1
|
Fujii N, McGarr GW, Amano T, Sigal RJ, Boulay P, Nishiyasu T, Kenny GP. Ageing augments β-adrenergic cutaneous vasodilatation differently in men and women, with no effect on β-adrenergic sweating. Exp Physiol 2020; 105:1720-1729. [PMID: 32818310 DOI: 10.1113/ep088583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/10/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? β-Adrenergic receptor activation modulates cutaneous vasodilatation and sweating in young adults. In this study, we assessed whether age-related differences in β-adrenergic regulation of these responses exist and whether they differ between men and women. What is the main finding and its importance? We showed that ageing augmented β-adrenergic cutaneous vasodilatation, although the pattern of response differed between men and women. Ageing had no effect on β-adrenergic sweating in men or women. Our findings advance our understanding of age-related changes in the regulation of cutaneous vasodilatation and sweating and provide new directions for research on the significance of enhanced β-adrenergic cutaneous vasodilatation in older adults. ABSTRACT β-Adrenergic receptor agonists, such as isoprenaline, can induce cutaneous vasodilatation and sweating in young adults. Given that cutaneous vasodilatation and sweating responses to whole-body heating and to pharmacological agonists, such as acetylcholine, ATP and nicotine, can differ in older adults, we assessed whether ageing also modulates β-adrenergic cutaneous vasodilatation and sweating and whether responses differ between men and women. In the context of the latter, prior reports showed that the effects of ageing on cutaneous vasodilatation (evoked with ATP and nicotine) and sweating (stimulated by acetylcholine) were sex dependent. Thus, in the present study, we assessed the role of β-adrenergic receptor activation on forearm cutaneous vasodilatation and sweating in 11 young men (24 ± 4 years of age), 11 young women (23 ± 5 years of age), 11 older men (61 ± 8 years of age) and 11 older women (60 ± 8 years of age). Initially, a high dose (100 µm) of isoprenaline was administered via intradermal microdialysis for 5 min to induce maximal β-adrenergic sweating. Approximately 60 min after the washout period, three incremental doses of isoprenaline were administered (1, 10 and 100 µm, each for 25 min) to assess dose-dependent cutaneous vasodilatation. Isoprenaline-mediated cutaneous vasodilatation was greater in both older men and older women relative to their young counterparts. Augmented cutaneous vasodilatory responses were observed at 1 and 10 µm in women and at 100 µm in men. Isoprenaline-mediated sweating was unaffected by ageing, regardless of sex. We show that ageing augments β-adrenergic cutaneous vasodilatation differently in men and women, without influencing β-adrenergic sweating.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Niigata, Japan
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
|
3
|
Fujii N, McGarr GW, Ghassa R, Schmidt MD, McCormick JJ, Nishiyasu T, Kenny GP. Sex-differences in cholinergic, nicotinic, and β-adrenergic cutaneous vasodilation: Roles of nitric oxide synthase, cyclooxygenase, and K + channels. Microvasc Res 2020; 131:104030. [PMID: 32531353 DOI: 10.1016/j.mvr.2020.104030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
Previous studies indicate that sex-related differences exist in the regulation of cutaneous vasodilation, however, the mechanisms remain unresolved. We assessed if sex-differences in young adults exist for cholinergic, nicotinic, and β-adrenergic cutaneous vasodilation with a focus on nitric oxide synthase (NOS), cyclooxygenase (COX), and K+ channel mechanisms. In twelve young men and thirteen young women, four intradermal forearm skin sites were perfused with the following: 1) lactated Ringer's solution (control), 2) 10 mM Nω-nitro-l-arginine, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM BaCl2, a nonspecific K+ channel blocker. At all four sites, cutaneous vasodilation was induced by 1) 10 mM nicotine, a nicotinic receptor agonist, 2) 100 μM isoproterenol, a nonselective β-adrenergic receptor agonist, and 3) 2 mM and 2000 mM acetylcholine, an acetylcholine receptor agonist. Nicotine and isoproterenol were administered for 3 min, whereas each acetylcholine dose was administered for 25 min. Regardless of treatment site, cutaneous vasodilation in response to nicotine and a high dose of acetylcholine (2000 mM) were lower in women than men. By contrast, isoproterenol induced cutaneous vasodilation was greater in women vs. men. Irrespective of sex, NOS inhibition or K+ channel blockade attenuated isoproterenol-mediated cutaneous vasodilation, whereas K+ channel blockade decreased nicotine-induced cutaneous vasodilation. Taken together, our findings indicate that while the mechanisms underlying cutaneous vasodilation are comparable between young men and women, sex-related differences in the magnitude of cutaneous vasodilation do exist and this response differs as a function of the receptor agonist.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Reem Ghassa
