1
|
McDonald FB, Dempsey EM, O'Halloran KD. The impact of preterm adversity on cardiorespiratory function. Exp Physiol 2019; 105:17-43. [PMID: 31626357 DOI: 10.1113/ep087490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? We review the influence of prematurity on the cardiorespiratory system and examine the common sequel of alterations in oxygen tension, and immune activation in preterm infants. What advances does it highlight? The review highlights neonatal animal models of intermittent hypoxia, hyperoxia and infection that contribute to our understanding of the effect of stress on neurodevelopment and cardiorespiratory homeostasis. We also focus on some of the important physiological pathways that have a modulatory role on the cardiorespiratory system in early life. ABSTRACT Preterm birth is one of the leading causes of neonatal mortality. Babies that survive early-life stress associated with immaturity have significant prevailing short- and long-term morbidities. Oxygen dysregulation in the first few days and weeks after birth is a primary concern as the cardiorespiratory system slowly adjusts to extrauterine life. Infants exposed to rapid alterations in oxygen tension, including exposures to hypoxia and hyperoxia, have altered redox balance and active immune signalling, leading to altered stress responses that impinge on neurodevelopment and cardiorespiratory homeostasis. In this review, we explore the clinical challenges posed by preterm birth, followed by an examination of the literature on animal models of oxygen dysregulation and immune activation in the context of early-life stress.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland.,Department of Paediatrics & Child Health, School of Medicine, College of Medicine & Health, Cork University Hospital, Wilton, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland.,Irish Centre for Fetal and Neonatal Translational Research (INFANT) Research Centre, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
O'Halloran KD, Lewis P. Respiratory muscle dysfunction in animal models of hypoxic disease: antioxidant therapy goes from strength to strength. HYPOXIA 2017; 5:75-84. [PMID: 28770235 PMCID: PMC5529115 DOI: 10.2147/hp.s141283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The striated muscles of breathing play a critical role in respiratory homeostasis governing blood oxygenation and pH regulation. Upper airway dilator and thoracic pump muscles retain a remarkable capacity for plasticity throughout life, both in health and disease states. Hypoxia, whatever the cause, is a potent driver of respiratory muscle remodeling with evidence of adaptive and maladaptive outcomes for system performance. The pattern, duration, and intensity of hypoxia are key determinants of respiratory muscle structural-, metabolic-, and functional responses and adaptation. Age and sex also influence respiratory muscle tolerance of hypoxia. Redox stress emerges as the principal protagonist driving respiratory muscle malady in rodent models of hypoxic disease. There is a growing body of evidence demonstrating that antioxidant intervention alleviates hypoxia-induced respiratory muscle dysfunction, and that N-acetyl cysteine, approved for use in humans, is highly effective in preventing hypoxia-induced respiratory muscle weakness and fatigue. We posit that oxygen homeostasis is a key driver of respiratory muscle form and function. Hypoxic stress is likely a major contributor to respiratory muscle malaise in diseases of the lungs and respiratory control network. Animal studies provide an evidence base in strong support of the need to explore adjunctive antioxidant therapies for muscle dysfunction in human respiratory disease.
Collapse
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - Philip Lewis
- Institute and Policlinic for Occupational Medicine, Environmental Medicine and Preventative Research, University Hospital of Cologne, Germany
| |
Collapse
|
3
|
McDonald FB, Dempsey EM, O'Halloran KD. Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat. Front Physiol 2016; 7:276. [PMID: 27462274 PMCID: PMC4940388 DOI: 10.3389/fphys.2016.00276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/20/2016] [Indexed: 12/31/2022] Open
Abstract
Alterations to the supply of oxygen during early life presents a profound stressor to physiological systems with aberrant remodeling that is often long-lasting. Chronic intermittent hypoxia (CIH) is a feature of apnea of prematurity, chronic lung disease, and sleep apnea. CIH affects respiratory control but there is a dearth of information concerning the effects of CIH on respiratory muscles, including the diaphragm-the major pump muscle of breathing. We investigated the effects of exposure to gestational CIH (gCIH) and postnatal CIH (pCIH) on diaphragm muscle function in male and female rats. CIH consisted of exposure in environmental chambers to 90 s of hypoxia reaching 5% O2 at nadir, once every 5 min, 8 h a day. Exposure to gCIH started within 24 h of identification of a copulation plug and continued until day 20 of gestation; animals were studied on postnatal day 22 or 42. For pCIH, pups were born in normoxia and within 24 h of delivery were exposed with dams to CIH for 3 weeks; animals were studied on postnatal day 22 or 42. Sham groups were exposed to normoxia in parallel. Following gas exposures, diaphragm muscle contractile, and endurance properties were examined ex vivo. Neither gCIH nor pCIH exposure had effects on diaphragm muscle force-generating capacity or endurance in either sex. Similarly, early life exposure to CIH did not affect muscle tolerance of severe hypoxic stress determined ex vivo. The findings contrast with our recent observation of upper airway dilator muscle weakness following exposure to pCIH. Thus, the present study suggests a relative resilience to hypoxic stress in diaphragm muscle. Co-ordinated activity of thoracic pump and upper airway dilator muscles is required for optimal control of upper airway caliber. A mismatch in the force-generating capacity of the complementary muscle groups could have adverse consequences for the control of airway patency and respiratory homeostasis.
