1
|
de Bruijn VMP, Rietjens IMCM, Bouwmeester H. Population pharmacokinetic model to generate mechanistic insights in bile acid homeostasis and drug-induced cholestasis. Arch Toxicol 2022; 96:2717-2730. [PMID: 35876888 PMCID: PMC9352636 DOI: 10.1007/s00204-022-03345-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 12/05/2022]
Abstract
Bile acids (BA) fulfill a wide range of physiological functions, but are also involved in pathologies, such as cholestasis. Cholestasis is characterized by an intrahepatic accumulation of BAs and subsequent spillage to the systemic circulation. The aim of the present study was to develop physiologically based kinetic (PBK) models that would provide a tool to predict dose-dependent BA accumulation in humans upon treatment with a Bile Salt Export Pump (BSEP) inhibitor. We developed a PBK model describing the BA homeostasis using glycochenodeoxycholic acid as an exemplary BA. Population wide distributions of BSEP abundances were incorporated in the PBK model using Markov Chain Monte Carlo simulations, and alternatively the total amount of BAs was scaled empirically to describe interindividual differences in plasma BA levels. Next, the effects of the BSEP inhibitor bosentan on the BA levels were simulated. The PBK model developed adequately predicted the in vivo BA dynamics. Both the Markov Chain Monte Carlo simulations based on a distribution of BSEP abundances and empirical scaling of the total BA pool readily described the variations within and between data in human volunteers. Bosentan treatment disproportionally increased the maximum BA concentration in individuals with a large total BA pool or low BSEP abundance. Especially individuals having a large total BA pool size and a low BSEP abundance were predicted to be at risk for rapid saturation of BSEP and subsequent intrahepatic BA accumulation. This model provides a first estimate of personalized safe therapeutic external dose levels of compounds with BSEP-inhibitory properties.
Collapse
Affiliation(s)
- Véronique M P de Bruijn
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands.
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|
2
|
de Bruijn VMP, Wang Z, Bakker W, Zheng W, Spee B, Bouwmeester H. Hepatic bile acid synthesis and secretion: Comparison of in vitro methods. Toxicol Lett 2022; 365:46-60. [PMID: 35724847 DOI: 10.1016/j.toxlet.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022]
Abstract
Reliable hepatic in vitro systems are crucial for the safety assessment of xenobiotics. Certain xenobiotics decrease the hepatic bile efflux, which can ultimately result in cholestasis. Preclinical animal models and the currently available in vitro systems poorly predict a xenobiotic's cholestatic potential. Here, we compared the phenotype and capacity of three liver derived in vitro systems to emulate human functionality to synthesize and secrete bile acids (BAs). To this end, basal BA production of sandwich cultured human hepatocytes (SCHHs), HepaRG cells (HepaRGs) and hepatocyte-like intrahepatic cholangiocyte organoids (ICO-heps) were analysed, and the effect of the known BSEP (Bile Salt Export Pump)-inhibitors bosentan and lopinavir on BA disposition in SCHHs and HepaRGs was quantified. RT-qPCR of selected target genes involved in maturation status, synthesis, transport and conjugation of BAs was performed to mechanistically underpin the observed differences in BA homeostasis. ICO-heps produced a (very) low amount of BAs. SCHHs are a powerful tool in cholestasis-testing due to their high basal BA production and high transporter expression compared to the other models tested. HepaRGs were responsive to both selected BSEP-inhibitors and produced a BA profile that is most similar to the human in vivo situation, making them a suitable and practical candidate for cholestasis-testing.
Collapse
Affiliation(s)
| | - Zhenguo Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Wouter Bakker
- Division of Toxicology, Wageningen University & Research, the Netherlands
| | - Weijia Zheng
- Division of Toxicology, Wageningen University & Research, the Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University & Research, the Netherlands
| |
Collapse
|
3
|
Waspe J, Beronius A. Development of an adverse outcome pathway for intrahepatic cholestasis of pregnancy. Curr Res Toxicol 2022; 3:100065. [PMID: 35243364 PMCID: PMC8885608 DOI: 10.1016/j.crtox.2022.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Adverse Outcome Pathways (AOPs) are a research synthesis tool, used primarily by toxicologists for numerous applications including: hypothesis generation, data integration, biomarker determination, and identification of gaps in current knowledge. The AOP model provides a means for evaluating critical interactions between stressors and biological systems which result in adversity, meaning there is significant potential value in using this model in clinical research. However, AOPs have so far not been applied in this context, which may be attributable to the fact that the method is not yet streamlined with established practices in evidence-based medicine, such as systematic review. Here, we present one approach to developing a clinically focused AOP for intrahepatic cholestasis of pregnancy; aiming to enhance understanding of the mechanistic link between this common, gestational liver disease and its association with preterm birth. Mechanistic aspects of the disease pathogenesis, and use of AOPs to broaden inclusion and improve integration of in vitro and in vivo data in clinical research are discussed. We also demonstrate for the first time how central components of systematic review can be integrated into the development of an AOP.
