1
|
Camassa A, Torao-Angosto M, Manasanch A, Kringelbach ML, Deco G, Sanchez-Vives MV. The temporal asymmetry of cortical dynamics as a signature of brain states. Sci Rep 2024; 14:24271. [PMID: 39414871 PMCID: PMC11484927 DOI: 10.1038/s41598-024-74649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024] Open
Abstract
The brain is a complex non-equilibrium system capable of expressing many different dynamics as well as the transitions between them. We hypothesized that the level of non-equilibrium can serve as a signature of a given brain state, which was quantified using the arrow of time (the level of irreversibility). Using this thermodynamic framework, the irreversibility of emergent cortical activity was quantified from local field potential recordings in male Lister-hooded rats at different anesthesia levels and during the sleep-wake cycle. This measure was carried out on five distinct brain states: slow-wave sleep, awake, deep anesthesia-slow waves, light anesthesia-slow waves, and microarousals. Low levels of irreversibility were associated with synchronous activity found both in deep anesthesia and slow-wave sleep states, suggesting that slow waves were the state closest to the thermodynamic equilibrium (maximum symmetry), thus requiring minimum energy. Higher levels of irreversibility were found when brain dynamics became more asynchronous, for example, in wakefulness. These changes were also reflected in the hierarchy of cortical dynamics across different cortical areas. The neural dynamics associated with different brain states were characterized by different degrees of irreversibility and hierarchy, also acting as markers of brain state transitions. This could open new routes to monitoring, controlling, and even changing brain states in health and disease.
Collapse
Affiliation(s)
- Alessandra Camassa
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Melody Torao-Angosto
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Arnau Manasanch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | - Maria V Sanchez-Vives
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain.
| |
Collapse
|
2
|
Shumikhina SI, Kozhukhov SA, Bondar IV. Dose-dependent changes in orientation amplitude maps in the cat visual cortex after propofol bolus injections. IBRO Neurosci Rep 2024; 16:224-240. [PMID: 38352699 PMCID: PMC10862412 DOI: 10.1016/j.ibneur.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/30/2023] [Indexed: 02/16/2024] Open
Abstract
A general intravenous anesthetic propofol (2,6-diisopropylphenol) is widely used in clinical, veterinary practice and animal experiments. It activates gamma- aminobutyric acid (GABAa) receptors. Though the cerebral cortex is one of the major targets of propofol action, no study of dose dependency of propofol action on cat visual cortex was performed yet. Also, no such investigation was done until now using intrinsic signal optical imaging. Here, we report for the first time on the dependency of optical signal in the visual cortex (area 17/area 18) on the propofol dose. Optical imaging of intrinsic responses to visual stimuli was performed in cats before and after propofol bolus injections at different doses on the background of continuous propofol infusion. Orientation amplitude maps were recorded. We found that amplitude of optical signal significantly decreased after a bolus dose of propofol. The effect was dose- and time-dependent producing stronger suppression of optical signal under the highest bolus propofol doses and short time interval after injection. In each hemisphere, amplitude at cardinal and oblique orientations decreased almost equally. However, surprisingly, amplitude at cardinal orientations in the ipsilateral hemisphere was depressed stronger than in contralateral cortex at most time intervals. As the magnitude of optical signal represents the strength of orientation tuned component, these our data give new insights on the mechanisms of generation of orientation selectivity. Our results also provide new data toward understanding brain dynamics under anesthesia and suggest a recommendation for conducting intrinsic signal optical imaging experiments on cortical functioning under propofol anesthesia.
