1
|
Geng X, Wang X, Liu K, Xing Y, Xu J, Li Z, Zhang H, Hu M, Gao P, Chen D, Liu W, Li K, Wei S. ShuYu capsule alleviates emotional and physical symptoms of premenstrual dysphoric disorder: Impact on ALLO decline and GABA A receptor δ subunit in the PAG area. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155549. [PMID: 38810551 DOI: 10.1016/j.phymed.2024.155549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 05/31/2024]
Abstract
Premenstrual dysphoric disorder (PMDD) is a severe subtype of premenstrual syndrome in women of reproductive age, with its pathogenesis linked to the heightened sensitivity of type A γ -aminobutyric acid receptors (GABAAR) to neuroactive steroid hormone changes, particularly allopregnanolone (ALLO). While a low dose of fluoxetine, a classic selective serotonin reuptake inhibitor, is commonly used as a first-line drug to alleviate emotional disorders in PMDD in clinical settings, its mechanism of action is related to ALLO-GABAA receptor function. However, treating PMDD requires attention to both emotional and physical symptoms, such as pain sensitivity. This study aims to investigate the efficacy of ShuYu capsules, a traditional Chinese medicine, in simultaneously treating emotional and physical symptoms in a rat model of PMDD. Specifically, our focus centres on the midbrain periaqueductal grey (PAG), a region associated with emotion regulation and susceptibility to hyperalgesia. Considering the underlying mechanisms of ALLO-GABAA receptor function in the PAG region, we conducted a series of experiments to evaluate and define the effects of ShuYu capsules and uncover the relationship between the drug's efficacy and ALLO concentration fluctuations on GABAA receptor function in the PAG region. Our findings demonstrate that ShuYu capsules significantly improved oestrous cycle-dependant depression-like behaviour and reduced stress-induced hyperalgesia in rats with PMDD. Similar to the low dose of fluoxetine, ShuYu capsules targeted and mitigated the sharp decline in ALLO, rescued the upregulation of GABAAR subunit function, and activated PAG neurons in PMDD rats. The observed effects of ShuYu capsules suggest a central mechanism underlying PMDD symptoms, involving ALLO_GABAA receptor function in the PAG region. This study highlights the potential of traditional Chinese medicine in addressing both emotional and physical symptoms associated with PMDD, shedding light on novel therapeutic approaches for this condition.
Collapse
Affiliation(s)
- Xiwen Geng
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Xinyu Wang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Kun Liu
- High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Ying Xing
- High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Jialing Xu
- High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Zifa Li
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Hao Zhang
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Minghui Hu
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Peng Gao
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dan Chen
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China
| | - Wei Liu
- Department of Encephalopathy, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan 250001, China.
| | - Kejian Li
- High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine, Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China.
| |
Collapse
|
2
|
Lee MT, Peng WH, Wu CC, Kan HW, Wang DW, Teng YN, Ho YC. Impaired Ventrolateral Periaqueductal Gray-Ventral Tegmental area Pathway Contributes to Chronic Pain-Induced Depression-Like Behavior in Mice. Mol Neurobiol 2023; 60:5708-5724. [PMID: 37338803 DOI: 10.1007/s12035-023-03439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Chronic pain conditions within clinical populations are correlated with a high incidence of depression, and researchers have reported their high rate of comorbidity. Clinically, chronic pain worsens the prevalence of depression, and depression increases the risk of chronic pain. Individuals suffering from chronic pain and depression respond poorly to available medications, and the mechanisms underlying the comorbidity of chronic pain and depression remain unknown. We used spinal nerve ligation (SNL) in a mouse model to induce comorbid pain and depression. We combined behavioral tests, electrophysiological recordings, pharmacological manipulation, and chemogenetic approaches to investigate the neurocircuitry mechanisms of comorbid pain and depression. SNL elicited tactile hypersensitivity and depression-like behavior, accompanied by increased and decreased glutamatergic transmission in dorsal horn neurons and midbrain ventrolateral periaqueductal gray (vlPAG) neurons, respectively. Intrathecal injection of lidocaine, a sodium channel blocker, and gabapentin ameliorated SNL-induced tactile hypersensitivity and neuroplastic changes in the dorsal horn but not depression-like behavior and neuroplastic alterations in the vlPAG. Pharmacological lesion of vlPAG glutamatergic neurons induced tactile hypersensitivity and depression-like behavior. Chemogenetic activation of the vlPAG-rostral ventromedial medulla (RVM) pathway ameliorated SNL-induced tactile hypersensitivity but not SNL-elicited depression-like behavior. However, chemogenetic activation of the vlPAG-ventral tegmental area (VTA) pathway alleviated SNL-produced depression-like behavior but not SNL-induced tactile hypersensitivity. Our study demonstrated that the underlying mechanisms of comorbidity in which the vlPAG acts as a gating hub for transferring pain to depression. Tactile hypersensitivity could be attributed to dysfunction of the vlPAG-RVM pathway, while impairment of the vlPAG-VTA pathway contributed to depression-like behavior.