Collapse
Affiliation(s)
- Jennifer Waspe
- Sheffield Teaching Hospitals, Glossop Road, Broomhall, Sheffield S10 2JF, United Kingdom
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| |
Collapse
|
4
|
Gijbels E, Pieters A, De Muynck K, Vinken M, Devisscher L. Rodent models of cholestatic liver disease: A practical guide for translational research. Liver Int 2021; 41:656-682. [PMID: 33486884 PMCID: PMC8048655 DOI: 10.1111/liv.14800] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cholestatic liver disease denotes any situation associated with impaired bile flow concomitant with a noxious bile acid accumulation in the liver and/or systemic circulation. Cholestatic liver disease can be subdivided into different types according to its clinical phenotype, such as biliary atresia, drug-induced cholestasis, gallstone liver disease, intrahepatic cholestasis of pregnancy, primary biliary cholangitis and primary sclerosing cholangitis. Considerable effort has been devoted to elucidating underlying mechanisms of cholestatic liver injuries and explore novel therapeutic and diagnostic strategies using animal models. Animal models employed according to their appropriate applicability domain herein play a crucial role. This review provides an overview of currently available in vivo animal models, fit-for-purpose in modelling different types of cholestatic liver diseases. Moreover, a practical guide and workflow is provided which can be used for translational research purposes, including all advantages and disadvantages of currently available in vivo animal models.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium,Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Kevin De Muynck
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium,Hepatology Research UnitInternal Medicine and PaediatricsLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato‐CosmetologyVrije Universiteit BrusselBrusselsBelgium
| | - Lindsey Devisscher
- Gut‐Liver Immunopharmacology Unit, Basic and Applied Medical SciencesLiver Research Center GhentFaculty of Medicine and Health SciencesGhent UniversityGhentBelgium
| |
Collapse
|
5
|
Pieters A, Gijbels E, Cogliati B, Annaert P, Devisscher L, Vinken M. Biomarkers of cholestasis. Biomark Med 2021; 15:437-454. [PMID: 33709780 DOI: 10.2217/bmm-2020-0691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis is a major pathological manifestation, often resulting in detrimental liver conditions, which occurs in a variety of indications collectively termed cholestatic liver diseases. The frequent asymptomatic character and complexity of cholestasis, together with the lack of a straightforward biomarker, hampers early detection and treatment of the condition. The 'omics' era, however, has resulted in a plethora of cholestatic indicators, yet a single clinically applicable biomarker for a given cholestatic disease remains missing. The criteria to fulfil as an ideal biomarker as well as the challenging molecular pathways in cholestatic liver diseases advocate for a scenario in which multiple biomarkers, originating from different domains, will be assessed concomitantly. This review gives an overview of classical clinical and novel molecular biomarkers in cholestasis, focusing on their benefits and drawbacks.
