1
|
Chevalier G, Garabedian C, De Stephano V, Wojtanowski A, Ould Hamoud Y, Galan L, Sharma D, Le Duc K, De Jonckheere J, Storme L, Marot G, Ghesquière L. How does fetal inflammatory response syndrome change fetal response to hypoxia? An experimental study in a fetal sheep model. Acta Obstet Gynecol Scand 2024; 103:2281-2288. [PMID: 39324447 PMCID: PMC11502433 DOI: 10.1111/aogs.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Fetal inflammatory response syndrome associated with acidosis during labor is a high-risk situation for the fetus. This study evaluated hemodynamic, gasometric, and heart rate variability changes during acute fetal inflammatory response syndrome associated with hypoxia, compared with isolated hypoxia. MATERIAL AND METHODS Acute fetal inflammatory response syndrome was obtained via an intravenously injection of lipopolysaccharide derived from Escherichia coli. Hypoxia was induced by repeated umbilical cord occlusions during three phases: mild, moderate, and severe umbilical cord occlusions. Two groups were created with chronically instrumented near-term fetal sheep: one group with isolated hypoxia, the other with hypoxia and fetal inflammatory response syndrome. Hemodynamic, gas parameters, and fetal heart rate variability were compared between the groups. RESULTS The hypoxia and fetal inflammatory response syndrome group had a higher mortality rate (n = 4/9) compared with the hypoxia group (n = 0/9). Gasometric state was altered earlier in case of lipopolysaccharide injection (pH = 7.22 (7.12-7.24) vs 7.28 (7.23-7.34) p = 0.01; lactate = 10.3 mmol/L (9.4-11.0) vs 6.0 mmol/L (4.1-8.2) p < 0.001 after mild occlusions). After mild occlusions, the hypoxia and fetal inflammatory response syndrome group had higher values on seven heart rate variability parameters compared with the hypoxia group. After moderate occlusions, two parameters remained significantly higher. CONCLUSIONS During fetal inflammatory response syndrome, fetal adaptation to hypoxia is impaired. In case of fetal infection, acidosis during labor is likely to become severe more rapidly, requiring closer fetal monitoring during labor.
Collapse
Affiliation(s)
- Geoffroy Chevalier
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- Department of Obstetrics, CHU Lille, Lille, France
| | - Charles Garabedian
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- Department of Obstetrics, CHU Lille, Lille, France
| | - Valeria De Stephano
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
| | | | | | - Louis Galan
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- Department of Obstetrics, CHU Lille, Lille, France
| | - Dyuti Sharma
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- Department of Pediatric Surgery, CHU Lille, Lille, France
| | - Kevin Le Duc
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- Department of Neonatology, CHU Lille, Lille, France
| | - Julien De Jonckheere
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- CIC-IT 1403, CHU Lille, Lille, France
| | - Laurent Storme
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- Department of Neonatology, CHU Lille, Lille, France
| | - Guillemette Marot
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- Models for Data Analysis and Learning, Inria, Lille, France
| | - Louise Ghesquière
- ULR 2694-METRICS-Evaluation des technologies de santé et des pratiques médicales, CHU Lille, Université Lille, Lille, France
- Department of Obstetrics, CHU Lille, Lille, France
| |
Collapse
|
2
|
Chevalier G, Garabedian C, Pekar JD, Wojtanowski A, Le Hesran D, Galan LE, Sharma D, Storme L, Houfflin-Debarge V, De Jonckheere J, Ghesquière L. Early heart rate variability changes during acute fetal inflammatory response syndrome: An experimental study in a fetal sheep model. PLoS One 2023; 18:e0293926. [PMID: 38032884 PMCID: PMC10688759 DOI: 10.1371/journal.pone.0293926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/21/2023] [Indexed: 12/02/2023] Open
Abstract
INTRODUCTION Fetal infection during labor with fetal inflammatory response syndrome (FIRS) is associated with neurodevelopmental disabilities, cerebral palsy, neonatal sepsis, and mortality. Current methods to diagnose FIRS are inadequate. Thus, the study aim was to explore whether fetal heart rate variability (HRV) analysis can be used to detect FIRS. MATERIAL AND METHODS In chronically instrumented near-term fetal sheep, lipopolysaccharide (LPS) was injected intravenously to model FIRS. A control group received saline solution injection. Hemodynamic, blood gas analysis, interleukin-6 (IL-6), and 14 HRV indices were recorded for 6 h. In both groups, comparisons were made between the stability phase and the 6 h following injection (H1-H6, respectively) and between LPS and control groups. RESULTS Fifteen lambs were instrumented. In the LPS group (n = 8), IL-6 increased significantly after LPS injection (p < 0.001), confirming the FIRS model. Fetal heart rate increased significantly after H5 (p < 0.01). In our FIRS model without shock or cardiovascular decompensation, five HRV measures changed significantly after H2 until H4 in comparison to baseline. Moreover, significant differences between LPS and control groups were observed in HRV measures between H2 and H4. These changes appear to be mediated by an increase of global variability and a loss of signal complexity. CONCLUSION As significant HRV changes were detected before FHR increase, these indices may be valuable for early detection of acute FIRS.
