda Tartaglione
- Diabetes Care Unit, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Salvatore Caputo
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Andrea Flex
- Diabetes Care Unit, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco De Spirito
- Department of Neuroscience, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
| | - Dario Pitocco
- Diabetes Care Unit, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Maulucci
- Department of Neuroscience, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy
- Correspondence: ; Tel.: +39-06-3015-4265
| |
Collapse
|
4
|
Godoy G, Travassos PB, Antunes MM, Iwanaga CC, Sá-Nakanishi AB, Curi R, Comar JF, Bazotte RB. Strenuous swimming raises blood non-enzymatic antioxidant capacity in rats. Braz J Med Biol Res 2022; 55:e11891. [PMID: 35239782 PMCID: PMC8905668 DOI: 10.1590/1414-431x2022e11891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022] Open
Abstract
The non-enzymatic antioxidant system protects blood components from oxidative damage and/or injury. Herein, plasma non-enzymatic antioxidant capacity after acute strenuous swimming exercise (Exe) and exercise until exhaustion (Exh) was measured in rats. The experiments were carried out in never exposed (Nex) and pre-exposed (Pex) groups. The Nex group did not undergo any previous training before the acute strenuous swimming test and the Pex group was submitted to daily swimming for 10 min in the first week and 15 min per day in the second week before testing. Plasma glucose, lactate, and pyruvate were measured and plasma total protein sulfhydryl groups (thiol), trolox equivalent antioxidant capacity (TEAC), ferric reducing ability of plasma (FRAP), and total radical-trapping antioxidant parameter (TRAP) levels were evaluated. There were marked increases in plasma lactate concentrations (Nex-Control 1.31±0.20 vs NexExe 4.16±0.39 vs NexExh 7.19±0.67) and in thiol (Nex-Control 271.9±5.6 vs NexExh 314.7±5.7), TEAC (Nex-Control 786.4±60.2 vs NexExh 1027.7±58.2), FRAP (Nex-Control 309.2±17.7 vs NexExh 413.4±24.3), and TRAP (Nex-Control 0.50±0.15 vs NexExh 2.6±0.32) levels after acute swimming and/or exhaustion. Also, there were increased plasma lactate concentrations (Pex-Control 1.39±0.15 vs PexExe 5.22±0.91 vs PexExh 10.07±0.49), thiol (Pex-Control 252.9±8.2 vs PexExh 284.6±6.7), FRAP (Pex-Control 296.5±15.4 vs PexExh 445.7±45.6), and TRAP (Pex-Control 1.8±0.1 vs PexExh 4.6±0.2) levels after acute swimming and/or exhaustion. Lactate showed the highest percent of elevation in the Nex and Pex groups. In conclusion, plasma lactate may contribute to plasma antioxidant defenses, and the TRAP assay is the most sensitive assay for assessing plasma non-antioxidant capacity after strenuous exercise.
Collapse
Affiliation(s)
- G Godoy
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - P B Travassos
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - M M Antunes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - C C Iwanaga
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - A B Sá-Nakanishi
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil.,Seção de Produção de Imunobiológicos, Centro Bioindustrial, Instituto Butantan, São Paulo, SP, Brasil
| | - J F Comar
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - R B Bazotte
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
5
|
Souza MRDPDE, Zaleski T, Machado C, Kandalski PK, Forgati M, D' Bastiani E, Piechnik CA, Donatti L. Effect of heat stress on the antioxidant defense system and erythrocyte morphology of Antarctic fishes. AN ACAD BRAS CIENC 2021; 94:e20190657. [PMID: 34730667 DOI: 10.1590/0001-3765202220190657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/01/2019] [Indexed: 11/22/2022] Open
Abstract
This study analyzed the effect of thermal stress on erythrocytes of Notothenia rossii and Notothenia coriiceps, abundant notothenioids in Admiralty Bay, Antarctic Peninsula. In both species, the antioxidant defense system enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S transferase, glutathione reductase were punctually altered (8°C for 1, 3 and 6 days) in erythrocytes, indicating that these markers are not ideal for termal stress. However, under the influence of thermal stress, morphological changes in Notothenia coriiceps erythrocytes were observed at all exposure times (1, 3 and 6 days at 8°C), and in Notothenia rossii occurred in 6 days. These results suggest that Notothenia corriceps presents a lower tolerance to thermal stress at 8°C for up to 6 days, since the cellular and nuclear alterations recorded are pathological and may be deleterious to the cells. Among the morphological markers analyzed in this work, we believe that the shape change and nuclear bubble formation may be good stress biomarkers in erythrocytes of Notothenia rossii and Notothenia coriiceps.