Collapse
Affiliation(s)
- Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
- Centre of Research for Mental Health and Wellbeing, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, Republic of China
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
- Department of Psychiatry, E-Da Hospital, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China.
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan.
| |
Collapse
|
3
|
Kan HW, Peng WH, Wu CC, Wang DW, Lee MT, Lee YK, Chu TH, Ho YC. Rapid antidepressant-like effects of muscarinic receptor antagonists require BDNF-dependent signaling in the ventrolateral periaqueductal gray. Psychopharmacology (Berl) 2022; 239:3805-3818. [PMID: 36221037 DOI: 10.1007/s00213-022-06250-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/26/2022] [Indexed: 10/17/2022]
Abstract
RATIONALE Clinical reports reveal that scopolamine, an acetylcholine muscarinic receptor antagonist, exerts rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic effects have not been fully identified. OBJECTIVES The present study examines the cellular mechanisms by which scopolamine produces antidepressant-like effects through its action in the ventrolateral midbrain periaqueductal gray (vlPAG). METHODS We used a well-established mouse model of depression induced by chronic restraint stress (CRS) exposure for 14 days. Behaviors were tested using the forced swim test (FST), tail suspension test (TST), female urine sniffing test (FUST), novelty-suppressed feeding test (NSFT), and locomotor activity (LMA). Synaptic transmission in the vlPAG was measured by whole-cell patch-clamp recordings. IntravlPAG microinjection was used to pharmacologically verify the signaling cascades of scopolamine in the vlPAG. RESULTS The results demonstrated that intraperitoneal injection of scopolamine produced antidepressant-like effects in a dose-dependent manner without affecting locomotor activity. CRS elicited depression-like behaviors, whereas intraperitoneal injection of scopolamine alleviated CRS-induced depression-like behaviors. CRS diminished glutamatergic transmission in the vlPAG, while scopolamine reversed the above effects. Moreover, intravlPAG microinjection of the L-type voltage-dependent calcium channel (VDCC) blocker verapamil, tropomyosin-related kinase B (TrkB) receptor antagonist ANA-12, mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) antagonist CNQX prevented scopolamine-induced antidepressant-like effects. CONCLUSIONS Scopolamine ameliorated CRS-elicited depression-like behavior required activation of VDCC, resulting in activity-dependent release of brain-derived neurotrophic factor (BDNF), engaging the TrkB receptor and downstream mTORC1 signaling in the vlPAG.
Collapse
Affiliation(s)
- Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan, Republic of China.,School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan, Republic of China
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China.,Department of Psychiatry, E-Da Hospital, Kaohsiung City, 82445, Taiwan, Republic of China
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Yung-Kuo Lee
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 80284, Taiwan, Republic of China
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung City, 80284, Taiwan, Republic of China
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, No.8, Yida Rd., Yanchao District, Kaohsiung City, 82445, Taiwan, Republic of China.
| |
Collapse
|
4
|
Lee MT, Peng WH, Kan HW, Wu CC, Wang DW, Ho YC. Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain-Focusing on AMPA Receptor. Biomedicines 2022; 10:biomedicines10051005. [PMID: 35625742 PMCID: PMC9138646 DOI: 10.3390/biomedicines10051005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric disorder affecting the mood and mental well-being. Its pathophysiology remains elusive due to the complexity and heterogeneity of this disorder that affects millions of individuals worldwide. Chronic stress is frequently cited as the one of the risk factors for MDD. To date, the conventional monoaminergic theory (serotonin, norepinephrine, and/or dopamine dysregulation) has received the most attention in the treatment of MDD, and all available classes of antidepressants target these monoaminergic systems. However, the contributions of other neurotransmitter systems in MDD have been widely reported. Emerging preclinical and clinical findings reveal that maladaptive glutamatergic neurotransmission might underlie the pathophysiology of MDD, thus revealing its critical role in the neurobiology of MDD and as the therapeutic target. Aiming beyond the monoaminergic hypothesis, studies of the neurobiological mechanisms underlying the stress-induced impairment of AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-glutamatergic neurotransmission in the brain could provide novel insights for the development of a new generation of antidepressants without the detrimental side effects. Here, the authors reviewed the recent literature focusing on the role of AMPA-glutamatergic neurotransmission in stress-induced maladaptive responses in emotional and mood-associated brain regions, including the hippocampus, amygdala, prefrontal cortex, nucleus accumbens and periaqueductal gray.