Collapse
Affiliation(s)
- Geoffroy Chevalier
- ULR 2694—METRICS—Evaluation des Technologies de Santé et des Pratiques Médicales, University Lille, CHU Lille, France
- Department of Obstetrics, CHU Lille, France
| | - Charles Garabedian
- ULR 2694—METRICS—Evaluation des Technologies de Santé et des Pratiques Médicales, University Lille, CHU Lille, France
- Department of Obstetrics, CHU Lille, France
| | | | | | | | | | - Dyuti Sharma
- ULR 2694—METRICS—Evaluation des Technologies de Santé et des Pratiques Médicales, University Lille, CHU Lille, France
- Department of Pediatric Surgery, CHU Lille, France
| | - Laurent Storme
- ULR 2694—METRICS—Evaluation des Technologies de Santé et des Pratiques Médicales, University Lille, CHU Lille, France
- Department of Neonatology, CHU Lille, France
| | - Veronique Houfflin-Debarge
- ULR 2694—METRICS—Evaluation des Technologies de Santé et des Pratiques Médicales, University Lille, CHU Lille, France
- Department of Obstetrics, CHU Lille, France
| | - Julien De Jonckheere
- ULR 2694—METRICS—Evaluation des Technologies de Santé et des Pratiques Médicales, University Lille, CHU Lille, France
- CIC-IT 1403, CHU Lille, France
| | - Louise Ghesquière
- ULR 2694—METRICS—Evaluation des Technologies de Santé et des Pratiques Médicales, University Lille, CHU Lille, France
- Department of Obstetrics, CHU Lille, France
| |
Collapse
|
3
|
Lear CA, Beacom MJ, Dhillon SK, Lear BA, Mills OJ, Gunning MI, Westgate JA, Bennet L, Gunn AJ. Dissecting the contributions of the peripheral chemoreflex and myocardial hypoxia to fetal heart rate decelerations in near-term fetal sheep. J Physiol 2023; 601:2017-2041. [PMID: 37017488 DOI: 10.1113/jp284286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 04/06/2023] Open
Abstract
Brief repeated fetal hypoxaemia during labour can trigger intrapartum decelerations of the fetal heart rate (FHR) via the peripheral chemoreflex or the direct effects of myocardial hypoxia, but the relative contribution of these two mechanisms and how this balance changes with evolving fetal compromise remain unknown. In the present study, chronically instrumented near-term fetal sheep received surgical vagotomy (n = 8) or sham vagotomy (control, n = 11) to disable the peripheral chemoreflex and unmask myocardial hypoxia. One-minute complete umbilical cord occlusions (UCOs) were performed every 2.5 min for 4 h or until arterial pressure fell below 20 mmHg. Hypotension and severe acidaemia developed progressively after 65.7 ± 7.2 UCOs in control fetuses and 49.5 ± 7.8 UCOs after vagotomy. Vagotomy was associated with faster development of metabolic acidaemia and faster impairment of arterial pressure during UCOs without impairing centralization of blood flow or neurophysiological adaptation to UCOs. During the first half of the UCO series, before severe hypotension developed, vagotomy was associated with a marked increase in FHR during UCOs. After the onset of evolving severe hypotension, FHR fell faster in control fetuses during the first 20 s of UCOs, but FHR during the final 40 s of UCOs became progressively more similar between groups, with no difference in the nadir of decelerations. In conclusion, FHR decelerations were initiated and sustained by the peripheral chemoreflex at a time when fetuses were able to maintain arterial pressure. After the onset of evolving hypotension and acidaemia, the peripheral chemoreflex continued to initiate decelerations, but myocardial hypoxia became progressively more important in sustaining and deepening decelerations. KEY POINTS: Brief repeated hypoxaemia during labour can trigger fetal heart rate decelerations by either the peripheral chemoreflex or myocardial hypoxia, but how this balance changes with fetal compromise is unknown. Reflex control of fetal heart rate was disabled by vagotomy to unmask the effects of myocardial hypoxia in chronically instrumented fetal sheep. Fetuses were then subjected to repeated brief hypoxaemia consistent with the rates of uterine contractions during labour. We show that the peripheral chemoreflex controls brief decelerations in their entirety at a time when fetuses were able to maintain normal or increased arterial pressure. The peripheral chemoreflex still initiated decelerations even after the onset of evolving hypotension and acidaemia, but myocardial hypoxia made an increasing contribution to sustain and deepen decelerations.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michael J Beacom
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Olivia J Mills
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mark I Gunning
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Paediatrics, Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
4
|