Collapse
Affiliation(s)
- Maria Rosa D P DE Souza
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Tania Zaleski
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Cintia Machado
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Priscila K Kandalski
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Mariana Forgati
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Elvira D' Bastiani
- Universidade Federal do Paraná, Departamento de Zoologia, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Cláudio A Piechnik
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| | - Lucélia Donatti
- Universidade Federal do Paraná, Departamento de Biologia Celular, Av. Cel. Francisco H. dos Santos, s/n, Jardim das Américas, 81531-970 Curitiba, PR, Brazil
| |
Collapse
|
6
|
Bianchetti G, Viti L, Scupola A, Di Leo M, Tartaglione L, Flex A, De Spirito M, Pitocco D, Maulucci G. Erythrocyte membrane fluidity as a marker of diabetic retinopathy in type 1 diabetes mellitus. Eur J Clin Invest 2021; 51:e13455. [PMID: 33210748 DOI: 10.1111/eci.13455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND A high level of glycosylated haemoglobin (HbA1c), which is a nonenzymatic glycosylation product, is correlated with an increased risk of developing microangiopathic complications in Diabetes Mellitus (DM). Erythrocyte membrane fluidity could provide a complementary index to monitor the development of complications since it is influenced by several hyperglycaemia-induced pathways and other independent risk factors. MATERIALS AND METHODS 15 healthy controls and 33 patients with long-duration (≥20 years) type 1 Diabetes Mellitus (T1DM) were recruited. Diabetic subjects were classified into two groups: T1DM, constituted by 14 nonretinopathic patients, and T1DM + RD, constituted by 19 patients in any stage of diabetic retinopathy. Red blood cells (RBC) were incubated with the fluorescent Laurdan probe and median values of Generalized Polarization (GP), representative of membrane fluidity, were compared between the two groups. Baseline characteristics among groups have been compared with Student's t test or ANOVA. Values of P < .05 were considered statistically significant. RESULTS All the participants were comparable for age, Body Mass Index (BMI), creatinine and lipid profile. The duration of diabetes was similar for T1DM (34.4 ± 7.8 years) and T1DM + RD (32.8 ± 7.5 years) subjects as well as values of HbA1c: (55.6 ± 8.1) mmol/mol for T1DM and (61.2 ± 11.0) mmol/mol for T1DM + RD, respectively. Erythrocyte plasmatic membranes of RD patients were found to be more fluid (GP: 0.40 ± 0.04) than non-RD patients (GP: 0.43 ± 0.03) with a statistically significant difference (P = .035). CONCLUSIONS Altered erythrocyte membrane fluidity may therefore represent a marker of retinopathy in T1DM patients as a result of post-translational modifications of multifactorial aetiology (nonenzymatic glycosylation of proteins, generation of reactive oxygen species, lipid peroxidation).
Collapse
Affiliation(s)
- Giada Bianchetti
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Department of Neuroscience, Section of Biophysics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Luca Viti
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Andrea Scupola
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Mauro Di Leo
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Linda Tartaglione
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Andrea Flex
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Cardiovascular Disease Division, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Department of Neuroscience, Section of Biophysics, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Dario Pitocco
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Department of Neuroscience, Section of Biophysics, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
7
|
Grau M, Kuck L, Dietz T, Bloch W, Simmonds MJ. Sub-Fractions of Red Blood Cells Respond Differently to Shear Exposure Following Superoxide Treatment. BIOLOGY 2021; 10:biology10010047. [PMID: 33440902 PMCID: PMC7827655 DOI: 10.3390/biology10010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Deformation of red blood cells (RBCs) is essential in order to pass through the smallest blood vessels. This cell function is impaired in the presence of high levels of free radicals and shear stress that highly exceeds the physiological range. In contrast, shear stress within the physiological range positively affects RBC function. RBCs are a heterogeneous cell population in terms of RBC age with different RBC deformability described for young and old RBCs, but whether these different sub-populations tolerate mechanical and oxidative stress to the same extent remains unknown. The results of the present investigation revealed lower RBC deformability of old RBCs compared to young RBCs and comparable reductions in RBC deformability of the sub-populations caused by free radicals. Physiological shear stress did not further affect free radical content within the RBCs and reversed the deleterious effects of free radicals on RBC deformability of old RBCs only by improving RBC deformability. The changes were aimed to be explained by changes in the formation of nitric oxide (NO), but outputs of NO generation appeared dependent on cell age. These novel findings highlight a yet less-described complex relation between shear stress, free radicals, and RBC mechanics. Abstract Red blood cell (RBC) deformability is an essential component of microcirculatory function that appears to be enhanced by physiological shear stress, while being negatively affected by supraphysiological shears and/or free radical exposure. Given that blood contains RBCs with non-uniform physical properties, whether all cells equivalently tolerate mechanical and oxidative stresses remains poorly understood. We thus partitioned blood into old and young RBCs which were exposed to phenazine methosulfate (PMS) that generates intracellular superoxide and/or specific mechanical stress. Measured RBC deformability was lower in old compared to young RBCs. PMS increased total free radicals in both sub-populations, and RBC deformability decreased accordingly. Shear exposure did not affect reactive species in the sub-populations but reduced RBC nitric oxide synthase (NOS) activation and intriguingly increased RBC deformability in old RBCs. The co-application of PMS and shear exposure also improved cellular deformability in older cells previously exposed to reactive oxygen species (ROS), but not in younger cells. Outputs of NO generation appeared dependent on cell age; in general, stressors applied to younger RBCs tended to induce S-nitrosylation of RBC cytoskeletal proteins, while older RBCs tended to reflect markers of nitrosative stress. We thus present novel findings pertaining to the interplay of mechanical stress and redox metabolism in circulating RBC sub-populations.