Collapse
Affiliation(s)
- Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (W.-H.P.); (H.-W.K.)
| | - Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (W.-H.P.); (H.-W.K.)
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
- Department of Psychiatry, E-Da Hospital, Kaohsiung City 82445, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
- Correspondence:
| |
Collapse
|
5
|
Impaired visceral pain-related functions of the midbrain periaqueductal gray in rats with colitis. Brain Res Bull 2022; 182:12-25. [DOI: 10.1016/j.brainresbull.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 11/18/2022]
|
6
|
Peng WH, Kan HW, Ho YC. Periaqueductal gray is required for controlling chronic stress-induced depression-like behavior. Biochem Biophys Res Commun 2022; 593:28-34. [DOI: 10.1016/j.bbrc.2022.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/08/2022] [Indexed: 12/20/2022]
|
7
|
Mansour A, Nagi K, Dallaire P, Lukasheva V, Le Gouill C, Bouvier M, Pineyro G. Comprehensive Signaling Profiles Reveal Unsuspected Functional Selectivity of δ-Opioid Receptor Agonists and Allow the Identification of Ligands with the Greatest Potential for Inducing Cyclase Superactivation. ACS Pharmacol Transl Sci 2021; 4:1483-1498. [PMID: 34661070 PMCID: PMC8506601 DOI: 10.1021/acsptsci.1c00019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 11/29/2022]
Abstract
![]()
Prolonged exposure
to opioid receptor agonists triggers adaptations
in the adenylyl cyclase (AC) pathway that lead to enhanced production
of cyclic adenosine monophosphate (cAMP) upon withdrawal. This cellular
phenomenon contributes to withdrawal symptoms, hyperalgesia and analgesic
tolerance that interfere with clinical management of chronic pain
syndromes. Since δ-opioid receptors (DOPrs) are a promising
target for chronic pain management, we were interested in finding
out if cell-based signaling profiles as generated for drug discovery
purposes could inform us of the ligand potential to induce sensitization
of the cyclase path. For this purpose, signaling of DOPr agonists
was monitored at multiple effectors. The resulting signaling profiles
revealed marked functional selectivity, particularly for Met-enkephalin
(Met-ENK) whose signaling bias profile differed from those of synthetic
ligands like SNC-80 and ARM390. Signaling diversity among ligands
was systematized by clustering agonists according to similarities
in Emax and Log(τ) values for the
different responses. The classification process revealed that the
similarity in Gα/Gβγ, but not in β-arrestin
(βarr), responses was correlated with the potential of Met-ENK,
deltorphin II, (d-penicillamine2,5)-enkephalin (DPDPE), ARM390,
and SNC-80 to enhance cAMP production, all of which required Ca2+ mobilization to produce this response. Moreover, superactivation
by Met-ENK, which was the most-effective Ca2+ mobilizing
agonist, required Gαi/o activation, availability of Gβγ
subunits at the membrane, and activation of Ca2+ effectors
such as calmodulin and protein kinase C (PKC). In contrast, superactivation by (N-(l-tyrosyl)-(3S)-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)-l-phenylalanyl-l-phenylalanine (TIPP), which was set
in a distinct category through clustering, required activation of
Gαi/o subunits but was independent of the Gβγ dimer
and Ca2+ mobilization, relying instead on Src and Raf-1
to induce this cellular adaptation.