Collapse
Affiliation(s)
- Alanah Pieters
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine & Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, SP, 05508-270, Brazil
| | - Pieter Annaert
- Drug Delivery & Disposition, Department of Pharmaceutical & Pharmacological Sciences, Katholieke Universiteit Leuven, ON II Herestraat 49, Box 921, Leuven, 3000, Belgium
| | - Lindsey Devisscher
- Basic & Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine & Health Sciences, Ghent University, C Heymanslaan 10, Ghent, 9000, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology & Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium
| |
Collapse
|
6
|
Gijbels E, Vilas-Boas V, Annaert P, Vanhaecke T, Devisscher L, Vinken M. Robustness testing and optimization of an adverse outcome pathway on cholestatic liver injury. Arch Toxicol 2020; 94:1151-1172. [PMID: 32152650 DOI: 10.1007/s00204-020-02691-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) have been recently introduced as tools to map the mechanisms underlying toxic events relevant for chemical risk assessment. AOPs particularly depict the linkage between a molecular initiating event and an adverse outcome through a number of intermediate key events. An AOP has been previously introduced for cholestatic liver injury. The objective of this study was to test the robustness of this AOP for different types of cholestatic insult and the in vitro to in vivo extrapolation. For this purpose, in vitro samples from human hepatoma HepaRG cell cultures were exposed to cholestatic drugs (i.e. intrahepatic cholestasis), while in vivo samples were obtained from livers of cholestatic mice (i.e. extrahepatic cholestasis). The occurrence of cholestasis in vitro was confirmed through analysis of bile transporter functionality and bile acid analysis. Transcriptomic analysis revealed inflammation and oxidative stress as key events in both types of cholestatic liver injury. Major transcriptional differences between intrahepatic and extrahepatic cholestatic liver insults were observed at the level of cell death and metabolism. Novel key events identified by pathway analysis included endoplasmic reticulum stress in intrahepatic cholestasis, and autophagy and necroptosis in both intrahepatic as extrahepatic cholestasis. This study demonstrates that AOPs constitute dynamic tools that should be frequently updated with new input information.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, O&N2, Herestraat 49-box 921, 3000, Leuven, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
7
|
Peterson NC, Mahalingaiah PK, Fullerton A, Di Piazza M. Application of microphysiological systems in biopharmaceutical research and development. LAB ON A CHIP 2020; 20:697-708. [PMID: 31967156 DOI: 10.1039/c9lc00962k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Within the last 10 years, several tissue microphysiological systems (MPS) have been developed and characterized for retention of morphologic characteristics and specific gene/protein expression profiles from their natural in vivo state. Once developed, their utility is typically further tested by comparing responses to known toxic small-molecule pharmaceuticals in efforts to develop strategies for further toxicity testing of compounds under development. More recently, application of this technology in biopharmaceutical (large molecules) development is beginning to be more appreciated. In this review, we describe some of the advances made for tissue-specific MPS and outline the advantages and challenges of applying and further developing MPS technology in preclinical biopharmaceutical research.
Collapse
Affiliation(s)
- Norman C Peterson
- Clinical Pharmacology and Safety Sciences, AstraZeneca, One Medimmune Way, Gaithersburg, MD 20878, USA.
| | | | | | - Matteo Di Piazza
- Nonclinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Rd, Ridgefield, CT 06877, USA
| |
Collapse
|
8
|
Garzel B, Hu T, Li L, Lu Y, Heyward S, Polli J, Zhang L, Huang SM, Raufman JP, Wang H. Metformin Disrupts Bile Acid Efflux by Repressing Bile Salt Export Pump Expression. Pharm Res 2020; 37:26. [PMID: 31907698 DOI: 10.1007/s11095-019-2753-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The bile salt export pump (BSEP), a key player in hepatic bile acid clearance, has been the center of research on drug-induced cholestasis. However, such studies focus primarily on the direct inhibition of BSEP, often overlooking the potential impact of transcriptional repression. This work aims to explore the disruption of bile acid efflux caused by drug-induced BSEP repression. METHODS BSEP activity was analyzed in human primary hepatocytes (HPH) using a traditional biliary-clearance experiment and a modified efflux assay, which includes a 72-h pretreatment prior to efflux measurement. Relative mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively. RESULTS Metformin concentration-dependently repressed BSEP expression in HPH. Although metformin did not directly inhibit BSEP activity, longer metformin exposure reduced BSEP transport function in HPH by down-regulating BSEP expression. BSEP repression by metformin was found to be AMP-activated protein kinase-independent. Additional screening of 10 reported cholestatic non-BSEP inhibitors revealed that the anti-cancer drug tamoxifen also markedly repressed BSEP expression and reduced BSEP activity in HPH. CONCLUSIONS Repression of BSEP alone is sufficient to disrupt hepatic bile acid efflux. Metformin and tamoxifen appear to be prototypes of a class of BSEP repressors that may cause drug-induced cholestasis through gene repression instead of direct BSEP inhibition.