Fetal heart rate variability is a biomarker of rapid but not progressive exacerbation of inflammation in preterm fetal sheep. Sci Rep 2022; 12:1771. [PMID: 35110628 PMCID: PMC8810879 DOI: 10.1038/s41598-022-05799-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Perinatal infection/inflammation can trigger preterm birth and contribute to neurodevelopmental disability. There are currently no sensitive, specific methods to identify perinatal infection. We investigated the utility of time, frequency and non-linear measures of fetal heart rate (FHR) variability (FHRV) to identify either progressive or more rapid inflammation. Chronically instrumented preterm fetal sheep were randomly assigned to one of three different 5d continuous i.v. infusions: 1) control (saline infusions; n = 10), 2) progressive lipopolysaccharide (LPS; 200 ng/kg over 24 h, doubled every 24 h for 5d, n = 8), or 3) acute-on-chronic LPS (100 ng/kg over 24 h then 250 ng/kg/24 h for 4d plus 1 μg boluses at 48, 72, and 96 h, n = 9). Both LPS protocols triggered transient increases in multiple measures of FHRV at the onset of infusions. No FHRV or physiological changes occurred from 12 h after starting progressive LPS infusions. LPS boluses during the acute-on-chronic protocol triggered transient hypotension, tachycardia and an initial increase in multiple time and frequency domain measures of FHRV, with an asymmetric FHR pattern of predominant decelerations. Following resolution of hypotension after the second and third LPS boluses, all frequencies of FHRV became suppressed. These data suggest that FHRV may be a useful biomarker of rapid but not progressive preterm infection/inflammation.
Collapse
|
5
|
Tournier A, Beacom M, Westgate JA, Bennet L, Garabedian C, Ugwumadu A, Gunn AJ, Lear CA. Physiological control of fetal heart rate variability during labour: Implications and controversies. J Physiol 2021; 600:431-450. [PMID: 34951476 DOI: 10.1113/jp282276] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/08/2022] Open
Abstract
The interpretation of fetal heart rate (FHR) patterns is the only available method to continuously monitor fetal wellbeing during labour. One of the most important yet contentious aspects of the FHR pattern is changes in FHR variability (FHRV). Some clinical studies suggest that loss of FHRV during labour is a sign of fetal compromise so this is reflected in practice guidelines. Surprisingly, there is little systematic evidence to support this observation. In this review we methodically dissect the potential pathways controlling FHRV during labour-like hypoxaemia. Before labour, FHRV is controlled by the combined activity of the parasympathetic and sympathetic nervous systems, in part regulated by a complex interplay between fetal sleep state and behaviour. By contrast, preclinical studies using multiple autonomic blockades have now shown that sympathetic neural control of FHRV was potently suppressed between periods of labour-like hypoxaemia, and thus, that the parasympathetic system is the sole neural regulator of FHRV once FHR decelerations are present during labour. We further discuss the pattern of changes in FHRV during progressive fetal compromise and highlight potential biochemical, behavioural and clinical factors that may regulate parasympathetic-mediated FHRV during labour. Further studies are needed to investigate the regulators of parasympathetic activity to better understand the dynamic changes in FHRV and their true utility during labour. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Alexane Tournier
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Michael Beacom
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Charles Garabedian
- Department of Obstetrics, Universite de Lille, CHU Lille, ULR 2694 - METRICS, Lille, F 59000, France
| | - Austin Ugwumadu
- Department of Obstetrics and Gynaecology, St George's Hospital, St George's University of London, London, SW17 0RE, UK
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Maeda Y, Lear CA, Beacom MJ, Davidson JO, Zhou KQ, Gunning M, Ikeda T, Gunn AJ, Bennet L. Transient effects of forebrain ischemia on fetal heart rate variability in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2021; 320:R916-R924. [PMID: 33881362 DOI: 10.1152/ajpregu.00032.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fetal heart rate variability (FHRV) is a key index of antenatal and intrapartum fetal well-being. FHRV is well established to be mediated by both arms of the autonomic nervous system, but it remains unknown whether higher centers in the forebrain contribute to FHRV. We tested the hypothesis that selective forebrain ischemia would impair the generation of FHRV. Sixteen chronically instrumented near-term fetal sheep were subjected to either forebrain ischemia induced by bilateral carotid occlusion or sham-ischemia for 30 min. Time, frequency, and nonlinear measures of FHRV were assessed during and for seven days after ischemia. Ischemia was associated with profound suppression of electroencephalographic (EEG) power, which remained suppressed throughout the recovery period (P < 0.001). During the first 5 min of ischemia, multiple time and frequency domain measures were increased (all P < 0.05) before returning back to sham levels. A delayed increase in sample entropy was observed during ischemia (P < 0.05). For the first 3 h after ischemia, there was moderate suppression of two measures of FHRV (very-low frequency power and the standard deviation of RR-intervals, both P < 0.05) and increased sample entropy (P < 0.05). Thereafter, all measures of FHRV returned to control levels. In conclusion, profound forebrain ischemia sufficient to lead to severe neural injury had only transient effect on multiple measures of FHRV. These findings suggest that the forebrain makes a limited contribution to FHRV. FHRV therefore primarily originates in the hindbrain and is unlikely to provide meaningful information on forebrain neurodevelopment or metabolism.
