1
|
Pinter J, Chazot C, Stuard S, Moissl U, Canaud B. Sodium, volume and pressure control in haemodialysis patients for improved cardiovascular outcomes. Nephrol Dial Transplant 2020; 35:ii23-ii30. [PMID: 32162668 PMCID: PMC7066545 DOI: 10.1093/ndt/gfaa017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic volume overload is pervasive in patients on chronic haemodialysis and substantially increases the risk of cardiovascular death. The rediscovery of the three-compartment model in sodium metabolism revolutionizes our understanding of sodium (patho-)physiology and is an effect modifier that still needs to be understood in the context of hypertension and end-stage kidney disease. Assessment of fluid overload in haemodialysis patients is central yet difficult to achieve, because traditional clinical signs of volume overload lack sensitivity and specificity. The highest all-cause mortality risk may be found in haemodialysis patients presenting with high fluid overload but low blood pressure before haemodialysis treatment. The second highest risk may be found in patients with both high blood pressure and fluid overload, while high blood pressure but normal fluid overload may only relate to moderate risk. Optimization of fluid overload in haemodialysis patients should be guided by combining the traditional clinical evaluation with objective measurements such as bioimpedance spectroscopy in assessing the risk of fluid overload. To overcome the tide of extracellular fluid, the concept of time-averaged fluid overload during the interdialytic period has been established and requires possible readjustment of a negative target post-dialysis weight. 23Na-magnetic resonance imaging studies will help to quantitate sodium accumulation and keep prescribed haemodialytic sodium mass balance on the radar. Cluster-randomization trials (e.g. on sodium removal) are underway to improve our therapeutic approach to cardioprotective haemodialysis management.
Collapse
Affiliation(s)
- Jule Pinter
- Renal Division, University Hospital of Würzburg, Würzburg, Germany
| | | | - Stefano Stuard
- Global Medical Office, FMC Deutschland, Bad Homburg, Germany
| | - Ulrich Moissl
- Global Medical Office, FMC Deutschland, Bad Homburg, Germany
| | | |
Collapse
|
2
|
Ahmed S, Layton AT. Sex-specific computational models for blood pressure regulation in the rat. Am J Physiol Renal Physiol 2020; 318:F888-F900. [PMID: 32036698 DOI: 10.1152/ajprenal.00376.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the past decades, substantial effort has been devoted to the development of computational models of the cardiovascular system. Some of these models simulate blood pressure regulation in humans and include components of the circulatory, renal, and neurohormonal systems. Although such human models are intended to have clinical value in that they can be used to assess the effects and reveal mechanisms of hypertensive therapeutic treatments, rodent models would be more useful in assisting the interpretation of animal experiments. Also, despite well-known sexual dimorphism in blood pressure regulation, almost all published models are gender neutral. Given these observations, the goal of this project is to develop the first computational models of blood pressure regulation for male and female rats. The resulting sex-specific models represent the interplay among cardiovascular function, renal hemodynamics, and kidney function in the rat; they also include the actions of the renal sympathetic nerve activity and the renin-angiotensin-aldosterone system as well as physiological sex differences. We explore mechanisms responsible for blood pressure and renal autoregulation and notable sexual dimorphism. Model simulations suggest that fluid and sodium handling in the kidney of female rats, which differs significantly from males, may contribute to their observed lower salt sensitivity as compared with males. Additionally, model simulations highlight sodium handling in the kidney and renal sympathetic nerve activity sensitivity as key players in the increased resistance of females to angiotensin II-induced hypertension as compared with males.
Collapse
Affiliation(s)
- Sameed Ahmed
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada.,Department of Biology and Schools of Computer Science and Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
3
|
How Much Sodium Should We Eat? PROGRESS IN PREVENTIVE MEDICINE 2020. [DOI: 10.1097/pp9.0000000000000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Montain ME, Blanco AM, Bandoni JA. Integrated Dynamic Physiological Model for Drug Infusion Simulation Studies. Ind Eng Chem Res 2014. [DOI: 10.1021/ie5008823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Elisa Montain
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS−CONICET) Camino La Carrindanga km. 7, 8000 Bahía Blanca, Argentina
| | - Aníbal M. Blanco
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS−CONICET) Camino La Carrindanga km. 7, 8000 Bahía Blanca, Argentina
| | - J. Alberto Bandoni
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS−CONICET) Camino La Carrindanga km. 7, 8000 Bahía Blanca, Argentina
| |
Collapse
|
5
|
Arterial stiffening provides sufficient explanation for primary hypertension. PLoS Comput Biol 2014; 10:e1003634. [PMID: 24853828 PMCID: PMC4031054 DOI: 10.1371/journal.pcbi.1003634] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/09/2014] [Indexed: 02/07/2023] Open
Abstract
Hypertension is one of the most common age-related chronic disorders, and by predisposing individuals for heart failure, stroke, and kidney disease, it is a major source of morbidity and mortality. Its etiology remains enigmatic despite intense research efforts over many decades. By use of empirically well-constrained computer models describing the coupled function of the baroreceptor reflex and mechanics of the circulatory system, we demonstrate quantitatively that arterial stiffening seems sufficient to explain age-related emergence of hypertension. Specifically, the empirically observed chronic changes in pulse pressure with age and the impaired capacity of hypertensive individuals to regulate short-term changes in blood pressure arise as emergent properties of the integrated system. The results are consistent with available experimental data from chemical and surgical manipulation of the cardio-vascular system. In contrast to widely held opinions, the results suggest that primary hypertension can be attributed to a mechanogenic etiology without challenging current conceptions of renal and sympathetic nervous system function.
