1
|
Mayfield DL, Holt NC. Does force depression resulting from shortening against series elasticity contribute to the activation dependence of optimum length? Am J Physiol Cell Physiol 2025; 328:C528-C540. [PMID: 39726260 DOI: 10.1152/ajpcell.00638.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/15/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
The optimum length for force generation (L0) increases as activation is reduced, challenging classic theories of muscle contraction. Although the activation dependence of L0 is seemingly consistent with length-dependent Ca2+ sensitivity, this mechanism cannot explain the apparent force dependence of L0 or the effect of series compliance on activation-related shifts in L0. We have tested a theory proposing that the activation dependence of L0 relates to force depression resulting from shortening against series elasticity. This theory predicts that significant series compliance would cause tetanic L0 to be shorter than the length corresponding to optimal filament overlap, thereby increasing the activation dependence of L0. We tested this prediction by determining L0 and maximum tetanic force (P0) with (L0_spring, P0_spring) and without added compliance in bullfrog semitendinosus muscles. The activation dependence of L0 was characterized with the addition of twitch and doublet contractions. Springs attached to muscles gave added fixed-end compliances of 11%-39% and induced force depression for tetanic fixed-end contractions (P0_spring < P0). We found strong, negative correlations between spring compliance and both P0_spring (r2 = 0.89-0.91) and L0_spring (r2 = 0.60-0.63; P < 0.001), whereas the activation dependence of L0 was positively correlated to added compliance (r2 = 0.45, P = 0.011). However, since the compliance-mediated reduction in L0 was modest relative to the activation-related shift reported for the bullfrog plantaris muscle, additional factors must be considered. Our demonstration of force depression under novel conditions adds support to the involvement of a stress-induced inhibition of cross-bridge binding.NEW & NOTEWORTHY Length-dependent Ca2+ sensitivity does not fully explain the activation dependence of optimum length (L0). We demonstrate using an isolated muscle preparation and added series compliance that substantial force depression can arise during an isometric contraction, causing tetanic L0 to shift to a shorter length. Our findings illustrate that series compliance, via the work and length dependencies of force depression, partially uncouples force generation from myofilament overlap, which ultimately increases the activation (or force) dependence of L0.
Collapse
Affiliation(s)
- Dean L Mayfield
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States
| | - Natalie C Holt
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, United States
| |
Collapse
|
2
|
Zimmermann HB, Macintosh BR, Pupo JD. The Relationship Between Length and Active Force for Submaximal Skeletal Muscle Contractions: a Review. Sports Med 2025; 55:37-47. [PMID: 39543073 DOI: 10.1007/s40279-024-02140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
The force-length relationship is usually obtained for isometric contractions with maximal activation, but less is known about how sarcomere length affects force during submaximal activation. During submaximal activation, length-dependent alterations in calcium sensitivity, owing to changes in cross-bridge kinetics (rate of attachment and/or detachment), result in an activation-dependent shift in optimal length to longer sarcomere lengths. It is known that sarcomere length, as well as temperature and phosphorylation of the regulatory light chains of myosin, can modify Ca2⁺ sensitivity by altering the probability of cross-bridge interaction. This altered calcium sensitivity is particularly important for submaximal force levels, as it can change the shape of the length dependence of force, with peak force occurring at sarcomere lengths longer than those associated with maximal filament overlap. In athletic contexts, contractions typically do not reach maximal intensity. Therefore, understanding that the ability to produce force under both maximal and submaximal conditions can differ, and that peak force can be generated at different lengths, could influence the development of targeted training regimens optimal for each sport.
Collapse
Affiliation(s)
- Haiko Bruno Zimmermann
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Brian R Macintosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Juliano Dal Pupo
- Biomechanics Laboratory, Center of Sports, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
Bohm S, Schroll A, Mersmann F, Arampatzis A. Assessment and modelling of the activation-dependent shift in optimal length of the human soleus muscle in vivo. J Physiol 2024; 602:1371-1384. [PMID: 38482557 DOI: 10.1113/jp285986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Previous in vitro and in situ studies have reported a shift in optimal muscle fibre length for force generation (L0) towards longer length at decreasing activation levels (also referred to as length-dependent activation), yet the relevance for in vivo human muscle contractions with a variable activation pattern remains largely unclear. By a combination of dynamometry, ultrasound and electromyography (EMG), we experimentally obtained muscle force-fascicle length curves of the human soleus at 100%, 60% and 30% EMGmax levels from 15 participants aiming to investigate activation-dependent shifts in L0 in vivo. The results showed a significant increase in L0 of 6.5 ± 6.0% from 100% to 60% EMGmax and of 9.1 ± 7.2% from 100% to 30% EMGmax (both P < 0.001), respectively, providing evidence of a moderate in vivo activation dependence of the soleus force-length relationship. Based on the experimental results, an approximation model of an activation-dependent force-length relationship was defined for each individual separately and for the collective data of all participants, both with sufficiently high accuracy (R2 of 0.899 ± 0.056 and R2 = 0.858). This individual approximation approach and the general approximation model outcome are freely accessible and may be used to integrate activation-dependent shifts in L0 in experimental and musculoskeletal modelling studies to improve muscle force predictions. KEY POINTS: The phenomenon of the activation-dependent shift in optimal muscle fibre length for force generation (length-dependent activation) is poorly understood for human muscle in vivo dynamic contractions. We experimentally observed a moderate shift in optimal fascicle length towards longer length at decreasing electromyographic activity levels for the human soleus muscle in vivo. Based on the experimental results, we developed a freely accessible approximation model that allows the consideration of activation-dependent shifts in optimal length in future experimental and musculoskeletal modelling studies to improve muscle force predictions.