Collapse
Affiliation(s)
- Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Department of Obstetrics and Gynaecology, Mie University, Mie, Japan
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michael J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mark Gunning
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Tomoaki Ikeda
- The Department of Obstetrics and Gynaecology, Mie University, Mie, Japan
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Lear CA, Westgate JA, Kasai M, Beacom MJ, Maeda Y, Magawa S, Miyagi E, Ikeda T, Bennet L, Gunn AJ. Parasympathetic activity is the key regulator of heart rate variability between decelerations during brief repeated umbilical cord occlusions in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 319:R541-R550. [PMID: 32877241 DOI: 10.1152/ajpregu.00186.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fetal heart rate variability (FHRV) is a widely used index of intrapartum well being. Both arms of the autonomic system regulate FHRV under normoxic conditions in the antenatal period. However, autonomic control of FHRV during labor when the fetus is exposed to repeated, brief hypoxemia during uterine contractions is poorly understood. We have previously shown that the sympathetic nervous system (SNS) does not regulate FHRV during labor-like hypoxia. We therefore investigated the hypothesis that the parasympathetic system is the main mediator of intrapartum FHRV. Twenty-six chronically instrumented fetal sheep at 0.85 of gestation received either bilateral cervical vagotomy (n = 7), atropine sulfate (n = 7), or sham treatment (control, n = 12), followed by three 1-min complete umbilical cord occlusions (UCOs) separated by 4-min reperfusion periods. Parasympathetic blockade reduced three measures of FHRV before UCOs (all P < 0.01). Between UCOs, atropine and vagotomy were associated with marked tachycardia (both P < 0.005), suppressed measures of FHRV (all P < 0.01), and abolished FHRV on visual inspection compared with the control group. Tachycardia in the atropine and vagotomy groups resolved over the first 10 min after the final UCO, in association with evidence that the SNS contribution to FHRV progressively returned during this time. Our findings support that SNS control of FHRV is acutely suppressed for at least 4 min after a deep intrapartum deceleration and takes 5-10 min to recover. The parasympathetic system is therefore likely to be the key mediator of FHRV once frequent FHR decelerations are established during labor.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Michael J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Shoichi Magawa
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Kasai M, Lear CA, Davidson JO, Beacom MJ, Drury PP, Maeda Y, Miyagi E, Ikeda T, Bennet L, Gunn AJ. Early sinusoidal heart rate patterns and heart rate variability to assess hypoxia-ischaemia in near-term fetal sheep. J Physiol 2019; 597:5535-5548. [PMID: 31529698 DOI: 10.1113/jp278523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS •Therapeutic hypothermia needs to be started as early as possible in the first 6 h after acute injury caused by hypoxia-ischaemia (HI), but the severity and timing of HI are often unclear. In this study we evaluated whether measures of heart rate variability (HRV) might provide early biomarkers of HI. •The duration but not magnitude of suppression of HRV power and conversely increased sample entropy of the heart rate were associated with severity of HI, such that changes in the first 3 h did not discriminate between groups. •Relative changes in HRV power bands showed different patterns between groups and therefore may have the potential to evaluate the severity of HI. •Aberrant fetal heart rate patterns and increased arginine vasopressin levels in the first hour after moderate and severe HI were correlated with loss of EEG power after 3 days' recovery, suggesting potential utility as early biomarkers of outcome. ABSTRACT Therapeutic hypothermia is partially neuroprotective after acute injury caused by hypoxia-ischaemia (HI), likely because the timing and severity of HI are often unclear, making timely recruitment for treatment challenging. We evaluated the utility of changes in heart rate variability (HRV) after HI as biomarkers of the timing and severity of acute HI. Chronically instrumented fetal sheep at 0.85 gestational age were exposed to different durations of umbilical cord occlusion to produce mild (n = 6), moderate (n = 8) or severe HI (n = 8) or to sham occlusion (n = 5). Heart rate (HR) and HRV indices were assessed until 72 h after HI. All HI groups showed suppressed very low frequency HRV power and elevated sample entropy for the first 3 h; more prolonged changes were associated with greater severity of HI. Analysis of relative changes in spectral power showed that the moderate and severe groups showed a shift towards higher HRV frequencies, which was most marked after severe HI. This shift was associated with abnormal rhythmic HR patterns including sinusoidal patterns in the first hour after HI, and with elevated plasma levels of arginine vasopressin, which were correlated with subsequent loss of EEG power by day 3. In conclusion, absolute changes in HRV power in the first 3 h after acute HI were not significantly related to the severity of HI. The intriguing relative shift in spectral power towards higher frequencies likely reflects greater autonomic dysfunction after severe HI. However, sinusoidal HR patterns and elevated vasopressin levels may have utility as biomarkers of severe HI.