Collapse
Affiliation(s)
- Ahmed Mansour
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Karim Nagi
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul Dallaire
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| | - Viktoriya Lukasheva
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Christian Le Gouill
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Graciela Pineyro
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,CHU Sainte-Justine Research Center, Montréal, Quebec H3T 1C5, Canada
| |
Collapse
|
8
|
Williams B, Lees F, Tsangari H, Hutchinson MR, Perilli E, Crotti TN. Effects of Mild and Moderate Monoclonal Antibody Dose on Inflammation, Bone Loss, and Activation of the Central Nervous System in a Female Collagen Antibody-induced Arthritis Mouse Model. J Histochem Cytochem 2021; 69:511-522. [PMID: 34291686 DOI: 10.1369/00221554211033562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of severe inflammatory arthritis in the collagen antibody-induced arthritis (CAIA) murine model causes extensive joint damage and pain-like behavior compromising analysis. While mild models are less severe, their reduced, variable penetrance makes assessment of treatment efficacy difficult. This study aimed to compare macroscopic and microscopic changes in the paws, along with central nervous system activation between a mild and moderate CAIA model. Balb/c mice (n=18) were allocated to control, mild, and moderate CAIA groups. Paw inflammation, bone volume (BV), and paw volume (PV) were assessed. Histologically, the front paws were assessed for joint inflammation, cartilage damage, and pre/osteoclast-like cells and the lumbar spinal cord and the periaqueductal gray (PAG) region of the brain for glial reactivity. A moderate CAIA dose induced (1) significantly greater local paw inflammation, inflammatory cell infiltration, and PV; (2) significantly more osteoclast-like cells on the bone surface and within the surrounding soft tissue; and (3) significantly greater glial reactivity within the PAG compared with the mild CAIA model. These findings support the use of a moderate CAIA model (higher dose of monoclonal antibodies with low-dose lipopolysaccharide) to induce more consistent histopathological features, without excessive joint destruction.
Collapse
Affiliation(s)
| | - Florence Lees
- Adelaide Medical School.,ARC Centre for Excellence for Nanoscale Biophotonics
| | | | - Mark R Hutchinson
- Adelaide Medical School.,ARC Centre for Excellence for Nanoscale Biophotonics
| | - Egon Perilli
- The University of Adelaide, Adelaide, SA, Australia, and Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
9
|
Bak MS, Park H, Kim SK. Neural Plasticity in the Brain during Neuropathic Pain. Biomedicines 2021; 9:624. [PMID: 34072638 PMCID: PMC8228570 DOI: 10.3390/biomedicines9060624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain is an intractable chronic pain, caused by damage to the somatosensory nervous system. To date, treatment for neuropathic pain has limited effects. For the development of efficient therapeutic methods, it is essential to fully understand the pathological mechanisms of neuropathic pain. Besides abnormal sensitization in the periphery and spinal cord, accumulating evidence suggests that neural plasticity in the brain is also critical for the development and maintenance of this pain. Recent technological advances in the measurement and manipulation of neuronal activity allow us to understand maladaptive plastic changes in the brain during neuropathic pain more precisely and modulate brain activity to reverse pain states at the preclinical and clinical levels. In this review paper, we discuss the current understanding of pathological neural plasticity in the four pain-related brain areas: the primary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray, and the basal ganglia. We also discuss potential treatments for neuropathic pain based on the modulation of neural plasticity in these brain areas.
Collapse
Affiliation(s)
- Myeong Seong Bak
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
| | - Haney Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
10
|
Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2020; 69:110-123. [PMID: 33316085 DOI: 10.1002/bab.2086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
Pain is an unpleasant sensory and emotional experience that affects a sizable percentage of people on a daily basis. Sensory neurons known as nociceptors built specifically to detect damaging stimuli can be found throughout the body. They transmit information about noxious stimuli from mechanical, thermal, and chemical sources to the central nervous system and higher brain centers via electrical signals. Nociceptors express various channels and receptors such as voltage-gated sodium and calcium channels, transient receptor potential channels, and opioid receptors that allow them to respond in a highly specific manner to noxious stimuli. Attenuating the pain response can be achieved by inhibiting or altering the expression of these pain targets. Achieving a deeper understanding of how these receptors can be affected at the molecular level can lead to the development of novel pain therapies. This review will discuss the mechanisms of pain, introduce the various receptors that are responsible for detecting pain, and future directions in pharmacological therapies.
