Jacob DW, Harper JL, Ivie CL, Ott EP, Limberg JK. Sex differences in the vascular response to sympathetic activation during acute hypoxaemia.
Exp Physiol 2021;
106:1689-1698. [PMID:
34187092 DOI:
10.1113/ep089461]
[Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS
What is the central question of this study? Sympathetically mediated vasoconstriction is preserved during hypoxaemia in humans, but our understanding of vascular control comes from predominantly male cohorts. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not? What is the main finding and its importance? Sympathetically mediated vasoconstriction is preserved or even enhanced during steady-state hypoxia in young men, and the peripheral vascular response to sympathetic activation during hypoxaemia is attenuated in young women. These data advance our understanding of sex-related differences in hypoxic vascular control.
ABSTRACT
Activation of the sympathetic nervous system causes vasoconstriction and a reduction in peripheral blood flow. Sympathetically mediated vasoconstriction may be attenuated during systemic hypoxia to maintain oxygen delivery; however, in predominantly male participants sympathetically mediated vasoconstriction is preserved or even enhanced during hypoxaemia. Given the potential for sex-specific differences in hypoxic vascular control, prior results are limited in application. We tested the hypothesis that young women attenuate sympathetically mediated vasoconstriction during steady-state hypoxaemia, whereas men do not. Healthy young men (n = 13, 25 ± 4 years) and women (n = 11, 24 ± 4 years) completed two trials consisting of a 2-min cold pressor test (CPT, a well-established sympathoexcitatory stimulus) during baseline normoxia and steady-state hypoxaemia. Beat-to-beat blood pressure (finger photoplethysmography) and forearm blood flow (venous occlusion plethysmography) were measured continuously. Total and forearm vascular conductance (TVC and FVC, respectfully) were calculated. A change (Δ) in TVC and FVC from steady-state during the last 1 min of CPT was calculated and differences between normoxia and systemic hypoxia were assessed. In men, the reduction in TVC during CPT was greater during hypoxia compared to normoxia (ΔTVC, P = 0.02), whereas ΔTVC did not differ between conditions in women (P = 0.49). In men, ΔFVC did not differ between normoxia and hypoxia (P = 0.92). In women, the reduction in FVC during CPT was attenuated during hypoxia (ΔFVC, P < 0.01). We confirm sympathetically mediated vasoconstriction is preserved or enhanced during hypoxaemia in young men, whereas peripheral vascular responsiveness to sympathetic activation during hypoxaemia is attenuated in young women. The results advance our understanding of sex-related differences in hypoxic vascular control.
Collapse