Collapse
|
6
|
Ufnal M, Skrzypecki J. Blood borne hormones in a cross-talk between peripheral and brain mechanisms regulating blood pressure, the role of circumventricular organs. Neuropeptides 2014; 48:65-73. [PMID: 24485840 DOI: 10.1016/j.npep.2014.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 12/11/2022]
Abstract
Accumulating evidence suggests that blood borne hormones modulate brain mechanisms regulating blood pressure. This appears to be mediated by the circumventricular organs which are located in the walls of the brain ventricular system and lack the blood-brain barrier. Recent evidence shows that neurons of the circumventricular organs express receptors for the majority of cardiovascular hormones. Intracerebroventricular infusions of hormones and their antagonists is one approach to evaluate the influence of blood borne hormones on the neural mechanisms regulating arterial blood pressure. Interestingly, there is no clear correlation between peripheral and central effects of cardiovascular hormones. For example, angiotensin II increases blood pressure acting peripherally and centrally, whereas peripherally acting pressor catecholamines decrease blood pressure when infused intracerebroventricularly. The physiological role of such dual hemodynamic responses has not yet been clarified. In the paper we review studies on hemodynamic effects of catecholamines, neuropeptide Y, angiotensin II, aldosterone, natriuretic peptides, endothelins, histamine and bradykinin in the context of their role in a cross-talk between peripheral and brain mechanisms involved in the regulation of arterial blood pressure.
Collapse
Affiliation(s)
- Marcin Ufnal
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland.
| | - Janusz Skrzypecki
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, Krakowskie Przedmieście 26/28, 00-927 Warsaw, Poland
| |
Collapse
|
7
|
Moss R, Grosse T, Marchant I, Lassau N, Gueyffier F, Thomas SR. Virtual patients and sensitivity analysis of the Guyton model of blood pressure regulation: towards individualized models of whole-body physiology. PLoS Comput Biol 2012; 8:e1002571. [PMID: 22761561 PMCID: PMC3386164 DOI: 10.1371/journal.pcbi.1002571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022] Open
Abstract
Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a "virtual population" from which "virtual individuals" can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the "virtual individuals" that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models.
Collapse
Affiliation(s)
- Robert Moss
- IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France
- Institut Gustave Roussy, Villejuif, France
- Melbourne School of Population Health, The University of Melbourne, Melbourne, Australia
| | - Thibault Grosse
- IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France
- Institut Gustave Roussy, Villejuif, France
| | - Ivanny Marchant
- Escuela de Medicina, Departamento de Pre-clínicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Nathalie Lassau
- IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France
- Institut Gustave Roussy, Villejuif, France
| | - François Gueyffier
- IMTh – Institute for Theoretical Medicine, Lyon, France
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
- INSERM, CIC 201, EPICIME, Lyon, France
- Service de Pharmacologie Clinique, Hop L Pradel, Centre Hospitalier Universitaire Lyon, Lyon, France
| | - S. Randall Thomas
- IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France
- Institut Gustave Roussy, Villejuif, France
- * E-mail:
| |
Collapse
|
8
|
Integration of detailed modules in a core model of body fluid homeostasis and blood pressure regulation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:169-82. [DOI: 10.1016/j.pbiomolbio.2011.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/23/2022]
|
9
|
Osborn JW, Fink GD, Kuroki MT. Neural mechanisms of angiotensin II-salt hypertension: implications for therapies targeting neural control of the splanchnic circulation. Curr Hypertens Rep 2011; 13:221-8. [PMID: 21298369 DOI: 10.1007/s11906-011-0188-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronically elevated plasma angiotensin II (AngII) causes a salt-sensitive form of hypertension that is associated with a differential pattern of peripheral sympathetic outflow. This "AngII-salt sympathetic signature" is characterized by a transient reduction in sympathetic nervous system activity (SNA) to the kidneys, no change in SNA to skeletal muscle, and a delayed activation of SNA to the splanchnic circulation. Studies suggest that the augmented sympathetic influence on the splanchnic vascular bed increases vascular resistance and decreases vascular capacitance, leading to hypertension via translocation of blood volume from the venous to the arterial circulation. This unique sympathetic signature is hypothesized to be generated by a balance of central excitatory inputs and differential baroreceptor inhibitory inputs to sympathetic premotor neurons in the rostral ventrolateral medulla. The relevance of these findings to human hypertension and the future development of targeted sympatholytic therapies are discussed.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, University of Minnesota, 6-125 Jackson Hall, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|