Collapse
Affiliation(s)
- Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand.,Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Michael J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| |
Collapse
|
9
|
Shaw CJ, Allison BJ, Itani N, Botting KJ, Niu Y, Lees CC, Giussani DA. Altered autonomic control of heart rate variability in the chronically hypoxic fetus. J Physiol 2018; 596:6105-6119. [PMID: 29604064 PMCID: PMC6265555 DOI: 10.1113/jp275659] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS Fetal heart rate variability (FHRV) has long been recognised as a powerful predictor of fetal wellbeing, and a decrease in FHRV is associated with fetal compromise. However, the mechanisms by which FHRV is reduced in the chronically hypoxic fetus have yet to be established. The sympathetic and parasympathetic influences on heart rate mature at different rates throughout fetal life, and can be assessed by time domain and power spectral analysis of FHRV. In this study of chronically instrumented fetal sheep in late gestation, we analysed FHRV daily over a 16 day period towards term, and compared changes between fetuses of control and chronically hypoxic pregnancy. We show that FHRV in sheep is reduced by chronic hypoxia, predominantly due to dysregulation of the sympathetic control of the fetal heart rate. This presents a potential mechanism by which a reduction in indices of FHRV predicts fetuses at increased risk of neonatal morbidity and mortality in humans. Reduction in overall FHRV may therefore provide a biomarker that autonomic dysregulation of fetal heart rate control has taken place in a fetus where uteroplacental dysfunction is suspected. ABSTRACT Although fetal heart rate variability (FHRV) has long been recognised as a powerful predictor of fetal wellbeing, the mechanisms by which it is reduced in the chronically hypoxic fetus have yet to be established. In particular, the physiological mechanism underlying the reduction of short term variation (STV) in fetal compromise remains unclear. In this study, we present a longitudinal study of the development of autonomic control of FHRV, assessed by indirect indices, time domain and power spectral analysis, in normoxic and chronically hypoxic, chronically catheterised, singleton fetal sheep over the last third of gestation. We used isobaric chambers able to maintain pregnant sheep for prolonged periods in hypoxic conditions (stable fetal femoral arterial P O 2 10-12 mmHg), and a customised wireless data acquisition system to record beat-to-beat variation in the fetal heart rate. We determined in vivo longitudinal changes in overall FHRV and the sympathetic and parasympathetic contribution to FHRV in hypoxic (n = 6) and normoxic (n = 6) ovine fetuses with advancing gestational age. Normoxic fetuses show gestational age-related increases in overall indices of FHRV, and in the sympathetic nervous system contribution to FHRV (P < 0.001). Conversely, gestational age-related increases in overall FHRV were impaired by exposure to chronic hypoxia, and there was evidence of suppression of the sympathetic nervous system control of FHRV after 72 h of exposure to hypoxia (P < 0.001). This demonstrates that exposure to late gestation isolated chronic fetal hypoxia has the potential to alter the development of the autonomic nervous system control of FHRV in sheep. This presents a potential mechanism by which a reduction in indices of FHRV in human fetuses affected by uteroplacental dysfunction can predict fetuses at increased risk.