Collapse
Affiliation(s)
- Marijke Grau
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, NRW, Germany; (T.D.); (W.B.)
- Correspondence: ; Tel.: +49-(0)-221-4982-6116
| | - Lennart Kuck
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; (L.K.); (M.J.S.)
| | - Thomas Dietz
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, NRW, Germany; (T.D.); (W.B.)
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933 Cologne, NRW, Germany; (T.D.); (W.B.)
| | - Michael J. Simmonds
- Biorheology Research Laboratory, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; (L.K.); (M.J.S.)
| |
Collapse
|
8
|
Zemlianskykh NG, Babiychuk LA. The Production of Reactive Oxygen Species in Human Erythrocytes during Cryopreservation with Glycerol and Polyethylene Glycol. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
9
|
Kayacan Y, Yazar H, Kisa EC, Ghojebeigloo BE. A novel biomarker explaining the role of oxidative stress in exercise and l-tyrosine supplementation: thiol/disulphide homeostasis. Arch Physiol Biochem 2018; 124:232-236. [PMID: 29020830 DOI: 10.1080/13813455.2017.1388410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study aimed to evaluate the relationship between exercise and both l-tyrosine and oxidative stress using thiol/disulphide homeostasis via a novel biomarker in rats. Following the completion of the exercise and l-tyrosine protocol, serum total thiol, native thiol, and disulphide concentrations were determined using a novel automated measurement method. Compared with the control group, serum dynamic disulphide levels were significantly lower in the E group (116.75 ± 10.49; p < .05) and the highest in the LT group (151.0 ± 5.84). The lowest oxidised thiol (49.75 ± 6.18; p = .087) and the highest reduced thiol (75.38 ± 3.16; p = .079) rates were determined to be in the E group. The highest oxidised thiol value was observed in the LT group. Exercise positively affects thiol/disulphide homeostasis, which is a novel indicator of oxidant-antioxidant parameters. Additionally, l-tyrosine appears to be more convenient combined with exercise. The new method used in our study proposes a promising, practical, and useful method for assessing the oxidative stress parameters.
Collapse
Affiliation(s)
- Yildirim Kayacan
- a Faculty of Yasar Dogu Sports Sciences , Ondokuz Mayıs University , Samsun , Turkey
| | - Hayrullah Yazar
- b Department of Medical Biochemistry , Sakarya University Faculty of Medicine , Sakarya , Turkey
| | - Emin Can Kisa
- a Faculty of Yasar Dogu Sports Sciences , Ondokuz Mayıs University , Samsun , Turkey
| | | |
Collapse
|
10
|
Erythrocyte Senescence in a Model of Rat Displaying Hutchinson-Gilford Progeria Syndrome. Anal Cell Pathol (Amst) 2018; 2018:5028925. [PMID: 30003010 PMCID: PMC5996419 DOI: 10.1155/2018/5028925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/10/2018] [Indexed: 01/08/2023] Open
Abstract
Background Increased oxidative stress is a major cause of aging and age-related diseases. Erythrocytes serve as good model for aging studies. Dihydrotachysterol is known to induce premature aging feature in rats mimicking Hutchinson-Gilford progeria syndrome. Aim In the present study, attempts have been made to explore the differential response of young and senescent erythrocytes separated by density gradient centrifugation from accelerated senescence model of rats mimicking Hutchinson-Gilford progeria syndrome and naturally aged rats. Methods The erythrocytes of naturally aged and progeroid rats were separated into distinct, young and old cells on the basis of their differential densities. The parameters of oxidative stress and membrane transport systems were studied. Discussion and Conclusion Our study provides evidence that organismal aging negatively affects oxidative stress markers and membrane transport systems in both young and old erythrocytes. This study further substantiates that the changes in progeria model of rats resemble natural aging in terms of erythrocyte senescence.
