1
|
Öz M, Erdal H. A TNF-α inhibitor abolishes sepsis-induced cognitive impairment in mice by modulating acetylcholine and nitric oxide homeostasis, BDNF release, and neuroinflammation. Behav Brain Res 2024; 466:114995. [PMID: 38599251 DOI: 10.1016/j.bbr.2024.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.
Collapse
Affiliation(s)
- Mehmet Öz
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkiye.
| | - Hüseyin Erdal
- Department of Medical Genetics, Faculty of Medicine, Aksaray University, Aksaray, Turkiye
| |
Collapse
|
2
|
Baghani M, Fathalizade F, Khakpai F, Fazli-Tabaei S, Zarrindast MR. Additive effect of histamine and muscimol upon induction of antinociceptive and antidepressant effects in mice. Behav Pharmacol 2024; 35:55-65. [PMID: 37401392 DOI: 10.1097/fbp.0000000000000729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
We investigated the effects of histamine and GABA A receptor agents on pain and depression-like behaviors and their interaction using a tail-flick test and the forced swimming test (FST) in male mice. Our data revealed that intraperitoneal administration of muscimol (0.12 and 0.25 mg/kg) increased the percentage of maximum possible effect (%MPE) and area under the curve (AUC) of %MPE, indicating an antinociceptive response. Intraperitoneal injection of bicuculline (0.5 and 1 mg/kg) decreased %MPE and AUC of %MPE, suggesting hyperalgesia. Moreover, muscimol by reducing the immobility time of the FST elicited an antidepressant-like response but bicuculline by enhancing the immobility time of the FST caused a depressant-like response. Intracerebroventricular (i.c.v.) microinjection of histamine (5 µg/mouse) enhanced %MPE and AUC of %MPE. i.c.v. infusion of histamine (2.5 and 5 µg/mouse) decreased immobility time in the FST. Co-administration of different doses of histamine along with a sub-threshold dose of muscimol potentiated antinociceptive and antidepressant-like responses produced by histamine. Cotreatment of different doses of histamine plus a noneffective dose of bicuculline reversed antinociception and antidepressant-like effects elicited by histamine. Cotreatment of histamine, muscimol, and bicuculline reversed antinociceptive and antidepressant-like behaviors induced by the drugs. The results demonstrated additive antinociceptive and antidepressant-like effects between histamine and muscimol in mice. In conclusion, our results indicated an interaction between the histaminergic and GABAergic systems in the modulation of pain and depression-like behaviors.
Collapse
Affiliation(s)
- Matin Baghani
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences
| | - Farzan Fathalizade
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Soheila Fazli-Tabaei
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences
- Department of Neuroendocrinology, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Chen W, Zheng Y, Zhu Y, Liu D, Zhu L. Pharmacokinetics, tissue distribution, and plasma protein binding ratio of bicuculline following intragastric and intravenous administration in rats using ultra-high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2024; 38:e5802. [PMID: 38110194 DOI: 10.1002/bmc.5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2023]
Abstract
Bicuculline is a natural isoquinoline alkaloid that works as a gamma-aminobutyric acid receptor antagonist. It is widely found in Papaveraceae plants used in traditional Chinese medicines. Bicuculline not only has been shown to have favorable analgesic, memory-improving, and anxiolytic effects but may also cause adverse effects such as convulsions and epilepsy. A simple, rapid, and sensitive method was developed and validated for the determination of bicuculline in the plasma and tissue samples in rats by ultra-high-performance liquid chromatography-tandem mass spectrometry (MS/MS). The chromatographic separation was performed on a Thermo Scientific C18 column. The MS/MS system was operated in the positive multiple reaction monitoring mode, and the precursor-product ion transitions were optimized as m/z 368.0 → 307.1 for bicuculline and as 354.1 → 188.1 for protopine (internal standard). The linearity, accuracy, precision, recovery, and matrix effect were within acceptable limits. The experimental data showed that bicuculline was rapidly absorbed and eliminated in rats, with a moderate plasma protein binding ratio and low bioavailability. The main tissues of distribution were the kidney, liver, and brain; bicuculline could exert its pharmacological effects across the blood-brain barrier. This study has positive implications for the clinical use of herbal medicines containing bicuculline and for further development.