Collapse
Affiliation(s)
- C. J. Shaw
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Institute of Reproductive and Developmental BiologyImperial College LondonLondonUK
| | - B. J. Allison
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - N. Itani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - K. J. Botting
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Cambridge Cardiovascular Research InitiativeAddenbrooke's HospitalCambridgeUK
| | - Y. Niu
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Cambridge Cardiovascular Research InitiativeAddenbrooke's HospitalCambridgeUK
| | - C. C. Lees
- Institute of Reproductive and Developmental BiologyImperial College LondonLondonUK
- Department of Obstetrics and GynaecologyUniversity Hospitals LeuvenLeuvenBelgium
| | - D. A. Giussani
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
- Cambridge Cardiovascular Research InitiativeAddenbrooke's HospitalCambridgeUK
| |
Collapse
|
10
|
Antolic A, Wood CE, Keller-Wood M. Use of radiotelemetry to assess perinatal cardiac function in the ovine fetus and newborn. Am J Physiol Regul Integr Comp Physiol 2017; 313:R660-R668. [PMID: 28855176 PMCID: PMC5814690 DOI: 10.1152/ajpregu.00078.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022]
Abstract
The late gestation fetal ECG (fECG) has traditionally been difficult to characterize due to the low fECG signal relative to high maternal noise. Although new technologies have improved the feasibility of its acquisition and separation, little is known about its development in late gestation, a period in which the fetal heart undergoes extensive maturational changes. Here, we describe a method for the chronic implantation of radiotelemetry devices into late gestation ovine fetuses to characterize parameters of the fECG following surgery, throughout late gestation, and in the perinatal period. We found no significant changes in mean aortic pressure (MAP), heart rate (HR), or ECG in the 5 days following implantation; however, HR decreased in the first 24 h following the end of surgery, with associated increases in RR, PR, and QRS intervals. Over the last 14 days of fetal life, fetal MAP significantly increased, and HR significantly decreased, as expected. MAP and HR increased as labor progressed. Although there were no significant changes over time in the ECG during late gestation, the duration of the PR interval initially decreased and then increased as birth approached. These results indicate that although critical maturational changes occur in the late gestation fetal myocardium, the mechanisms that control the cardiac conduction are relatively mature in late gestation. The study demonstrates that radiotelemetry can be successfully used to assess fetal cardiac function, in particular conduction, through the process of labor and delivery, and may therefore be a useful tool for study of peripartum cardiac events.
Collapse
Affiliation(s)
- A Antolic
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida;
| | - C E Wood
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida; and
| | - M Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| |
Collapse
|
11
|
De Jonckheere J, Garabedian C, Charlier P, Champion C, Servan-Schreiber E, Storme L, Debarge V, Jeanne M, Logier R. Influence of ECG sampling rate in fetal heart rate variability analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:2027-2030. [PMID: 29060294 DOI: 10.1109/embc.2017.8037250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fetal hypoxia results in a fetal blood acidosis (pH<;7.10). In such a situation, the fetus develops several adaptation mechanisms regulated by the autonomic nervous system. Many studies demonstrated significant changes in heart rate variability in hypoxic fetuses. So, fetal heart rate variability analysis could be of precious help for fetal hypoxia prediction. Commonly used fetal heart rate variability analysis methods have been shown to be sensitive to the ECG signal sampling rate. Indeed, a low sampling rate could induce variability in the heart beat detection which will alter the heart rate variability estimation. In this paper, we introduce an original fetal heart rate variability analysis method. We hypothesize that this method will be less sensitive to ECG sampling frequency changes than common heart rate variability analysis methods. We then compared the results of this new heart rate variability analysis method with two different sampling frequencies (250-1000 Hz).
Collapse
|
12
|
Stone PR, Burgess W, McIntyre JPR, Gunn AJ, Lear CA, Bennet L, Mitchell EA, Thompson JMD. Effect of maternal position on fetal behavioural state and heart rate variability in healthy late gestation pregnancy. J Physiol 2016; 595:1213-1221. [PMID: 27871127 DOI: 10.1113/jp273201] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/25/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Fetal behavioural state in healthy late gestation pregnancy is affected by maternal position. Fetal state 1F is more likely to occur in maternal supine or right lateral positions. Fetal state 4F is less likely to occur when the woman lies supine or semi-recumbent. Fetal state change is more likely when the woman is supine or semi-recumbent. Fetal heart rate variability is affected by maternal position with variability reduced in supine and semi-recumbent positions. ABSTRACT Fetal behavioural states (FBS) are measures of fetal wellbeing. In acute hypoxaemia, the human fetus adapts to a lower oxygen consuming state with changes in the cardiotocograph and reduced fetal activity. Recent studies of late gestation stillbirth described the importance of sleep position in the risk of intrauterine death. We designed this study to assess the effects of different maternal positions on FBS in healthy late gestation pregnancies under controlled conditions. Twenty-nine healthy women had continuous fetal ECG recordings under standardized conditions in four randomly allocated positions, left lateral, right lateral, supine and semi-recumbent. Two blinded observers, assigned fetal states in 5 min blocks. Measures of fetal heart rate variability were calculated from ECG beat to beat data. Compared to state 2F, state 4F was less likely to occur when women were semi-recumbent [odds ratio (OR) = 0.11, 95% confidence interval (95% CI) 0.02, 0.55], and supine (OR = 0.27, 95% CI 0.07, 1.10). State 1F was more likely on the right (OR = 2.36, 95% CI 1.11, 5.04) or supine (OR = 4.99, 95% CI 2.41, 10.43) compared to the left. State change was more likely when the mother was semi-recumbent (OR = 2.17, 95% CI 1.19, 3.95) or supine (OR = 2.67, 95% CI 1.46, 4.85). There was a significant association of maternal position to mean fetal heart rate. The measures of heart rate variability (SDNN and RMSSD) were reduced in both semi-recumbent and supine positions. In healthy late gestation pregnancy, maternal position affects FBS and heart rate variability. These effects are likely fetal adaptations to positions which may produce a mild hypoxic stress.
