1
|
Datta T, Przyklenk K, Datta NS. Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic". J Cardiovasc Pharmacol Ther 2017; 22:529-537. [PMID: 28403647 DOI: 10.1177/1074248417702976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An as-yet limited body of evidence suggests that calcium-regulating endocrine hormones-in particular, parathyroid hormone-related peptide (PTHrP)-may have unappreciated cardioprotective effects. The current review focuses on the concept that PTHrP may, via modulation of classic cardioprotective signaling pathways, provide a novel strategy to attenuate myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tanuka Datta
- 1 Department of Internal Medicine, George Washington University, Washington, DC, USA
| | - Karin Przyklenk
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,3 Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA.,4 Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nabanita S Datta
- 2 Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI, USA.,5 Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
2
|
Datta NS, Chukkapalli S, Vengalil N, Zhan E, Przyklenk K, Lasley R. Parathyroid hormone-related peptide protects cardiomyocytes from oxidative stress-induced cell death: First evidence of a novel endocrine-cardiovascular interaction. Biochem Biophys Res Commun 2015; 468:202-7. [PMID: 26518653 DOI: 10.1016/j.bbrc.2015.10.130] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 10/24/2015] [Indexed: 11/27/2022]
Abstract
Although there is a growing interest in the molecular cross-talk between the endocrine and cardiovascular systems, the cardiac effects of calcium-regulating hormones (i.e., parathyroid hormone-related peptide (PTHrP)) have not been explored. In this study, we examined the effect of PTHrP on the viability of isolated adult mouse cardiomyocytes subjected to oxidative stress. Myocytes from 19 to 22 week old male 129J/C57BL6 mice were exposed to oxidative insult in the form of H2O2 which led to more than 70% loss of cell viability. Herein we demonstrate, for the first time, that pretreatment with 100 nM PTHrP prior to 100 μM H2O2 incubation prevents H2O2 -induced cell death by more than 50%. Immunoblot analysis revealed H2O2 induction of MKP-1 protein expression while PTHrP decreased MKP-1 expression. Moreover, myocytes derived from MKP1 KO mice were resistant to oxidative injury. No added benefit of PTHrP treatment was noted in MKP-1 null cardiomyocytes. Using specific pharmacological inhibitors we demonstrated that P-p38, P-ERK and P-AKT mediated PTHrP's cardioprotective action. These data provide novel evidence that: i) down-regulation of MKP1 affords profound protection against oxidative stress; and ii) PTHrP is cardioprotective, possibly via down-regulation of MKP-1 and activation of MAPK and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Nabanita S Datta
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Sahiti Chukkapalli
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Nathan Vengalil
- Department of Internal Medicine/Endocrinology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Enbo Zhan
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Karin Przyklenk
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert Lasley
- Department of Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Yildirim S, Yildirim A, Dane S, Aliyev E, Yigitoglu R. Dose-dependent protective effect of L-carnitine on oxidative stress in the livers of hyperthyroid rats. Eurasian J Med 2015; 45:1-6. [PMID: 25610241 DOI: 10.5152/eajm.2013.01] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/16/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE The present study was designed to investigate the dose-dependent protective effect of L-carnitine (LC) on thyroid hormone-induced oxidative stress in rat liver tissue. MATERIALS AND METHODS Twenty-one male Sprague Dawley rats were divided into four groups: control, hyperthyroidism, hyperthyroidism plus L-carnitine 100, and hyperthyroidism plus L-carnitine 500. Hyperthyroidism was induced in rats by injecting 250 μg of L-thyroxine/kg body weight/day for twenty consecutive days. The activities of catalase (CAT), glutathione peroxidase (GPX) and myeloperoxidase (MPO) and the level of malondialdehyde (MDA) were measured in liver homogenates. RESULTS The liver CAT, GPX and MPO activities were significantly lower in the hyperthyroid rats than in the control group. Treating hyperthyroid rats with both low-dose (100 mg/kg) and high-dose (500 mg/kg) L-carnitine for 10 days resulted in a marked increase in the activities of the antioxidant enzymes in the liver tissue. CONCLUSION The present study indicates that the low-dose L-carnitine application was sufficient to prevent L-thyroxine-induced oxidative stress in rat livers.
Collapse
Affiliation(s)
- Serap Yildirim
- Department of Physiology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Abdulkadir Yildirim
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Senol Dane
- Department of Physiology, Faculty of Medicine, Fatih University, Ankara, Turkey
| | - Elvin Aliyev
- Department of Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Ramazan Yigitoglu
- Department of Biochemistry, Faculty of Medicine, Fatih University, Ankara, Turkey
| |
Collapse
|
4
|
Pingitore A, Chen Y, Gerdes AM, Iervasi G. Acute myocardial infarction and thyroid function: new pathophysiological and therapeutic perspectives. Ann Med 2012; 44:745-57. [PMID: 21568669 DOI: 10.3109/07853890.2011.573501] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In the post-reperfusion era, molecular and genetic mechanisms of cardioprotection and regeneration represent new therapeutic challenges to limit infarct size and minimize post-ischemic remodeling after acute myocardial infarction (AMI). Activation of cell survival mechanisms can be promoted by the administration of external drugs, stimulation of internal mechanisms, and genetic manipulation to delete or replace pathological genes or enhance gene expression. Among internal cardiovascular regulatory mechanisms, thyroid hormones (THs) may play a fundamental role. TH has a critical role in cardiovascular development and homeostasis in both physiological and pathological conditions. In experimental AMI, TH has been shown to affect cardiac contractility, left ventricular (LV) function, and remodeling. Several experimental studies have clearly shown that THs participate in the regulation of molecular mechanisms of angiogenesis, cardioprotection, cardiac metabolism, and ultimately myocyte regeneration, changes that can reverse left ventricular remodeling by favorably improving myocyte shape and geometry of LV cavity, thus improving systolic and diastolic performance. This review is focused on the role of thyroid on AMI evolution and on the potential novel option of thyroid-related treatment of AMI.