Collapse
Affiliation(s)
- Brandy Garzel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Tao Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Yuanfu Lu
- Key Laboratory of Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Scott Heyward
- BioIVT, 1450 S Rolling Road, Baltimore, Maryland, 21227, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, Maryland, 21201, USA.,VA Maryland Health Care System, 10 N. Greene Street, Baltimore, Maryland, 21201, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
9
|
Vilas-Boas V, Gijbels E, Cooreman A, Van Campenhout R, Gustafson E, Leroy K, Vinken M. Industrial, Biocide, and Cosmetic Chemical Inducers of Cholestasis. Chem Res Toxicol 2019; 32:1327-1334. [PMID: 31243985 DOI: 10.1021/acs.chemrestox.9b00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A frequent side effect of many drugs includes the occurrence of cholestatic liver toxicity. Over the past couple of decades, drug-induced cholestasis has gained considerable attention, resulting in a plethora of data regarding its prevalence and mechanistic basis. Likewise, several food additives and dietary supplements have been reported to cause cholestatic liver insults in the past few years. The induction of cholestatic hepatotoxicity by other types of chemicals, in particular synthetic compounds, such as industrial chemicals, biocides, and cosmetic ingredients, has been much less documented. Such information can be found in occasional clinical case reports of accidental intake or suicide attempts as well as in basic and translational study reports on mechanisms or testing of new therapeutics in cholestatic animal models. This paper focuses on such nonpharmaceutical and nondietary synthetic chemical inducers of cholestatic liver injury, in particular alpha-naphthylisocyanate, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, methylenedianiline, paraquat, tartrazine, triclosan, 2-octynoic acid, and 2-nonynoic acid. Most of these cholestatic compounds act by similar mechanisms. This could open perspectives for the prediction of cholestatic potential of chemicals.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology , Vrije Universiteit Brussel , Brussels , Belgium
| |
Collapse
|
10
|
Gijbels E, Vilas-Boas V, Deferm N, Devisscher L, Jaeschke H, Annaert P, Vinken M. Mechanisms and in vitro models of drug-induced cholestasis. Arch Toxicol 2019; 93:1169-1186. [PMID: 30972450 DOI: 10.1007/s00204-019-02437-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Cholestasis underlies one of the major manifestations of drug-induced liver injury. Drug-induced cholestatic liver toxicity is a complex process, as it can be triggered by a variety of factors that induce 2 types of biological responses, namely a deteriorative response, caused by bile acid accumulation, and an adaptive response, aimed at removing the accumulated bile acids. Several key events in both types of responses have been characterized in the past few years. In parallel, many efforts have focused on the development and further optimization of experimental cell culture models to predict the occurrence of drug-induced cholestatic liver toxicity in vivo. In this paper, a state-of-the-art overview of mechanisms and in vitro models of drug-induced cholestatic liver injury is provided.
Collapse
Affiliation(s)
- Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Neel Deferm
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Lindsey Devisscher
- Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Faculty of Medicine and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS, 66160, USA
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, O&N2, Herestraat 49, Bus 921, 3000, Leuven, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
11
|
Vilas-Boas V, Cooreman A, Gijbels E, Van Campenhout R, Gustafson E, Ballet S, Annaert P, Cogliati B, Vinken M. Primary hepatocytes and their cultures for the testing of drug-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2018; 85:1-30. [PMID: 31307583 DOI: 10.1016/bs.apha.2018.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Drug-induced liver injury is a major reason for discontinuation of drug development and withdrawal of drugs from the market. Intensive efforts in the last decades have focused on the establishment and finetuning of liver-based in vitro models for reliable prediction of hepatotoxicity triggered by drug candidates. Of those, primary hepatocytes and their cultures still are considered the gold standard, as they provide an acceptable reflection of the hepatic in vivo situation. Nevertheless, these in vitro systems cope with gradual deterioration of the differentiated morphological and functional phenotype. The present paper gives an overview of traditional and more recently introduced strategies to counteract this dedifferentiation process in an attempt to set up culture models that can be used for long-term testing purposes. The relevance and applicability of such optimized cultures of primary hepatocytes for the testing of drug-induced cholestatic liver injury is demonstrated.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eva Gijbels
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
12
|
Triunfol M, Rehen S, Simian M, Seidle T. Human-specific approaches to brain research for the 21st century: a South American perspective. Drug Discov Today 2018; 23:1929-1935. [PMID: 29908266 DOI: 10.1016/j.drudis.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/28/2018] [Accepted: 06/01/2018] [Indexed: 12/17/2022]
Abstract
The 21st century paradigm in toxicology, which emphasizes mechanistic understanding and species-relevant modeling of human biology and pathophysiology, is gaining traction in the wider biosciences through a global workshop series organized by the BioMed21 Collaboration. The second of this series, entitled Emerging Technology Toward Pathway-Based Human Brain Research, was held in Brazil in 2017, bringing together leading South American and international scientists, research funders and other stakeholders. The aims were to foster strategic scientific dialogue and identify actionable consensus recommendations as a first step toward a roadmap for 21st century, human-specific health research and funding in the region.