Collapse
Affiliation(s)
- Svetlana I. Shumikhina
- Functional Neurocytology, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation
| | - Sergei A. Kozhukhov
- Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation
| | - Igor V. Bondar
- Physiology of Sensory Systems, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerova Street, 117485 Moscow, Russian Federation
| |
Collapse
|
3
|
Nilsen AS, Arena A, Storm JF. Exploring effects of anesthesia on complexity, differentiation, and integrated information in rat EEG. Neurosci Conscious 2024; 2024:niae021. [PMID: 38757120 PMCID: PMC11097907 DOI: 10.1093/nc/niae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
To investigate mechanisms underlying loss of consciousness, it is important to extend methods established in humans to rodents as well. Perturbational complexity index (PCI) is a promising metric of "capacity for consciousness" and is based on a perturbational approach that allows inferring a system's capacity for causal integration and differentiation of information. These properties have been proposed as necessary for conscious systems. Measures based on spontaneous electroencephalography recordings, however, may be more practical for certain clinical purposes and may better reflect ongoing dynamics. Here, we compare PCI (using electrical stimulation for perturbing cortical activity) to several spontaneous electroencephalography-based measures of signal diversity and integrated information in rats undergoing propofol, sevoflurane, and ketamine anesthesia. We find that, along with PCI, the spontaneous electroencephalography-based measures, Lempel-Ziv complexity (LZ) and geometric integrated information (ΦG), were best able to distinguish between awake and propofol and sevoflurane anesthesia. However, PCI was anti-correlated with spontaneous measures of integrated information, which generally increased during propofol and sevoflurane anesthesia, contrary to expectations. Together with an observed divergence in network properties estimated from directed functional connectivity (current results) and effective connectivity (earlier results), the perturbation-based results seem to suggest that anesthesia disrupts global cortico-cortical information transfer, whereas spontaneous activity suggests the opposite. We speculate that these seemingly diverging results may be because of suppressed encoding specificity of information or driving subcortical projections from, e.g., the thalamus. We conclude that certain perturbation-based measures (PCI) and spontaneous measures (LZ and ΦG) may be complementary and mutually informative when studying altered states of consciousness.
Collapse
Affiliation(s)
- André Sevenius Nilsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| | - Johan F Storm
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, Oslo 0372, Norway
| |
Collapse
|
4
|
Hönigsperger C, Storm JF, Arena A. Laminar evoked responses in mouse somatosensory cortex suggest a special role for deep layers in cortical complexity. Eur J Neurosci 2024; 59:752-770. [PMID: 37586411 DOI: 10.1111/ejn.16108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
It has been suggested that consciousness is closely related to the complexity of the brain. The perturbational complexity index (PCI) has been used in humans and rodents to distinguish conscious from unconscious states based on the global cortical responses (recorded by electroencephalography, EEG) to local cortical stimulation (CS). However, it is unclear how different cortical layers respond to CS and contribute to the resulting intra- and inter-areal cortical connectivity and PCI. A detailed investigation of the local dynamics is needed to understand the basis for PCI. We hypothesized that the complexity level of global cortical responses (PCI) correlates with layer-specific activity and connectivity. We tested this idea by measuring global cortical dynamics and layer-specific activity in the somatosensory cortex (S1) of mice, combining cortical electrical stimulation in deep motor cortex, global electrocorticography (ECoG) and local laminar recordings from layers 1-6 in S1, during wakefulness and general anaesthesia (sevoflurane). We found that the transition from wake to sevoflurane anaesthesia correlated with a drop in both the global and local PCI (PCIst ) values (complexity). This was accompanied by a local decrease in neural firing rate, spike-field coherence and long-range functional connectivity specific to deep layers (L5, L6). Our results suggest that deep cortical layers are mechanistically important for changes in PCI and thereby for changes in the state of consciousness.