Collapse
|
11
|
Muñoz Marín D, Barrientos G, Alves J, Grijota FJ, Robles MC, Maynar M. Oxidative stress, lipid peroxidation indexes and antioxidant vitamins in long and middle distance athletes during a sport season. J Sports Med Phys Fitness 2017; 58:1713-1719. [PMID: 29072036 DOI: 10.23736/s0022-4707.17.07887-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The main objective of this study was to observe any changes and possible adaptations produced in MDA and antioxidants vitamins on plasma and erythrocytes in endurance male athletes among an athletic season (12 months). METHODS Twenty three long and middle distance male athletes participated in this study. Basal MDA on plasma and antioxidant vitamins in plasma and erythrocytes were measured at four moments along the season (0, 3, 6 and 9 months). Fatty acid concentrations in erythrocytes were obtained to determine lipid peroxidation indexes. RESULTS In plasma, vitamin C suffered significant decreases at 3 and 6 months compared with the begin (P<0.01), and an increase at 9 months, compared with 3 months. On the other hand, vitamin A level was significantly lower at 9 months compared with the other periods (P<0.01 compared with 0 and 6 months; P<0.05 compared with 3 months). In erythrocytes, significant decreases were observed in vitamin E among the season at 6 months and an increase from 6 to 9 months (P<0.05). Vitamin A suffers a significant decrease in both for competitive periods, at 3 and 9 months, compared with the beginning of the season. The most of changes in lipid peroxidation indexes were produced along the firsts 3 months. CONCLUSIONS 1) Physical training improves the antioxidant systems in order to reduce lipid peroxidation in trained athletes along the season; 2) PUFA/SFA ratios seem more reliable than MDA to observe oxidative stress.
Collapse
Affiliation(s)
- Diego Muñoz Marín
- Department of Physiology, Faculty of Sports Science, University of Extremadura, Cáceres, Spain -
| | - Gema Barrientos
- Department of Sport Science, Faculty of Education, Pontifical University of Salamanca, Salamanca, Spain
| | - Javier Alves
- Department of Sport Science, Faculty of Education, Pontifical University of Salamanca, Salamanca, Spain
| | - Francisco J Grijota
- Department of Sport Science, Faculty of Education, Pontifical University of Salamanca, Salamanca, Spain
| | - Maria C Robles
- Department of Physiology, Faculty of Sports Science, University of Extremadura, Cáceres, Spain
| | - Marcos Maynar
- Department of Physiology, Faculty of Sports Science, University of Extremadura, Cáceres, Spain
| |
Collapse
|
12
|
Evans LW, Omaye ST. Use of Saliva Biomarkers to Monitor Efficacy of Vitamin C in Exercise-Induced Oxidative Stress. Antioxidants (Basel) 2017; 6:E5. [PMID: 28085082 PMCID: PMC5384169 DOI: 10.3390/antiox6010005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Saliva is easily obtainable for medical research and requires little effort or training for collection. Because saliva contains a variety of biological compounds, including vitamin C, malondialdehyde, amylase, and proteomes, it has been successfully used as a biospecimen for the reflection of health status. A popular topic of discussion in medical research is the potential association between oxidative stress and negative outcomes. Systemic biomarkers that represent oxidative stress can be found in saliva. It is unclear, however, if saliva is an accurate biospecimen as is blood and/or plasma. Exercise can induce oxidative stress, resulting in a trend of antioxidant supplementation to combat its assumed detriments. Vitamin C is a popular antioxidant supplement in the realm of sports and exercise. One potential avenue for evaluating exercise induced oxidative stress is through assessment of biomarkers like vitamin C and malondialdehyde in saliva. At present, limited research has been done in this area. The current state of research involving exercise-induced oxidative stress, salivary biomarkers, and vitamin C supplementation is reviewed in this article.
Collapse
Affiliation(s)
- Levi W Evans
- Nutrition Program, Agriculture, Nutrition and Veterinary Science Department, University of Nevada, Reno, NV 89557, USA.
| | - Stanley T Omaye
- Nutrition Program, Agriculture, Nutrition and Veterinary Science Department, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|