Collapse
Affiliation(s)
- Menglan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Baskaran Thyagarajan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
11
|
Yang PS, Peng HY, Lin TB, Hsieh MC, Lai CY, Lee AS, Wang HH, Ho YC. NMDA receptor partial agonist GLYX-13 alleviates chronic stress-induced depression-like behavior through enhancement of AMPA receptor function in the periaqueductal gray. Neuropharmacology 2020; 178:108269. [DOI: 10.1016/j.neuropharm.2020.108269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
|
12
|
BDNF Activates Postsynaptic TrkB Receptors to Induce Endocannabinoid Release and Inhibit Presynaptic Calcium Influx at a Calyx-Type Synapse. J Neurosci 2020; 40:8070-8087. [PMID: 32948677 PMCID: PMC7574661 DOI: 10.1523/jneurosci.2838-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotropic factor (BDNF) has been shown to play critical roles in neural development, plasticity, and neurodegenerative diseases. The main function of BDNF in the brain is widely accepted to be synaptic regulation. However, how BDNF modulates synaptic transmission, especially the underlying signaling cascades between presynaptic and postsynaptic neurons, remains controversial. Brain-derived neurotropic factor (BDNF) has been shown to play critical roles in neural development, plasticity, and neurodegenerative diseases. The main function of BDNF in the brain is widely accepted to be synaptic regulation. However, how BDNF modulates synaptic transmission, especially the underlying signaling cascades between presynaptic and postsynaptic neurons, remains controversial. In the present study, we investigated the actions of BDNF at rat calyx-type synapses of either sex by measuring the excitatory postsynaptic current (EPSC) and presynaptic calcium current and capacitance changes. We found that BDNF inhibits the EPSC, presynaptic calcium influx, and exocytosis/endocytosis via activation of the presynaptic cannabinoid Type 1 receptors (CB1Rs). Inhibition of the CB1Rs abolished the BDNF-induced presynaptic inhibition, whereas CB1R agonist mimicked the effect of BDNF. Exploring the underlying signaling cascade, we found that BDNF specifically activates the postsynaptic TrkB receptors, inducing the release of endocannabinoids via the PLCγ/DGL pathway and retrogradely activating presynaptic CB1Rs. We also reported the involvement of AC/PKA in modulating vesicle endocytosis, which may account for the BDNF-induced calcium-dependent and -independent regulation of endocytosis. Thus, our study provides new insights into the BDNF/endocannabinoid-associated modulation of neurotransmission in physiological and pathologic processes. SIGNIFICANCE STATEMENT BDNF plays critical roles in the modulation of synaptic strength. However, how BDNF regulates synaptic transmission and its underlying signaling cascade(s) remains elusive. By measuring EPSC and the presynaptic calcium current and capacitance changes at rat calyces, we found that BDNF inhibits synaptic transmission via BDNF-TrkB-eCB signaling pathway. Activation of postsynaptic TrkB receptors induces endocannabinoid release via the PLCγ/DGL pathway, retrogradely activating the presynaptic CB1Rs, inhibiting the AC/PKA, and suppressing calcium influx. Our findings provide a comprehensive understanding of BDNF/endocannabinoid-associated modulation of neuronal activities.
Collapse
|
13
|
Chou D. Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions. Neuropharmacology 2020; 170:108068. [DOI: 10.1016/j.neuropharm.2020.108068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/26/2020] [Accepted: 03/22/2020] [Indexed: 12/24/2022]
|
14
|
Ko CY, Yang YB, Chou D, Xu JH. The Ventrolateral Periaqueductal Gray Contributes to Depressive-Like Behaviors in Recovery of Inflammatory Bowel Disease Rat Model. Front Neurosci 2020; 14:254. [PMID: 32265648 PMCID: PMC7105903 DOI: 10.3389/fnins.2020.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patients with inflammatory bowel disease (IBD) experience depression, even in the remission phase of IBD symptoms. Although mapping depression-associated brain regions through the gut-brain axis can contribute to understanding the process, the mechanisms remain unclear. Our previous results support the idea that glutamatergic transmission in the ventrolateral periaqueductal gray (vlPAG) mediates stress-induced depression-like behaviors. Thus, we hypothesize that the vlPAG plays a role in regulating depression during remission of IBD. METHODS We used dextran sulfate sodium (DSS)-induced visceral pain model to evoke depression-like behaviors, assessed by tail suspension test (TST) and sucrose preference test (SPT), and electrophysiological recordings from vlPAG. RESULTS Symptoms of animals modeling IBD were relieved by replacing DSS solution with normal drinking water, but their depression-like behaviors sustained. Moreover, the impairment of glutamatergic neurotransmission in vlPAG was sustained as well. Pharmacologically, microinfusion of the glutamate receptor 1 (GluR1) antagonist NASPM into vlPAG mimicked the depression-like behaviors. Furthermore, intra-vlPAG application of AMPA and AMPA receptor-mediated antidepressant (2R,6R)-hydroxynorketamine [(2R,6R)-HNK] reversed the DSS-induced depression-like behaviors in the remission phase of visceral abnormalities. CONCLUSION Our results suggest that vlPAG glutamatergic transmission mediates depression-like behaviors during remission of DSS-induced visceral pain, suggesting that vlPAG mapping to the gut-brain axis contributes to depression during remission of IBD.