Collapse
Affiliation(s)
- Weikang Chen
- Jiangxi Institute for Drug Control/Jiangxi Engineering Research Center for Drug and Medical Device Quality, Nanchang, China
- National Medical Products Administration Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, China
| | - Yangbin Zheng
- Jiangxi Institute for Drug Control/Jiangxi Engineering Research Center for Drug and Medical Device Quality, Nanchang, China
- National Medical Products Administration Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, China
| | - Yanyan Zhu
- Jiangxi Institute for Drug Control/Jiangxi Engineering Research Center for Drug and Medical Device Quality, Nanchang, China
- National Medical Products Administration Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, China
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dehong Liu
- Jiangxi Institute for Drug Control/Jiangxi Engineering Research Center for Drug and Medical Device Quality, Nanchang, China
- National Medical Products Administration Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, China
| | - Lianghui Zhu
- Jiangxi Institute for Drug Control/Jiangxi Engineering Research Center for Drug and Medical Device Quality, Nanchang, China
- National Medical Products Administration Key Laboratory of Quality Evaluation of Traditional Chinese Patent Medicine, Nanchang, China
| |
Collapse
|
4
|
Gonzalez-Rivera ML, Barragan-Galvez JC, Gasca-Martínez D, Hidalgo-Figueroa S, Isiordia-Espinoza M, Alonso-Castro AJ. In Vivo Neuropharmacological Effects of Neophytadiene. Molecules 2023; 28:molecules28083457. [PMID: 37110691 PMCID: PMC10142729 DOI: 10.3390/molecules28083457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Neophytadiene (NPT) is a diterpene found in the methanolic extracts of Crataeva nurvala and Blumea lacera, plants reported with anxiolytic-like activity, sedative properties, and antidepressant-like actions; however, the contribution of neophytadiene to these effects is unknown. This study determined the neuropharmacological (anxiolytic-like, antidepressant-like, anticonvulsant, and sedative) effects of neophytadiene (0.1-10 mg/kg p.o.) and determined the mechanisms of action involved in the neuropharmacological actions using inhibitors such as flumazenil and analyzing the possible interaction of neophytadiene with GABA receptors using a molecular docking study. The behavioral tests were evaluated using the light-dark box, elevated plus-maze, open field, hole-board, convulsion, tail suspension, pentobarbital-induced sleeping, and rotarod. The results showed that neophytadiene exhibited anxiolytic-like activity only to the high dose (10 mg/kg) in the elevated plus-maze and hole-board tests, and anticonvulsant actions in the 4-aminopyridine and pentylenetetrazole-induced seizures test. The anxiolytic-like and anticonvulsant effects of neophytadiene were abolished with the pre-treatment with 2 mg/kg flumazenil. In addition, neophytadiene showed low antidepressant effects (about 3-fold lower) compared to fluoxetine. On other hand, neophytadiene had no sedative or locomotor effects. In conclusion, neophytadiene exerts anxiolytic-like and anticonvulsant activities with the probable participation of the GABAergic system.
Collapse
Affiliation(s)
- Maria L Gonzalez-Rivera
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Juan Carlos Barragan-Galvez
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| | - Deisy Gasca-Martínez
- Unidad de Análisis Conductual, Instituto de Neurobiología, Campus UNAM-Juriquilla, Juriquilla 76230, Mexico
| | - Sergio Hidalgo-Figueroa
- CONACyT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico
| | - Mario Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Mexico
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato 36200, Mexico
| |
Collapse
|
5
|
The Anti-Fatigue Effect of Glycoprotein from Hairtail Fish (Trichiurus lepturus) on BALB/c Mice. Foods 2023; 12:foods12061245. [PMID: 36981171 PMCID: PMC10048760 DOI: 10.3390/foods12061245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Fatigue is related to a variety of chronic diseases and has become a hot research topic in recent years. Various bioactive components have been extracted from hairtail fish (Trichiurus lepturus); however, none of these studies involved the anti-fatigue activity of hairtail fish glycoprotein (HGP). Thus, antioxidant experiments were conducted in vitro, and the anti-fatigue activity of HGP was further evaluated in BALB/c mice. The effects of HGP on the behavior of BALB/c mice were verified by classical behavioral experiments, and the indicators related to anti-fatigue activity were detected. The results showed that the antioxidant capacity in vitro of HGP increased gradually in the concentration range of 10 to 100 mg/mL. HGP improved the exercise ability of the mice. HGP was also found to significantly (p < 0.05) reduce the serum levels of lactate dehydrogenase (LDH), blood lactic acid (BLA), blood urea nitrogen (BUN), and creatine kinase (CK). The contents of liver glycogen (LG) and muscle glycogen (MG) were also significantly (p < 0.05) increased by HGP. Malondialdehyde (MDA) content in the serum and brains of the mice was significantly (p < 0.05) reduced and catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD) were significantly (p < 0.05) increased by HGP, especially in the middle- and high-dose groups. These results enhance our understanding of the anti-fatigue function of HGP and lay an important foundation for the further development and utilization of hairtail fish resources.
Collapse
|
6
|
Eslami F, Shayan M, Amanlou A, Rahimi N, Dejban P, Dehpour AR. Pentylenetetrazole preconditioning attenuates severity of status epilepticus induced by lithium-pilocarpine in male rats: evaluation of opioid/NMDA receptors and nitric oxide pathway. Pharmacol Rep 2022; 74:602-613. [DOI: 10.1007/s43440-022-00387-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/26/2022] [Accepted: 07/03/2022] [Indexed: 11/24/2022]
|