Collapse
Affiliation(s)
- Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin School of Movement Science, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Angelidis A, Vandenboom R. The effect of muscle length on post-tetanic potentiation of C57BL/6 and skMLCK -/- mouse EDL muscles. J Muscle Res Cell Motil 2022; 43:99-111. [PMID: 35771335 DOI: 10.1007/s10974-022-09620-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Post-tetanic potentiation of fast-twitch skeletal muscle is dependent on muscle length, with greater potentiation observed at shorter compared to longer lengths. The structural effects of the primary potentiation mechanism, phosphorylation of the regulatory light chain (RLC) of myosin, are thought to explain this relationship. The purpose of these experiments was to determine whether the length-dependence of potentiation would be attenuated in the absence of RLC phosphorylation. To this end, we compared isometric twitch potentiation of mouse extensor digitorum longus (EDL) muscles with (wildtype, WT) and without (skeletal myosin light chain kinase knockout, skMLCK-/-) phosphorylation. Force was measured at five muscle lengths (0.90 Lo, 0.95 Lo, Lo, 1.05 Lo, 1.10 Lo, where Lo refers to optimal length) prior to and following a tetanic train. In accordance with prior findings, potentiation was dependent on muscle length, with greater values observed at short (e.g., 44.3 ± 4.6% for WT, 33.5 ± 6.2% for skMLCK-/-, at 0.90 Lo) compared to long lengths (e.g., 16.9 ± 1.3% for WT, 9.1 ± 1.8% for skMLCK-/-, at 1.10 Lo) in both genotypes. WT muscles displayed greater potentiation compared to their skMLCK-/- counterparts across lengths (e.g., 16.9 ± 1.6% vs 7.3 ± 1.5% at Lo). However, the relationship between potentiation and muscle length was not different between genotypes. Thus, the alternative mechanisms of potentiation, present in the skMLCK-/- EDL, display a length-dependence of post-tetanic potentiation similar to RLC phosphorylation-dominant potentiation. Additional mechanisms may be required to explain the length-dependence of potentiation.
Collapse
Affiliation(s)
- Angelos Angelidis
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada.
| | - Rene Vandenboom
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
5
|
Power GA, Crooks S, Fletcher JR, Macintosh BR, Herzog W. Age-related reductions in the number of serial sarcomeres contribute to shorter fascicle lengths but not elevated passive tension. J Exp Biol 2021; 224:268352. [PMID: 34028517 DOI: 10.1242/jeb.242172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 11/20/2022]
Abstract
We investigated age-related changes to fascicle length, sarcomere length and serial sarcomere number (SSN), and how this affects passive force. Following mechanical testing to determine passive force, the medial gastrocnemius muscle of young (n=9) and old (n=8) Fisher 344BN hybrid rats was chemically fixed at the optimal muscle length for force production; individual fascicles were dissected for length measurement, and laser diffraction was used to assess sarcomere length. Old rats had ∼14% shorter fascicle lengths than young rats, which was driven by a ∼10% reduction in SSN, with no difference in sarcomere length (∼4%). Passive force was greater in the old than in the young rats at long muscle lengths. Shorter fascicle lengths and reduced SSN in the old rats could not entirely explain increased passive forces for absolute length changes, owing to a slight reduction in sarcomere length in old rats, resulting in similar sarcomere length at long muscle lengths.
Collapse
Affiliation(s)
- Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON, CanadaN1G 2W1.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4
| | - Sean Crooks
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4
| | - Jared R Fletcher
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4.,Department of Health and Physical Education, Mount Royal University, Calgary, AB, CanadaT3E 6K6
| | - Brian R Macintosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, CanadaT2N 1N4
| |
Collapse
|