Collapse
Affiliation(s)
- Peter R Stone
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Wendy Burgess
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Jordan P R McIntyre
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.,Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Edwin A Mitchell
- Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - John M D Thompson
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.,Department of Paediatrics: Child and Youth Health, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | | |
Collapse
|
13
|
Lai J, Nowlan NC, Vaidyanathan R, Shaw CJ, Lees CC. Fetal movements as a predictor of health. Acta Obstet Gynecol Scand 2016; 95:968-75. [PMID: 27374723 PMCID: PMC6680271 DOI: 10.1111/aogs.12944] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/27/2016] [Indexed: 11/29/2022]
Abstract
The key determinant to a fetus maintaining its health is through adequate perfusion and oxygen transfer mediated by the functioning placenta. When this equilibrium is distorted, a number of physiological changes, including reduced fetal growth, occur to favor survival. Technologies have been developed to monitor these changes with a view to prolong intrauterine maturity while reducing the risks of stillbirth. Many of these strategies involve complex interpretation, for example Doppler ultrasound for fetal blood flow and computerized analysis of fetal heart rate changes. However, even with these modalities of fetal assessment to determine the optimal timing of delivery, fetal movements remain integral to clinical decision-making. In high-risk cohorts with fetal growth restriction, the manifestation of a reduction in perceived movements may warrant an expedited delivery. Despite this, there has been little evolution in the development of technologies to objectively evaluate fetal movement behavior for clinical application. This review explores the available literature on the value of fetal movement analysis as a method of assessing fetal wellbeing, and demonstrates how interdisciplinary developments in this area may aid in the improvement of clinical outcomes.
Collapse
Affiliation(s)
- Jonathan Lai
- Institute of Reproductive and Developmental Biology, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK
| | - Ravi Vaidyanathan
- Department of Mechanical Engineering, Imperial College London, London, UK
| | - Caroline J Shaw
- Institute of Reproductive and Developmental Biology, Department of Surgery & Cancer, Imperial College London, London, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Christoph C Lees
- Institute of Reproductive and Developmental Biology, Department of Surgery & Cancer, Imperial College London, London, UK
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Doret M, Spilka J, Chudáček V, Gonçalves P, Abry P. Fractal Analysis and Hurst Parameter for Intrapartum Fetal Heart Rate Variability Analysis: A Versatile Alternative to Frequency Bands and LF/HF Ratio. PLoS One 2015; 10:e0136661. [PMID: 26322889 PMCID: PMC4556442 DOI: 10.1371/journal.pone.0136661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 11/18/2022] Open
Abstract
Background The fetal heart rate (FHR) is commonly monitored during labor to detect early fetal acidosis. FHR variability is traditionally investigated using Fourier transform, often with adult predefined frequency band powers and the corresponding LF/HF ratio. However, fetal conditions differ from adults and modify spectrum repartition along frequencies. Aims This study questions the arbitrariness definition and relevance of the frequency band splitting procedure, and thus of the calculation of the underlying LF/HF ratio, as efficient tools for characterizing intrapartum FHR variability. Study Design The last 30 minutes before delivery of the intrapartum FHR were analyzed. Subjects Case-control study. A total of 45 singletons divided into two groups based on umbilical cord arterial pH: the Index group with pH ≤ 7.05 (n = 15) and Control group with pH > 7.05 (n = 30). Outcome Measures Frequency band-based LF/HF ratio and Hurst parameter. Results This study shows that the intrapartum FHR is characterized by fractal temporal dynamics and promotes the Hurst parameter as a potential marker of fetal acidosis. This parameter preserves the intuition of a power frequency balance, while avoiding the frequency band splitting procedure and thus the arbitrary choice of a frequency separating bands. The study also shows that extending the frequency range covered by the adult-based bands to higher and lower frequencies permits the Hurst parameter to achieve better performance for identifying fetal acidosis. Conclusions The Hurst parameter provides a robust and versatile tool for quantifying FHR variability, yields better acidosis detection performance compared to the LF/HF ratio, and avoids arbitrariness in spectral band splitting and definitions.