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Madison D Schmidt
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada; Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Fujii N, McGarr GW, Sigal RJ, Boulay P, Nishiyasu T, Kenny GP. Ageing augments nicotinic and adenosine triphosphate-induced, but not muscarinic, cutaneous vasodilatation in women. Exp Physiol 2019; 104:1801-1807. [PMID: 31602716 DOI: 10.1113/ep088144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does ageing augment muscarinic, nicotinic and/or ATP-mediated cutaneous vasodilatation in women? What is the main finding and its importance? Ageing augments nicotinic and ATP-induced, but not muscarinic, cutaneous vasodilatation in women. This will stimulate future studies assessing the pathophysiological significance of the augmented microvascular responsiveness in older women compared to their young counterparts. ABSTRACT We previously reported that ageing attenuates adenosine triphosphate (ATP)-induced, but not muscarinic and nicotinic, cutaneous vasodilatation in men, and that ageing may augment cutaneous vascular responses in women. In the present study, we evaluated the hypothesis that ageing augments muscarinic, nicotinic and/or ATP-mediated cutaneous vasodilatation in healthy women. In 11 young (23 ± 5 years) and 11 older (60 ± 8 years) women, cutaneous vascular conductance was evaluated at three forearm skin sites that were perfused with (1) methacholine (muscarinic receptor agonist, 5 doses: 0.0125, 0.25, 5, 100, 2000 mm), (2) nicotine (nicotinic receptor agonist, 5 doses: 1.2, 3.6, 11, 33, 100 mm), or (3) ATP (purinergic receptor agonist, 5 doses: 0.03, 0.3, 3, 30, 300 mm). Each agonist was administered for 25 min per dose. Methacholine-induced increases in cutaneous vascular conductance were not different between groups at all doses (all P > 0.05). However, a nicotine-induced elevation in cutaneous vascular conductance at the lowest concentration (1.2 mm) was greater in older vs. young women (43 ± 15 vs. 26 ± 10%max, P = 0.04). ATP-induced increases in cutaneous vascular conductance at moderate and high doses (3 and 30 mm) were also greater in older relative to young women (3 mm, 44 ± 11 vs. 28 ± 10%max, P = 0.02; 30 mm, 83 ± 14 vs. 64 ± 17%max, P = 0.05). Therefore, ageing augments nicotinic and ATP-induced, but not muscarinic, cutaneous vasodilatation in women.
Collapse
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Gregory W McGarr
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada
| | - Ronald J Sigal
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Pierre Boulay
- Faculty of Physical Activity Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
5
|
Evidence for TRPV4 channel induced skin vasodilatation through NOS, COX, and KCa channel mechanisms with no effect on sweat rate in humans. Eur J Pharmacol 2019; 858:172462. [DOI: 10.1016/j.ejphar.2019.172462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
|
6
|
Fujii N, McGarr GW, Hatam K, Chandran N, Muia CM, Nishiyasu T, Boulay P, Ghassa R, Kenny GP. Heat shock protein 90 does not contribute to cutaneous vasodilatation in older adults during heat stress. Microcirculation 2019; 26:e12541. [DOI: 10.1111/micc.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/27/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Naoto Fujii
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Gregory W. McGarr
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Kion Hatam
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Nithila Chandran
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Caroline M. Muia
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences University of Tsukuba Tsukuba Japan
| | - Pierre Boulay
- Faculty of Physical Activity Sciences University of Sherbrooke Sherbrooke Quebec Canada
| | - Reem Ghassa
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
| | - Glen P. Kenny
- Human and Environmental Physiology Research Unit University of Ottawa Ottawa Ontario Canada
- Clinical Epidemiology Program Ottawa Hospital Research Institute Ottawa Ontario Canada
| |
Collapse
|