Collapse
Affiliation(s)
- Marcia Triunfol
- Research & Toxicology Department, Humane Society International, Rio de Janeiro, Brazil.
| | - Stevens Rehen
- Federal University of Rio de Janeiro and D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Marina Simian
- Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Troy Seidle
- Research & Toxicology Department, Humane Society International, Toronto, Canada
| |
Collapse
|
13
|
Vinken M. In vitro prediction of drug-induced cholestatic liver injury: a challenge for the toxicologist. Arch Toxicol 2018; 92:1909-1912. [PMID: 29574564 PMCID: PMC6084771 DOI: 10.1007/s00204-018-2201-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| |
Collapse
|
14
|
Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model. Sci Rep 2016; 6:38694. [PMID: 27934920 PMCID: PMC5146671 DOI: 10.1038/srep38694] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/11/2016] [Indexed: 12/25/2022] Open
Abstract
Drug-induced cholestasis is a leading cause of drug withdrawal. However, the use of primary human hepatocytes (PHHs), the gold standard for predicting cholestasis in vitro, is limited by their high cost and batch-to-batch variability. Mature hepatocyte characteristics have been observed in human induced hepatocytes (hiHeps) derived from human fibroblast transdifferentiation. Here, we evaluated whether hiHeps could biosynthesize and excrete bile acids (BAs) and their potential as PHH alternatives for cholestasis investigations. Quantitative real-time PCR (qRT-PCR) and western blotting indicated that hiHeps highly expressed BA synthases and functional transporters. Liquid chromatography tandem mass spectrometry (LC-MS/MS) showed that hiHeps produced normal intercellular unconjugated BAs but fewer conjugated BAs than human hepatocytes. When incubated with representative cholestatic agents, hiHeps exhibited sensitive drug-induced bile salt export pump (BSEP) dysfunction, and their response to cholestatic agent-mediated cytotoxicity correlated well with that of PHHs (r2 = 0.8032). Deoxycholic acid (DCA)-induced hepatotoxicity in hiHeps was verified by elevated aspartate aminotransferase (AST) and γ-glutamyl-transferase (γ-GT) levels. Mitochondrial damage and cell death suggested DCA-induced toxicity in hiHeps, which were attenuated by hepatoprotective drugs, as in PHHs. For the first time, hiHeps were reported to biosynthesize and excrete BAs, which could facilitate predicting cholestatic hepatotoxicity and screening potential therapeutic drugs against cholestasis.
Collapse
|
15
|
Towards a 21st-century roadmap for biomedical research and drug discovery: consensus report and recommendations. Drug Discov Today 2016; 22:327-339. [PMID: 27989722 DOI: 10.1016/j.drudis.2016.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/15/2016] [Accepted: 10/24/2016] [Indexed: 02/08/2023]
Abstract
Decades of costly failures in translating drug candidates from preclinical disease models to human therapeutic use warrant reconsideration of the priority placed on animal models in biomedical research. Following an international workshop attended by experts from academia, government institutions, research funding bodies, and the corporate and non-governmental organisation (NGO) sectors, in this consensus report, we analyse, as case studies, five disease areas with major unmet needs for new treatments. In view of the scientifically driven transition towards a human pathways-based paradigm in toxicology, a similar paradigm shift appears to be justified in biomedical research. There is a pressing need for an approach that strategically implements advanced, human biology-based models and tools to understand disease pathways at multiple biological scales. We present recommendations to help achieve this.
Collapse
|