Collapse
Affiliation(s)
- Muriel Doret
- Department of Obstetrics and Gynaecology, Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Bron, France
- * E-mail:
| | - Jiří Spilka
- Physics Department, CNRS, ENS Lyon, France
- Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | - Václav Chudáček
- Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic
| | | | | |
Collapse
|
15
|
Lear CA, Galinsky R, Wassink G, Mitchell CJ, Davidson JO, Westgate JA, Bennet L, Gunn AJ. Sympathetic neural activation does not mediate heart rate variability during repeated brief umbilical cord occlusions in near-term fetal sheep. J Physiol 2015; 594:1265-77. [PMID: 25864517 DOI: 10.1113/jp270125] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/07/2015] [Indexed: 11/08/2022] Open
Abstract
Changes in fetal heart rate variability (FHRV) and ST segment elevation (measured as the T/QRS ratio) are used to evaluate fetal adaptation to labour. The sympathetic nervous system (SNS) is an important contributor to FHRV under healthy normoxic conditions, and is critical for rapid support of blood pressure during brief labour-like asphyxia. However, although it has been assumed that SNS activity contributes to FHRV during labour; this has never been tested, and it is unclear whether the SNS contributes to the rapid increase in T/QRS ratio during brief asphyxia. Thirteen chronically instrumented fetal sheep at 0.85 of gestation received either chemical sympathectomy with 6-hydroxydopamine (6-OHDA; n = 6) or sham treatment (control; n = 7), followed 4-5 days later by 2 min episodes of complete umbilical cord occlusion repeated every 5 min for up to 4 h, or until mean arterial blood pressure fell to <20 mmHg for two successive occlusions. FHRV was decreased before occlusions in the 6-OHDA group (P < 0.05) and 2-4.5 h during recovery after occlusions (P < 0.05) compared to the control group. During each occlusion there was a rapid increase in T/QRS ratio. Between successive occlusions the T/QRS ratio rapidly returned to baseline, and FHRV increased above baseline in both groups (P < 0.05), with no significant effect of sympathectomy on FHRV or T/QRS ratio. In conclusion, these data show that SNS activity does not mediate the increase in FHRV between repeated episodes of brief umbilical cord occlusion or the transient increase in T/QRS ratio during occlusions.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Clinton J Mitchell
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jennifer A Westgate
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Casati D, Frasch MG. Analysis of fetal heart rate variability in frequency domain: methodical considerations. Exp Physiol 2014; 99:466-7. [PMID: 24487249 DOI: 10.1113/expphysiol.2013.076539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Lear CA, Davidson JO, Booth LC, Wassink G, Galinsky R, Drury PP, Fraser M, Bennet L, Gunn AJ. Biphasic changes in fetal heart rate variability in preterm fetal sheep developing hypotension after acute on chronic lipopolysaccharide exposure. Am J Physiol Regul Integr Comp Physiol 2014; 307:R387-95. [PMID: 24944248 DOI: 10.1152/ajpregu.00110.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Perinatal exposure to infection is highly associated with adverse outcomes. Experimentally, acute, severe exposure to gram-negative bacterial lipopolysaccharide (LPS) is associated with increased fetal heart rate variability (FHRV). It is unknown whether FHRV is affected by subclinical infection with or without acute exacerbations. We therefore tested the hypothesis that FHRV would be associated with hypotension after acute on chronic exposure to LPS. Chronically instrumented fetal sheep at 0.7 gestation were exposed to a continuous low-dose LPS infusion (n = 12, 100 ng/kg over 24 h, followed by 250 ng·kg(-1)·24 h(-1) for a further 96 h) or the same volume of saline (n = 10). Boluses of either 1 μg LPS or saline were given at 48, 72, and 96 h. Low-dose infusion was not associated with hemodynamic or FHRV changes. The first LPS bolus was associated with tachycardia and suppression of nuchal electromyographic activity in all fetuses. Seven of twelve fetuses developed hypotension (a fall in mean arterial blood pressure ≥5 mmHg). FHRV was transiently increased only at the onset of hypotension, in association with increased cytokine induction and electroencephalogram suppression. FHRV then fell before the nadir of hypotension, with transient suppression of short-term FHRV. After the second LPS bolus, the hypotension group showed a biphasic pattern of a transient increase in FHRV followed by more prolonged suppression. These findings suggest that infection-related hypotension in the preterm fetus mediates the transient increase in FHRV and that repeated exposure to LPS leads to progressive loss of FHRV.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mhoyra Fraser
- Department of Physiology, and The Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|