1
|
Yoshioka N, Takeuchi H, Shu Y, Okamatsu T, Araki N, Kamakura Y, Ohsuga M. Combined Method Comprising Low Burden Physiological Measurements with Dry Electrodes and Machine Learning for Classification of Visually Induced Motion Sickness in Remote-Controlled Excavator. SENSORS (BASEL, SWITZERLAND) 2024; 24:6465. [PMID: 39409505 PMCID: PMC11479346 DOI: 10.3390/s24196465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024]
Abstract
The construction industry is actively developing remote-controlled excavators to address labor shortages and improve work safety. However, visually induced motion sickness (VIMS) remains a concern in the remote operation of construction machinery. To predict the occurrence and severity of VIMS, we developed a prototype system that acquires multiple physiological signals with different mechanisms under a low burden and detects VIMS from the collected data. Signals during VIMS were recorded from nine healthy adult males operating excavator simulators equipped with multiple displays and a head-mounted display. Light gradient-boosting machine-based VIMS detection binary classification models were constructed using approximately 30,000 s of time-series data, comprising 23 features derived from the physiological signals. These models were validated using leave-one-out cross-validation on seven participants who experienced severe VIMS and evaluated through area under the curve (AUC) scores. The mean receiver operating characteristic curve AUC score was 0.84, and the mean precision-recall curve AUC score was 0.71. All features were incorporated into the models, with saccade frequency and skin conductance response identified as particularly important. These trends aligned with subjective assessments of VIMS severity. This study contributes to advancing the use of remote-controlled machinery by addressing a critical challenge to operator performance and safety.
Collapse
Affiliation(s)
- Naohito Yoshioka
- Graduate School of Robotics and Design, Osaka Institute of Technology, Chayamachi 1-45, Osaka 530-0013, Japan;
- Research and Development Center, Yanmar Holdings Co., Ltd., Umegahara 2481, Maibara 521-8511, Japan (T.O.); (N.A.)
| | - Hiroki Takeuchi
- Graduate School of Robotics and Design, Osaka Institute of Technology, Chayamachi 1-45, Osaka 530-0013, Japan;
| | - Yuzhuo Shu
- Research and Development Center, Yanmar Holdings Co., Ltd., Umegahara 2481, Maibara 521-8511, Japan (T.O.); (N.A.)
| | - Taro Okamatsu
- Research and Development Center, Yanmar Holdings Co., Ltd., Umegahara 2481, Maibara 521-8511, Japan (T.O.); (N.A.)
| | - Nobuyuki Araki
- Research and Development Center, Yanmar Holdings Co., Ltd., Umegahara 2481, Maibara 521-8511, Japan (T.O.); (N.A.)
| | - Yoshiyuki Kamakura
- Faculty of Information Science and Technology, Osaka Institute of Technology, Kitayama 1-79-1, Hirakata 573-0196, Japan;
| | - Mieko Ohsuga
- Faculty of Robotics and Design, Osaka Institute of Technology, Chayamachi 1-45, Osaka 530-0013, Japan;
| |
Collapse
|
2
|
Kuldavletova O, Denise P, Normand H, Quarck G, Etard O. Both whole-body rotation and visual flow induce cardiovascular autonomic response in human, but visual response is overridden by vestibular stimulation. Sci Rep 2023; 13:4191. [PMID: 36918631 PMCID: PMC10015060 DOI: 10.1038/s41598-023-31431-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023] Open
Abstract
While the influence of the vestibular and extra-vestibular gravity signals on the cardiovascular system has been demonstrated, there is little evidence that visual stimuli can trigger cardiovascular responses. Furthermore, there is no evidence of interaction between visual and vestibular signals in autonomic control, as would be expected since they are highly integrated. The present study explored the cardiovascular responses to vestibular and visual stimuli in normal subjects. We hypothesized that the visual stimuli would modify the cardiovascular response to vestibular stimulation, especially when the latter is ambiguous with respect to gravity. Off-Vertical-Axis-Rotation (OVAR) was used to stimulate vestibular and extra-vestibular receptors of gravity in 36 healthy young adults while virtual reality was used for visual stimulation. Arterial pressure (AP), respiratory rate and ECG were measured. The analysis accounted for the respiratory modulation of AP and heart rate (HR). Vestibular stimulation by OVAR was shown to modulate both mean arterial pressure (MAP) and HR, while the visual stimulation was significantly affecting HR modulation, but not MAP. Moreover, the specific visual effect was present only when the subjects were not in rotation. Therefore, visual stimulation is able to modulate the heart rate, but is overridden by vestibular stimulation due to real movement.
