1
|
Patra S, Valls L, Heredia G, Burdette D, Elisevich K. Human Left Anterior Cingulate Stimulation Elicits a Reproducible Micturition Response. Stereotact Funct Neurosurg 2019; 97:278-281. [PMID: 31751999 DOI: 10.1159/000503886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/30/2019] [Indexed: 11/19/2022]
Abstract
Electrical stimulation of a brain region producing a micturition response has never previously been described in the human. This report identifies the anterior cingulate gyrus as a brain region important in the micturition response. Stereo electroencephalography was performed in a 38-year-old female with medically refractory epilepsy. The response of the left anterior cingulate from low- to high-frequency brain stimulation was tested. Stimulation within the left anterior cingulate resulted in a reproducible micturition response. The response was dependent on the frequency of stimulation (present with stimulation at 50-150 Hz and not present at 5 or 350 Hz). These results provide evidence for the presence of a region within the human left anterior cingulate gyrus involved in producing the micturition response. This may have implications in the understanding of the physiological mechanisms of willful micturition and in the treatment of bladder disorders.
Collapse
Affiliation(s)
- Sanjay Patra
- Department of Neurosurgery, Spectrum Health Medical Group, Grand Rapids, Michigan, USA, .,Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA,
| | - Lance Valls
- Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Gabe Heredia
- Department of Radiology, Spectrum Health Medical Group, Grand Rapids, Michigan, USA
| | - David Burdette
- Department of Neurosurgery, Spectrum Health Medical Group, Grand Rapids, Michigan, USA.,Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| | - Konstantin Elisevich
- Department of Neurosurgery, Spectrum Health Medical Group, Grand Rapids, Michigan, USA.,Michigan State University College of Human Medicine, Grand Rapids, Michigan, USA
| |
Collapse
|
2
|
Farrell SM, Green A, Aziz T. The Use of Neuromodulation for Symptom Management. Brain Sci 2019; 9:brainsci9090232. [PMID: 31547392 PMCID: PMC6769574 DOI: 10.3390/brainsci9090232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
Pain and other symptoms of autonomic dysregulation such as hypertension, dyspnoea and bladder instability can lead to intractable suffering. Incorporation of neuromodulation into symptom management, including palliative care treatment protocols, is becoming a viable option scientifically, ethically, and economically in order to relieve suffering. It provides further opportunity for symptom control that cannot otherwise be provided by pharmacology and other conventional methods.
Collapse
Affiliation(s)
- Sarah Marie Farrell
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Alexander Green
- Nuffield department of clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
- Nuffield department of clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
3
|
Roy HA, Green AL. The Central Autonomic Network and Regulation of Bladder Function. Front Neurosci 2019; 13:535. [PMID: 31263396 PMCID: PMC6585191 DOI: 10.3389/fnins.2019.00535] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
The autonomic nervous system (ANS) is involved in the regulation of physiologic and homeostatic parameters relating particularly to the visceral organs and the co-ordination of physiological responses to threat. Blood pressure and heart rate, respiration, pupillomotor reactivity, sexual function, gastrointestinal secretions and motility, and urine storage and micturition are all under a degree of ANS control. Furthermore, there is close integration between the ANS and other neural functions such as emotion and cognition, and thus brain regions that are known to be important for autonomic control are also implicated in emotional functions. In this review we explore the role of the central ANS in the control of the bladder, and the implications of this for bladder dysfunction in diseases of the ANS.
Collapse
Affiliation(s)
- Holly Ann Roy
- Department of Neurosurgery, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Roy HA, Green AL, Aziz TZ. State of the Art: Novel Applications for Deep Brain Stimulation. Neuromodulation 2017; 21:126-134. [DOI: 10.1111/ner.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 03/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Holly A. Roy
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| | - Alexander L. Green
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| | - Tipu Z. Aziz
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| |
Collapse
|
5
|
Dumitrascu OM, Kamiński J, Rutishauser U, Tagliati M. Subthalamic Nuclei Deep Brain Stimulation Improves Color Vision in Patients with Parkinson's Disease. Brain Stimul 2016; 9:948-949. [PMID: 27591893 DOI: 10.1016/j.brs.2016.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022] Open
Affiliation(s)
- Oana M Dumitrascu
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048.
| | - Jan Kamiński
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048
| | - Michele Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd, A6600, Los Angeles, CA, 90048
| |
Collapse
|
6
|
Basiago A, Binder DK. Effects of Deep Brain Stimulation on Autonomic Function. Brain Sci 2016; 6:brainsci6030033. [PMID: 27537920 PMCID: PMC5039462 DOI: 10.3390/brainsci6030033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson's disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target.
Collapse
Affiliation(s)
- Adam Basiago
- School of Medicine, University of California, Riverside, CA 92521, USA.
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, 1247 Webber Hall, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Rossi S, Santarnecchi E, Valenza G, Ulivelli M. The heart side of brain neuromodulation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0187. [PMID: 27044999 DOI: 10.1098/rsta.2015.0187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 05/03/2023]
Abstract
Neuromodulation refers to invasive, minimally invasive or non-invasive techniques to stimulate discrete cortical or subcortical brain regions with therapeutic purposes in otherwise intractable patients: for example, thousands of advanced Parkinsonian patients, as well as patients with tremor or dystonia, benefited by deep brain stimulation (DBS) procedures (neural targets: basal ganglia nuclei). A new era for DBS is currently opening for patients with drug-resistant depression, obsessive-compulsive disorders, severe epilepsy, migraine and chronic pain (neural targets: basal ganglia and other subcortical nuclei or associative fibres). Vagal nerve stimulation (VNS) has shown clinical benefits in patients with pharmacoresistant epilepsy and depression. Non-invasive brain stimulation neuromodulatory techniques such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are also being increasingly investigated for their therapeutic potential in several neurological and psychiatric disorders. In this review, we first address the most common neural targets of each of the mentioned brain stimulation techniques, and the known mechanisms of their neuromodulatory action on stimulated brain networks. Then, we discuss how DBS, VNS, rTMS and tDCS could impact on the function of brainstem centres controlling vital functions, critically reviewing their acute and long-term effects on brain sympathetic outflow controlling heart function and blood pressure. Finally, as there is clear experimental evidence in animals that brain stimulation can affect autonomic and heart functions, we will try to give a critical perspective on how it may enhance our understanding of the cortical/subcortical mechanisms of autonomic cardiovascular regulation, and also if it might find a place among therapeutic opportunities in patients with otherwise intractable autonomic dysfunctions.
Collapse
Affiliation(s)
- Simone Rossi
- Gaetano Valenza, Monica Ulivelli Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab. (Si-BIN Lab.), Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| | - Emiliano Santarnecchi
- Gaetano Valenza, Monica Ulivelli Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab. (Si-BIN Lab.), Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Gaetano Valenza
- Department of Information Engineering, and Research Center E. Piaggio, University of Pisa, 56122 Pisa, Italy Neuroscience Statistics Research Lab, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115, USA Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Monica Ulivelli
- Gaetano Valenza, Monica Ulivelli Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab. (Si-BIN Lab.), Azienda Ospedaliera Universitaria Senese, University of Siena, 53100 Siena, Italy
| |
Collapse
|
8
|
|