Collapse
Affiliation(s)
- Fiona B McDonald
- Department of Physiology, School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Eugene M Dempsey
- Department of Paediatrics and Child Health, Cork University Maternity Hospital and the Irish Centre for Fetal and Neonatal Translational Research, University College Cork Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| |
Collapse
|
4
|
McDonald FB, Dempsey EM, O'Halloran KD. Early Life Exposure to Chronic Intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle during Adulthood. Front Physiol 2016; 7:69. [PMID: 26973537 PMCID: PMC4777899 DOI: 10.3389/fphys.2016.00069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/12/2016] [Indexed: 12/30/2022] Open
Abstract
Intermittent hypoxia is a feature of apnea of prematurity (AOP), chronic lung disease, and sleep apnea. Despite the clinical relevance, the long-term effects of hypoxic exposure in early life on respiratory control are not well defined. We recently reported that exposure to chronic intermittent hypoxia (CIH) during postnatal development (pCIH) causes upper airway muscle weakness in both sexes, which persists for several weeks. We sought to examine if there are persistent sex-dependent effects of pCIH on respiratory muscle function into adulthood and/or increased susceptibility to re-exposure to CIH in adulthood in animals previously exposed to CIH during postnatal development. We hypothesized that pCIH would cause long-lasting muscle impairment and increased susceptibility to subsequent hypoxia. Within 24 h of delivery, pups and their respective dams were exposed to CIH: 90 s of hypoxia reaching 5% O2 at nadir; once every 5 min, 8 h per day for 3 weeks. Sham groups were exposed to normoxia in parallel. Three groups were studied: sham; pCIH; and pCIH combined with adult CIH (p+aCIH), where a subset of the pCIH-exposed pups were re-exposed to the same CIH paradigm beginning at 13 weeks. Following gas exposures, sternohyoid and diaphragm muscle isometric contractile and endurance properties were examined ex vivo. There was no apparent lasting effect of pCIH on respiratory muscle function in adults. However, in both males and females, re-exposure to CIH in adulthood in pCIH-exposed animals caused sternohyoid (but not diaphragm) weakness. Exposure to this paradigm of CIH in adulthood alone had no effect on muscle function. Persistent susceptibility in pCIH-exposed airway dilator muscle to subsequent hypoxic insult may have implications for the control of airway patency in adult humans exposed to intermittent hypoxic stress during early life.