Collapse
Affiliation(s)
- O Kuldavletova
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, 14000, Caen, France.
| | - P Denise
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, 14000, Caen, France
| | - H Normand
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, 14000, Caen, France
| | - G Quarck
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, 14000, Caen, France
| | - O Etard
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, 14000, Caen, France
| |
Collapse
|
3
|
Keshavarz B, Peck K, Rezaei S, Taati B. Detecting and predicting visually induced motion sickness with physiological measures in combination with machine learning techniques. Int J Psychophysiol 2022; 176:14-26. [DOI: 10.1016/j.ijpsycho.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022]
|
4
|
Paul AM, Overbey EG, da Silveira WA, Szewczyk N, Nishiyama NC, Pecaut MJ, Anand S, Galazka JM, Mao XW. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity. Sci Rep 2021; 11:11452. [PMID: 34075076 PMCID: PMC8169688 DOI: 10.1038/s41598-021-90439-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
Using a ground-based model to simulate spaceflight [21-days of single-housed, hindlimb unloading (HLU) combined with continuous low-dose gamma irradiation (LDR, total dose of 0.04 Gy)], an in-depth survey of the immune and hematological systems of mice at 7-days post-exposure was performed. Collected blood was profiled with a hematology analyzer and spleens were analyzed by whole transcriptome shotgun sequencing (RNA-sequencing). The results revealed negligible differences in immune differentials. However, hematological system analyses of whole blood indicated large disparities in red blood cell differentials and morphology, suggestive of anemia. Murine Reactome networks indicated majority of spleen cells displayed differentially expressed genes (DEG) involved in signal transduction, metabolism, cell cycle, chromatin organization, and DNA repair. Although immune differentials were not changed, DEG analysis of the spleen revealed expression profiles associated with inflammation and dysregulated immune function persist to 1-week post-simulated spaceflight. Additionally, specific regulation pathways associated with human blood disease gene orthologs, such as blood pressure regulation, transforming growth factor-β receptor signaling, and B cell differentiation were noted. Collectively, this study revealed differential immune and hematological outcomes 1-week post-simulated spaceflight conditions, suggesting recovery from spaceflight is an unremitting process.