Collapse
Affiliation(s)
| | - Johan F Storm
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Alessandro Arena
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Lamanna J, Isotti F, Ferro M, Spadini S, Racchetti G, Musazzi L, Malgaroli A. Occlusion of dopamine-dependent synaptic plasticity in the prefrontal cortex mediates the expression of depressive-like behavior and is modulated by ketamine. Sci Rep 2022; 12:11055. [PMID: 35773275 PMCID: PMC9246912 DOI: 10.1038/s41598-022-14694-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Unpredictable chronic mild stress (CMS) is among the most popular protocols used to induce depressive-like behaviors such as anhedonia in rats. Differences in CMS protocols often result in variable degree of vulnerability, and the mechanisms behind stress resilience are of great interest in neuroscience due to their involvement in the development of psychiatric disorders, including major depressive disorder. Expression of depressive-like behaviors is likely driven by long-term alterations in the corticolimbic system and by downregulation of dopamine (DA) signaling. Although we have a deep knowledge about the dynamics of tonic and phasic DA release in encoding incentive salience and in response to acute/chronic stress, its modulatory action on cortical synaptic plasticity and the following implications on animal behavior remain elusive. Here, we show that the expression of DA-dependent synaptic plasticity in the medial prefrontal cortex (mPFC) is occluded in rats vulnerable to CMS, likely reflecting differential expression of AMPA receptors. Interestingly, such difference is not observed when rats are acutely treated with sub-anesthetic ketamine, possibly through the recruitment of dopaminergic nuclei such as the ventral tegmental area. In addition, by applying the synaptic activity sensor SynaptoZip in vivo, we found that chronic stress unbalances the synaptic drive from the infralimbic and prelimbic subregions of the mPFC toward the basolateral amygdala, and that this effect is counteracted by ketamine. Our results provide novel insights into the neurophysiological mechanisms behind the expression of vulnerability to stress, as well as behind the antidepressant action of ketamine.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy. .,Faculty of Psychology, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Francesco Isotti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.,Department of Psychology, Sigmund Freud University, 20143, Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Gabriella Racchetti
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132, Milan, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy. .,Faculty of Psychology, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| |
Collapse
|
6
|
Li JY, Gao SJ, Li RR, Wang W, Sun J, Zhang LQ, Wu JY, Liu DQ, Zhang P, Tian B, Mei W. A Neural Circuit from the Paraventricular Thalamus to the Bed Nucleus of the Stria Terminalis for the Regulation of States of Consciousness during Sevoflurane Anesthesia in Mice. Anesthesiology 2022; 136:709-731. [PMID: 35263424 DOI: 10.1097/aln.0000000000004195] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The neural circuitry underlying sevoflurane-induced modulation of consciousness is poorly understood. This study hypothesized that the paraventricular thalamus bed nucleus of the stria terminalis pathway plays an important role in regulating states of consciousness during sevoflurane anesthesia. METHODS Rabies virus-based transsynaptic tracing techniques were employed to reveal the neural pathway from the paraventricular thalamus to the bed nucleus of the stria terminalis. This study investigated the role of this pathway in sevoflurane anesthesia induction, maintenance, and emergence using chemogenetic and optogenetic methods combined with cortical electroencephalogram recordings. Both male and female mice were used in this study. RESULTS Both γ-aminobutyric acid-mediated and glutamatergic neurons in the bed nucleus of the stria terminalis receive paraventricular thalamus glutamatergic projections. Chemogenetic inhibition of paraventricular thalamus glutamatergic neurons prolonged the sevoflurane anesthesia emergence time (mean ± SD, hM4D-clozapine N-oxide vs. mCherry-clozapine N-oxide, 281 ± 88 vs. 172 ± 48 s, P < 0.001, n = 24) and decreased the induction time (101 ± 32 vs. 136 ± 34 s, P = 0.002, n = 24), as well as the EC5 0 for the loss or recovery of the righting reflex under sevoflurane anesthesia (mean [95% CI] for the concentration at which 50% of the mice lost their righting reflex, 1.16 [1.12 to 1.20] vs. 1.49 [1.46 to 1.53] vol%, P < 0.001, n = 20; and for the concentration at which 50% of the mice recovered their righting reflex, 0.95 [0.86 to 1.03] vs. 1.34 [1.29 to 1.40] vol%, P < 0.001, n = 20). Similar results were observed during suppression of the paraventricular thalamus bed nucleus-stria terminalis pathway. Optogenetic activation of this pathway produced the opposite effects. Additionally, transient stimulation of this pathway efficiently induced behavioral arousal during continuous steady-state general anesthesia with sevoflurane and reduced the depth of anesthesia during sevoflurane-induced burst suppression. CONCLUSIONS In mice, axonal projections from the paraventricular thalamic neurons to the bed nucleus of the stria terminalis contribute to regulating states of consciousness during sevoflurane anesthesia.