Collapse
Affiliation(s)
- Chih-Yuan Ko
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
- Department of Clinical Nutrition, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
- Respiratory Medicine Center of Fujian Province, Quanzhou, China
- The Sleep Medicine Key Laboratory of Fujian Medical Universities, Fujian Province University, Quanzhou, China
| | - Ya-Bi Yang
- Physical Examination Center, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Dylan Chou
- Department of Physiology, Zunyi Medical University, Zhuhai, China
| | - Jian-Hua Xu
- Department of Tumor Surgery, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| |
Collapse
|
15
|
Assessing the Effects of Parthenolide on Inflammation, Bone Loss, and Glial Cells within a Collagen Antibody-Induced Arthritis Mouse Model. Mediators Inflamm 2020; 2020:6245798. [PMID: 32189995 PMCID: PMC7073477 DOI: 10.1155/2020/6245798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/16/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis is characterised by a chronic inflammatory response resulting in destruction of the joint and significant pain. Although a range of treatments are available to control disease activity in RA, bone destruction and joint pain exist despite suppression of inflammation. This study is aimed at assessing the effects of parthenolide (PAR) on paw inflammation, bone destruction, and pain-like behaviour in a mild collagen antibody-induced arthritis (CAIA) mouse model. CAIA was induced in BALB/c mice and treated daily with 1 mg/kg or 4 mg/kg PAR. Clinical paw inflammation was scored daily, and mechanical hypersensitivity was assessed on alternate days. At end point, bone volume and swelling in the paws were assessed using micro-CT. Paw tissue sections were assessed for inflammation and pre-/osteoclast-like cells. The lumbar spinal cord and the periaqueductal grey (PAG) and rostral ventromedulla (RVM) regions of the brain were stained for glial fibrillary acidic protein (GFAP) and ionised calcium-binding adaptor molecule 1 (IBA1) to assess for glial reactivity. Paw scores increased in CAIA mice from days 5-10 and were reduced with 1 mg/kg and 4 mg/kg PAR on days 8-10. Osteoclast-like cells on the bone surface of the radiocarpal joint and within the soft tissue of the hind paw were significantly lower following PAR treatment (p < 0.005). GFAP- and IBA1-positive cells in the PAG and RVM were significantly lower following treatment with 1 mg/kg (p < 0.0001 and p = 0.0004, respectively) and 4 mg/kg PAR (p < 0.0001 and p = 0.001, respectively). In the lumbar spinal cord, IBA1-positive cells were significantly lower in CAIA mice treated with 4 mg/kg PAR (p = 0.001). The findings indicate a suppressive effect of both low- and moderate-dose PAR on paw inflammation, osteoclast presence, and glial cell reactivity in a mild CAIA mouse model.
Collapse
|
16
|
Liu Q, Ko CY, Zheng C, Ye L, Liu B, Gao H, Huang D, Chou D. Decreased Glutamatergic Synaptic Strength in the Periaqueductal Gray Contributes to Maintenance of Visceral Pain in Male Rats with Experimental Pancreatitis. Neuroscience 2020; 428:60-69. [DOI: 10.1016/j.neuroscience.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
|
17
|
Ketamine metabolite (2R,6R)-hydroxynorketamine enhances aggression via periaqueductal gray glutamatergic transmission. Neuropharmacology 2019; 157:107667. [PMID: 31207251 DOI: 10.1016/j.neuropharm.2019.107667] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/07/2019] [Accepted: 06/08/2019] [Indexed: 12/17/2022]
Abstract
(2R,6R)-hydroxynorketamine (HNK), a metabolite of ketamine, has recently been suggested to be a potent antidepressant for treating animal depression and has rapid-onset and long-lasting action through potentiating glutamatergic transmission. However, its other effects are still unclear. In the present study, we tested the effects of (2R,6R)-HNK on offensive aggression. A resident-intruder (RI) test was used as the main model to test elements of offensive aggression, including threats and bites. Electrophysiological recordings in the ventrolateral periaqueductal gray (vlPAG) were used to measure the functions of glutamatergic synaptic transmission. A single systemic injection of (2R,6R)-HNK, but not (2S,6S)-HNK, increased elements of offensive aggression, including threats and bites, in a dose-dependent manner with long-lasting action. Moreover, (2R,6R)-HNK increased the input-output curve, the AMPA-mediated current, and the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) and decreased the paired-pulse ratio (PPR) in the vlPAG. Furthermore, intra-vlPAG application of (2R,6R)-HNK increased aggressive and biting behaviors, which were abolished by an intra-vlPAG pretreatment with the AMPA receptors antagonist, CNQX. Notably, the intra-vlPAG CNQX pretreatment eliminated systemic (2R,6R)-HNK-enhanced aggressive and biting behaviors. The results of this suggest that (2R,6R)-HNK evokes offensive aggression by increasing vlPAG glutamatergic transmission. Although (2R,6R)-HNK is currently suggested to be effective for treating depression, its side effect of increasing offensive aggression should be a subject of concern in future drug development and therapy.