Collapse
Affiliation(s)
- Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA. .,Universities Space Research Association, Columbia, MD, 21046, USA. .,Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
| | - Eliah G Overbey
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Willian A da Silveira
- Faculty of Medicine, Health and Life Sciences, School of Biological Sciences, Institute for Global Food Security (IGFS), Queen's University, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nathaniel Szewczyk
- Ohio Musculoskeletal and Neurological Institute and Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Nina C Nishiyama
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Michael J Pecaut
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Sulekha Anand
- Department of Biological Sciences, San Jose University, San Jose, CA, 95192, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Xiao Wen Mao
- Division of Biomedical Engineering Sciences (BMES), Department of Basic Sciences, Loma Linda University, Loma Linda, CA, 92354, USA
| |
Collapse
|
5
|
Foster M, Singh N, Kwok K, Macefield VG. Vestibular modulation of skin sympathetic nerve activity in sopite syndrome induced by low-frequency sinusoidal motion. J Neurophysiol 2020; 124:1551-1559. [PMID: 32965160 DOI: 10.1152/jn.00177.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sopite syndrome, centered around the drowsiness, lethargy, and irritability associated with motion sickness, can be induced by exposure to low-frequency motion. It is known that the vestibular apparatus plays an important role in the pathogenesis of motion sickness, which features several autonomic responses, and we have previously documented increased vestibular modulation of skin sympathetic nerve activity (SSNA) and an increase in skin blood flow associated with nausea. Here, we assessed whether imperceptibly slow sinusoidal motion, sufficient to induce sopite syndrome but not nausea, also modulates SSNA and skin blood flow. Participants were seated upright and exposed to a randomized set of sinusoidal linear accelerations, ranging from 0.03 Hz at 0.5 mG to 0.2 Hz at 5 mG, via a motorized platform. At all frequencies vestibular modulation was greater than the cardiac modulation of SSNA, but cardiac modulation and skin blood flow were both significantly lower during the motion than at baseline. We conclude that sopite syndrome is associated with a marked modulation of sympathetic outflow to the skin and cutaneous vasoconstriction.NEW & NOTEWORTHY Little is known about the autonomic consequences of sopite syndrome-the drowsiness that can be induced by low-amplitude cyclic motion. We recorded skin sympathetic nerve activity (SSNA) in seated participants exposed to slow sinusoidal linear acceleration (0.03-0.2 Hz), which preferentially activates hair cells in the utricular part of the otolithic organs, at amplitudes that generated no sensations of motion. At all frequencies, there was a clear vestibular modulation of SSNA and cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Monique Foster
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Natasha Singh
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia
| | - Kenny Kwok
- School of Civil Engineering, University of Sydney, Sydney, New South Wales, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Leung AK, Hon KL. Motion sickness: an overview. Drugs Context 2019; 8:dic-2019-9-4. [PMID: 32158479 PMCID: PMC7048153 DOI: 10.7573/dic.2019-9-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022] Open
Abstract
Background Motion sickness is a common phenomenon that affects almost everybody at some point in their lifetime. Clinicians should be familiar with the proper management of this condition. Objective To provide an update on the current understanding of the pathophysiology and management of motion sickness. Methods A PubMed search was performed with Clinical Queries using the key term ‘motion sickness.’ The search strategy included meta-analyses, randomized controlled trials, clinical trials, observational studies, and reviews. The search was restricted to English literature. The information retrieved from the earlier search was used in the compilation of the present article. Results Motion sickness is typically triggered by low-frequency vertical, lateral, angular, rotary motion, or virtual stimulator motion, to which an individual has not adapted. Sine qua non for developing motion sickness is when the brain receives conflicting information from different sensors about real body movements or virtual environment. The principal sensors are the eyes, the vestibular apparatus, and proprioceptive receptors. The conflicting information is judged in relation to a pattern of expected associations formed under normal or experienced conditions stored in the brain. Motion sickness typically presents with malaise, anorexia, nausea, yawning, sighing, increased salivation, burping, headache, blurred vision, non-vertiginous dizziness, drowsiness, spatial disorientation, difficulty concentrating, and sometimes vomiting. Simple behavioral and environmental modifications can be effective in the prevention of motion sickness. Medications that are effective in the prophylaxis and/or treatment of motion sickness include anticholinergics, antihistamines, and sympathomimetics. Conclusion In most cases, motion sickness can be prevented by behavioral and environmental modifications (avoidance, habituation, and minimization of motion stimuli). Pharmacotherapy should be considered in the prevention and/or treatment of more severe motion sickness and for patients who do not respond to conservative measures. Medications are most effective when combined with behavioral and environmental modifications. Drugs that are effective in the prophylaxis and/or treatment of motion sickness include anticholinergic agents and antihistamines.
Collapse
Affiliation(s)
- Alexander Kc Leung
- Department of Pediatrics, The University of Calgary, Alberta Children's Hospital, Calgary, Alberta, Canada
| | - Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Department of Paediatrics and Adolescent Medicine, The Hong Kong Children's Hospital, Hong Kong
| |
Collapse
|