Collapse
Affiliation(s)
- Fiona B McDonald
- Health Sciences Centre, School of Medicine and Medical Science, University College Dublin Dublin, Ireland
| | - Eugene M Dempsey
- Department of Paediatrics and Child Health, Cork University Maternity Hospital and the Irish Centre for Fetal and Neonatal Translational Research, University College Cork Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| |
Collapse
|
5
|
McDonald FB, Williams R, Sheehan D, O'Halloran KD. Early life exposure to chronic intermittent hypoxia causes upper airway dilator muscle weakness, which persists into young adulthood. Exp Physiol 2015; 100:947-66. [PMID: 26096367 DOI: 10.1113/ep085003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/07/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the central question of this study? Chronic intermittent hypoxia (CIH) is a dominant feature of respiratory control disorders, which are common. We sought to examine the effects of exposure to CIH during neonatal development on respiratory muscle form and function in male and female rats. What is the main finding and its importance? Exposure to CIH during neonatal development caused sternohyoid muscle weakness in both sexes; an effect that persisted into young adult life upon return to normoxia. Upper airway dilator muscle dysfunction in vivo could predispose to airway collapse, leading to impaired respiratory homeostasis. Chronic intermittent hypoxia (CIH) is a feature of sleep-disordered breathing, which is very common. Exposure to CIH is associated with aberrant plasticity in the respiratory control system including the final effector organs, the striated muscles of breathing. We reasoned that developmental age and sex are key factors determining the functional response of respiratory muscle to CIH. We tested the hypothesis that exposure to CIH causes persistent impairment of sternohyoid muscle function due to oxidative stress and that males are more susceptible to CIH-induced muscle impairment than females. Wistar rat litters (with respective dams) were exposed to intermittent hypoxia for 12 cycles per hour, 8 h per day for 3 weeks from the first day of life [postnatal day (P) 0]. Sham experiments were run in parallel. Half of each litter was studied on P22; the other half was returned to normoxia and studied on P42. Functional properties of the sternohyoid muscle were determined ex vivo. Exposure to CIH significantly decreased sternohyoid muscle force in both sexes; an effect that persisted into young adult life. Chronic intermittent hypoxia had no effect on sternohyoid muscle endurance. Chronic intermittent hypoxia did not affect sternohyoid myosin fibre type, succinate dehydrogenase or glycerol-3-phosphate dehydrogenase activities, or protein free thiol and carbonyl content. Muscles exposed to CIH had smaller cross-sectional areas, consistent with the observation of muscle weakness. In human infants with disordered breathing, CIH-induced upper airway dilator muscle weakness could increase the propensity for airway narrowing or collapse, which could serve to perpetuate impaired respiratory homeostasis.
Collapse
Affiliation(s)
- Fiona B McDonald
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Dublin, Ireland
| | - Robert Williams
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - David Sheehan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- School of Medicine and Medical Science, Health Sciences Centre, University College Dublin, Dublin, Ireland.,Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
6
|
Lewis P, Sheehan D, Soares R, Varela Coelho A, O'Halloran KD. Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle. Front Physiol 2015; 6:122. [PMID: 25941492 PMCID: PMC4403307 DOI: 10.3389/fphys.2015.00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic sustained hypoxia (CH) induces structural and functional adaptations in respiratory muscles of animal models, however the underlying molecular mechanisms are unclear. This study explores the putative role of CH-induced redox remodeling in a translational mouse model, with a focus on the sternohyoid—a representative upper airway dilator muscle involved in the control of pharyngeal airway caliber. We hypothesized that exposure to CH induces redox disturbance in mouse sternohyoid muscle in a time-dependent manner affecting metabolic capacity and contractile performance. C57Bl6/J mice were exposed to normoxia or normobaric CH (FiO2 = 0.1) for 1, 3, or 6 weeks. A second cohort of animals was exposed to CH for 6 weeks with and without antioxidant supplementation (tempol or N-acetyl cysteine in the drinking water). Following CH exposure, we performed 2D redox proteomics with mass spectrometry, metabolic enzyme activity assays, and cell-signaling assays. Additionally, we assessed isotonic contractile and endurance properties ex vivo. Temporal changes in protein oxidation and glycolytic enzyme activities were observed. Redox modulation of sternohyoid muscle proteins key to contraction, metabolism and cellular homeostasis was identified. There was no change in redox-sensitive proteasome activity or HIF-1α content, but CH decreased phospho-JNK content independent of antioxidant supplementation. CH was detrimental to sternohyoid force- and power-generating capacity and this was prevented by chronic antioxidant supplementation. We conclude that CH causes upper airway dilator muscle dysfunction due to redox modulation of proteins key to function and homeostasis. Such changes could serve to further disrupt respiratory homeostasis in diseases characterized by CH such as chronic obstructive pulmonary disease. Antioxidants may have potential use as an adjunctive therapy in hypoxic respiratory disease.