Collapse
|
18
|
Du H, Liu Z, Tan X, Ma Y, Gong Q. Identification of the Genome-wide Expression Patterns of Long Non-coding RNAs and mRNAs in Mice with Streptozotocin-induced Diabetic Neuropathic Pain. Neuroscience 2018; 402:90-103. [PMID: 30599267 DOI: 10.1016/j.neuroscience.2018.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
Diabetic neuropathic pain (DNP), an early symptom of diabetic neuropathy, involves complex mechanisms. Long non-coding RNA (lncRNA) dysregulation contributes to the pathogenesis of various human diseases. Here, we investigated the genome-wide expression patterns of lncRNAs and genes in the spinal dorsal horn of mice with streptozotocin-induced DNP. Microarray analysis identified 1481 differentially expressed (DE) lncRNAs and 1096 DE mRNAs in DNP mice. Functional analysis showed that transforming growth factor-beta receptor binding was the most significant molecular function and retrograde endocannabinoid signaling was the most significant pathway of DE mRNAs. Calcium ion transport was the second most significant biological process of DE lncRNAs. Finally, we found 289 neighboring and 57 overlapping lncRNA-mRNA pairs, including ENSMUST00000150952-Mbp and AK081017-Usp15, which may be involved in DNP pathogenesis. Microarray data were validated through quantitative PCR of selected lncRNAs and mRNAs. These results suggest that aberrant expression of lncRNAs may contribute to the pathogenesis of DNP.
Collapse
Affiliation(s)
- Huiying Du
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zihao Liu
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xinran Tan
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yinghong Ma
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Qingjuan Gong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
19
|
Chou D, Peng HY, Lin TB, Lai CY, Hsieh MC, Wen YC, Lee AS, Wang HH, Yang PS, Chen GD, Ho YC. (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology 2018; 139:1-12. [DOI: 10.1016/j.neuropharm.2018.06.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/04/2018] [Accepted: 06/24/2018] [Indexed: 12/28/2022]
|
20
|
McFarland DJ. How neuroscience can inform the study of individual differences in cognitive abilities. Rev Neurosci 2018; 28:343-362. [PMID: 28195556 DOI: 10.1515/revneuro-2016-0073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/17/2016] [Indexed: 02/06/2023]
Abstract
Theories of human mental abilities should be consistent with what is known in neuroscience. Currently, tests of human mental abilities are modeled by cognitive constructs such as attention, working memory, and speed of information processing. These constructs are in turn related to a single general ability. However, brains are very complex systems and whether most of the variability between the operations of different brains can be ascribed to a single factor is questionable. Research in neuroscience suggests that psychological processes such as perception, attention, decision, and executive control are emergent properties of interacting distributed networks. The modules that make up these networks use similar computational processes that involve multiple forms of neural plasticity, each having different time constants. Accordingly, these networks might best be characterized in terms of the information they process rather than in terms of abstract psychological processes such as working memory and executive control.