Collapse
Affiliation(s)
- Alessandro Pingitore
- Clinical Physiology Institute, CNR/Fondazione G. Monasterio CNR-Regione Toscana, Pisa e Massa, Italy
| | | | | | | |
Collapse
|
5
|
Williams TL, Elliott J, Syme HM. Calcium and phosphate homeostasis in hyperthyroid cats - associations with development of azotaemia and survival time. J Small Anim Pract 2012; 53:561-71. [DOI: 10.1111/j.1748-5827.2012.01253.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. L. Williams
- Department of Veterinary Clinical Sciences; Royal Veterinary College; Hawkshead Lane; North Mymms; Hatfield; AL9 7TA
| | | | - H. M. Syme
- Department of Veterinary Clinical Sciences; Royal Veterinary College; Hawkshead Lane; North Mymms; Hatfield; AL9 7TA
| |
Collapse
|
6
|
Halapas A, Armakolas A, Koutsilieris M. Autophagy: a target for therapeutic interventions in myocardial pathophysiology. Expert Opin Ther Targets 2009; 12:1509-22. [PMID: 19007320 DOI: 10.1517/14728220802555554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Autophagy is a major degradative and highly conserved process in eukaryotic cells that is activated by stress signals. This self-cannibalisation is activated as a response to changing environmental conditions, cellular remodelling during development and differentiation, and maintenance of homeostasis. OBJECTIVE To review autophagy regarding its process, molecular mechanisms and regulation in mammalian cells, and its role in myocardial pathophysiology. RESULTS/CONCLUSION Autophagy is a multistep process regulated by diverse, intracellular and/or extracellular signalling complexes and pathways. In the heart, normally, autophagy occurs at low basal levels, where it represents a homeostatic mechanism for the maintenance of cardiac function and morphology. However, in the diseased heart the functional role of the enhanced autophagy is unclear and studies have yielded conflicting results. Recently, it was shown that during myocardial ischemia autophagy promotes survival by maintaining energy homeostasis. Also, rapamycin was demonstrated to prevent cardiac hypertrophy. In heart failure, upregulation of autophagy acts as an adaptive response that protects cells from hemodynamic stress. In addition, sirolimus-eluting stents have been shown to lower re-stenosis rates in patients with coronary artery disease after angioplasty. Thus, this mechanism can become a major target for therapeutic intervention in heart pathophysiology.
Collapse
Affiliation(s)
- Antonis Halapas
- National and Kapodistrian University of Athens, Medical School, Department of Experimental Physiology, Goudi-Athens, Greece
| | | | | |
Collapse
|
7
|
Halapas A, Zacharoulis A, Theocharis S, Karavidas A, Korres D, Papadopoulos K, Katopodis H, Stavropoulou A, Lembessis P, Xiromeritis C, Zacharoulis A, Koutsilieris M. Serum levels of the osteoprotegerin, receptor activator of nuclear factor kappa-B ligand, metalloproteinase-1 (MMP-1) and tissue inhibitors of MMP-1 levels are increased in men 6 months after acute myocardial infarction. Clin Chem Lab Med 2008; 46:510-6. [PMID: 18298349 DOI: 10.1515/cclm.2008.091] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) are critical regulators of bone remodeling and RANKL/RANK signaling could also play an important role in the remodeling process of several tissues, such as myocardium. Therefore, we investigated whether the serum concentrations of OPG and RANKL correlate with the serum levels of metalloproteinase-1 (MMP-1), MMP-9 and tissue inhibitors of MMP-1 (TIMP-1), which are known regulators of myocardial healing in acute myocardial infarction (AMI) patients. METHODS We analyzed blood samples from 51 consecutively hospitalized men with AMI, 12 men with established ischemic heart failure (New York Heart Association category II, NYHA-II) and 12 healthy men age-matched to the NYHA-II patients. Serum levels of MMP-1, MMP-9, TIMP-1, OPG and RANKL were quantified using commercially available ELISA kits. AMI patients were sampled 4 days and 6 months after MI. RESULTS Our data revealed increased serum levels of OPG, RANKL, MMP-1 and TIMP-1 levels and significant correlations between increased RANKL levels and MMP-1 and TIMP-1 serum levels 6 months after MI. In addition, the ratio OPG/RANKL was very low 6 months after MI, suggesting that the nuclear factor kappa-B signaling is possibly more active 6 months post-MI than it is on day 4 post-MI. CONCLUSIONS Our data suggest that OPG, RANKL, MMP-1 and TIMP-1 serum levels can be potential mediators of myocardial healing after MI. However, further large studies are needed to confirm the utility of OPG and RANKL as markers of healing after ST elevation in MI.
Collapse
Affiliation(s)
- Antonios Halapas
- Department of Experimental Physiology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|