Collapse
Affiliation(s)
- Philip Lewis
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| | - David Sheehan
- School of Biochemistry and Cell Biology, University College Cork Cork, Ireland
| | - Renata Soares
- Instituto de Tecnologia Química e Biológica António Xavier, New University of Lisbon Lisbon, Portugal
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, New University of Lisbon Lisbon, Portugal
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork Cork, Ireland
| |
Collapse
|
7
|
McDonald FB, Skelly JR, O'Halloran KD. The β2 -adrenoceptor agonist terbutaline recovers rat pharyngeal dilator muscle force decline during severe hypoxia. Oral Dis 2014; 21:e121-7. [PMID: 24725067 DOI: 10.1111/odi.12247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 11/28/2022]
Abstract
RATIONALE Obstructive sleep apnoea syndrome (OSAS) is a debilitating condition characterized by recurrent occlusions of the pharyngeal airway during sleep accompanied by arterial hypoxaemia. Upper airway muscle dysfunction is implicated in the pathophysiology of OSAS. Pharmacological agents that improve muscle contractile and endurance properties may have therapeutic value. AIM We tested the hypothesis that the β(2) -adrenoceptor agonist terbutaline improves rat sternohyoid muscle performance especially during hypoxic stress. METHODS Isometric contractile and endurance properties were examined ex vivo in Krebs solution at 35°C. Muscles were incubated in tissue baths under hyperoxic (95% O(2) /5% CO(2)) conditions in the absence (control) or presence of the β(2) -adrenoceptor agonist terbutaline (1 μM). In additional experiments under hypoxic (95% N(2) /5% CO(2)) conditions, the effects of terbutaline were examined in the presence of the β-adrenoceptor antagonist propranolol (1 μM). RESULTS Hypoxia significantly impaired sternohyoid force production. Terbutaline completely recovered hypoxic depression of force, an effect that was blocked by co-application with propranolol. CONCLUSION The β(2) -adrenoceptor agonist terbutaline completely recovers hypoxic depression of upper airway muscle force. β(2) -adrenoceptor agonists warrant investigation in animal models of OSAS reporting upper airway and diaphragm muscle dysfunction.
Collapse
Affiliation(s)
- F B McDonald
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
8
|
Shortt CM, Fredsted A, Chow HB, Williams R, Skelly JR, Edge D, Bradford A, O'Halloran KD. Reactive oxygen species mediated diaphragm fatigue in a rat model of chronic intermittent hypoxia. Exp Physiol 2014; 99:688-700. [PMID: 24443349 DOI: 10.1113/expphysiol.2013.076828] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Respiratory muscle dysfunction documented in sleep apnoea patients is perhaps due to oxidative stress secondary to chronic intermittent hypoxia (CIH). We sought to explore the effects of different CIH protocols on respiratory muscle form and function in a rodent model. Adult male Wistar rats were exposed to CIH (n = 32) consisting of 90 s normoxia-90 s hypoxia (either 10 or 5% oxygen at the nadir; arterial O2 saturation ∼ 90 or 80%, respectively] for 8 h per day or to sham treatment (air-air, n = 32) for 1 or 2 weeks. Three additional groups of CIH-treated rats (5% O2 for 2 weeks) had free access to water containing N-acetyl cysteine (1% NAC, n = 8), tempol (1 mM, n = 8) or apocynin (2 mM, n = 8). Functional properties of the diaphragm muscle were examined ex vivo at 35 °C. The myosin heavy chain and sarco(endo)plasmic reticulum Ca(2+)-ATPase isoform distribution, succinate dehydrogenase and glyercol phosphate dehydrogenase enzyme activities, Na(+)-K(+)-ATPase pump content, concentration of thiobarbituric acid reactive substances, DNA oxidation and antioxidant capacity were determined. Chronic intermittent hypoxia (5% oxygen at the nadir; 2 weeks) decreased diaphragm muscle force and endurance. All three drugs reversed the deleterious effects of CIH on diaphragm endurance, but only NAC prevented CIH-induced diaphragm weakness. Chronic intermittent hypoxia increased diaphragm muscle myosin heavy chain 2B areal density and oxidized glutathione/reduced glutathione (GSSG/GSH) ratio. We conclude that CIH-induced diaphragm dysfunction is reactive oxygen species dependent. N-Acetyl cysteine was most effective in reversing CIH-induced effects on diaphragm. Our results suggest that respiratory muscle dysfunction in sleep apnoea may be the result of oxidative stress and, as such, antioxidant treatment could prove a useful adjunctive therapy for the disorder.
Collapse
Affiliation(s)
- Christine M Shortt
- * Department of Physiology, Western Gateway Building, University College Cork, Cork 0, Ireland.
| | | | | | | | | | | | | | | |
Collapse
|