Collapse
|
21
|
Ho YC, Lin TB, Hsieh MC, Lai CY, Chou D, Chau YP, Chen GD, Peng HY. Periaqueductal Gray Glutamatergic Transmission Governs Chronic Stress-Induced Depression. Neuropsychopharmacology 2018; 43:302-312. [PMID: 28853438 PMCID: PMC5729570 DOI: 10.1038/npp.2017.199] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022]
Abstract
The mechanisms underlying chronic stress-induced dysfunction of glutamatergic transmission that contribute to helplessness-associated depressive disorder are unknown. We investigated the relationship of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and stress, and the neuroplastic changes of stress-induced depression-like behavior in the ventrolateral periaqueductal gray (vlPAG). We conducted whole-cell patch-clamp electrophysiological recordings in the vlPAG neurons. Depression-like behavior was assayed using tail suspension test and sucrose preference test. Surface and cytosolic glutamate receptor 1 (GluR1) AMPA receptor expression was analyzed using western blotting. Phosphorylated GluR1 expression was quantified using western blotting and immunohistochemical analysis. Unpredictable inescapable foot shock stress caused reduction in glutamatergic transmission originating from both presynaptic and postsynaptic loci in the vlPAG that was associated with behavioral despair and anhedonia in chronic stress-induced depression. Pharmacological inhibition of GluR1 function in the vlPAG caused depression-like behavior. Diminished glutamatergic transmission was due to reduced glutamate release presynaptically and enhanced GluR1-endocytosis from the cell surface postsynaptically. Chronic stress-induced neuroplastic changes and maladaptive behavior were reversed and mimicked by administration of glucocorticoid receptor (GR) antagonist and agonist, respectively. However, chronic stress did not affect γ-aminobutyric acid (GABA)-mediated inhibitory synaptic transmission in the vlPAG. These results demonstrate that depression-like behavior is associated with remarkable reduction in glutamatergic, but not GABAergic, transmission in the vlPAG. These neuroplastic changes and maladaptive behavior are attributed to GR-dependent mechanisms. As reduced GluR1-associated responses in the vlPAG contribute to chronic stress-induced neuroplastic changes, this cellular mechanism may be a critical component in the pathogenesis of stress-associated neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yu-Cheng Ho
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Chun Hsieh
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Yuan Lai
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Dylan Chou
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yat-Pang Chau
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan,Department of Medicine, Mackay Medical College, No. 46, Section 3, Zhongzheng Road, Sanzhi District, New Taipei, 25245, Taiwan, Tel: +886 2 2636 0303 ext 1239, Fax: +886 2 2636 1295, E-mail:
| |
Collapse
|
22
|
Driessen AK, McGovern AE, Narula M, Yang SK, Keller JA, Farrell MJ, Mazzone SB. Central mechanisms of airway sensation and cough hypersensitivity. Pulm Pharmacol Ther 2017; 47:9-15. [DOI: 10.1016/j.pupt.2017.01.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
|
23
|
Voulalas PJ, Ji Y, Jiang L, Asgar J, Ro JY, Masri R. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion. Neuroscience 2016; 343:94-105. [PMID: 27932310 DOI: 10.1016/j.neuroscience.2016.11.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 12/20/2022]
Abstract
Neuropathic pain resulting from spinal cord injury is often accompanied by maladaptive plasticity of the central nervous system, including the opioid receptor-rich periaqueductal gray (PAG). Evidence suggests that sensory signaling via the PAG is robustly modulated by dopamine D1- and D2-like receptors, but the effect of damage to the spinal cord on D1 and D2 receptor protein expression and function in the PAG has not been examined. Here we show that 21days after a T10 or C6 spinothalamic tract lesion, both mice and rats display a remarkable decline in the expression of D1 receptors in the PAG, revealed by western blot analysis. These changes were associated with a significant reduction in hindpaw withdrawal thresholds in lesioned animals compared to sham-operated controls. We investigated the consequences of diminished D1 receptor levels by quantifying D1-like receptor-mediated phosphorylation of ERK1,2 and CREB, events that have been observed in numerous brain structures. In naïve animals, western blot analysis revealed that ERK1,2, but not CREB phosphorylation was significantly increased in the PAG by the D1-like agonist SKF 81297. Using immunohistochemistry, we found that SKF 81297 increased ERK1,2 phosphorylation in the PAG of sham animals. However, in lesioned animals, basal pERK1,2 levels were elevated and did not significantly increase after exposure to SKF 81297. Our findings provide support for the hypothesis that molecular adaptations resulting in a decrease in D1 receptor expression and signaling in the PAG are a consequence of SCL.
Collapse
Affiliation(s)
- Pamela J Voulalas
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Yadong Ji
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Li Jiang
- University of Maryland School of Medicine, Department of Diagnostic Radiology, Baltimore, MD 21201, USA
| | - Jamila Asgar
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, 650 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Jin Y Ro
- University of Maryland School of Dentistry, Department of Neural and Pain Sciences, Baltimore, MD 21201, USA; Kyung Hee University, School of Dentistry, Department of Oral Medicine, Seoul, Republic of Korea
| | - Radi Masri
- University of Maryland School of Dentistry, Department of Endodontics, Periodontics & Prosthodontics, 650 W. Baltimore Street, Baltimore, MD 21201, USA; University of Maryland School of Medicine, Department of Anatomy and Neurobiology, 650 W. Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|