Collapse
Affiliation(s)
- Jia-Yan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shao-Jie Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran-Ran Li
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Tian
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Ferro M, Lamanna J, Spadini S, Nespoli A, Sulpizio S, Malgaroli A. Synaptic plasticity mechanisms behind TMS efficacy: insights from its application to animal models. J Neural Transm (Vienna) 2021; 129:25-36. [PMID: 34783902 DOI: 10.1007/s00702-021-02436-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/27/2021] [Indexed: 01/15/2023]
Abstract
Neural plasticity is defined as a reshape of communication paths among neurons, expressed through changes in the number and weights of synaptic contacts. During this process, which occurs massively during early brain development but continues also in adulthood, specific brain functions are modified by activity-dependent processes, triggered by external as well as internal stimuli. Since transcranial magnetic stimulation (TMS) produces a non-invasive form of brain cells activation, many different TMS protocols have been developed to treat neurological and psychiatric conditions and proved to be beneficial. Although neural plasticity induction by TMS has been widely assessed on human subjects, we still lack compelling evidence about the actual biological and molecular mechanisms. To support a better comprehension of the involved phenomena, the main focus of this review is to summarize what has been found through the application of TMS to animal models. The hope is that such integrated view will shed light on why and how TMS so effectively works on human subjects, thus supporting a more efficient development of new protocols in the future.
Collapse
Affiliation(s)
- Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy. .,Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| | - Jacopo Lamanna
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy. .,Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Alessio Nespoli
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Simone Sulpizio
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Antonio Malgaroli
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy. .,Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
8
|
Gui S, Li J, Li M, Shi L, Lu J, Shen S, Li P, Mei W. Revealing the Cortical Glutamatergic Neural Activity During Burst Suppression by Simultaneous wide Field Calcium Imaging and Electroencephalography in Mice. Neuroscience 2021; 469:110-124. [PMID: 34237388 DOI: 10.1016/j.neuroscience.2021.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Burst suppression (BS) is an electroencephalogram (EEG) pattern in which signals alternates between high-amplitude slow waves (burst waves) and nearly flat low-amplitude waves (suppression waves). In this study, we used wide-field (8.32 mm × 8.32 mm) fluorescent calcium imaging to record the activity of glutamatergic neurons in the parietal and occipital cortex, in conjunction with EEG recordings under BS induced by different anesthetics (sevoflurane, isoflurane, and propofol), to investigate the spatiotemporal pattern of neural activity under BS. The calcium signal of all observed cortices was decreased during the phase of EEG suppression. However, during the phase of EEG burst, the calcium signal in areas of the medial cortex, such as the secondary motor and retrosplenial area, was excited, whereas the signal in areas of the lateral cortex, such as the hindlimb cortex, forelimb cortex, barrel field, and primary visual area, was still suppressed or only weakly excited. Correlation analysis showed a strong correlation between the EEG signal and the calcium signal in the medial cortex under BS (except for propofol induced signals). As the burst-suppression ratio (BSR) increased, the regions with strong correlation coefficients became smaller, but strong correlation coefficients were still noted in the medial cortex. Taken together, our results reveal the landscape of cortical activity underlying BS.
Collapse
Affiliation(s)
- Shen Gui
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiayan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Miaowen Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Shi
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jinling Lu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shiqian Shen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital/Harvard Medical School, 55 Fruit St, Boston, MA 02121, United States
| | - Pengcheng Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; HUST-Suzhou Institute for Brainsmatics, Suzhou, Jiangsu 215125, China.
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
9
|
General Anesthesia Disrupts Complex Cortical Dynamics in Response to Intracranial Electrical Stimulation in Rats. eNeuro 2021; 8:ENEURO.0343-20.2021. [PMID: 34301724 PMCID: PMC8354715 DOI: 10.1523/eneuro.0343-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022] Open
Abstract
The capacity of human brain to sustain complex cortical dynamics appears to be strongly associated with conscious experience and consistently drops when consciousness fades. For example, several recent studies in humans found a remarkable reduction of the spatiotemporal complexity of cortical responses to local stimulation during dreamless sleep, general anesthesia, and coma. However, this perturbational complexity has never been directly estimated in non-human animals in vivo previously, and the mechanisms that prevent neocortical neurons to engage in complex interactions are still unclear. Here, we quantify the complexity of electroencephalographic (EEG) responses to intracranial electrical stimulation in rats, comparing wakefulness to propofol, sevoflurane, and ketamine anesthesia. The evoked activity changed from highly complex in wakefulness to far simpler with propofol and sevoflurane. The reduced complexity was associated with a suppression of high frequencies that preceded a reduced phase-locking, and disruption of functional connectivity and pattern diversity. We then showed how these parameters dissociate with ketamine and depend on intensity and site of stimulation. Our results support the idea that brief periods of activity-dependent neuronal silence can interrupt complex interactions in neocortical circuits, and open the way for further mechanistic investigations of the neuronal basis for consciousness and loss of consciousness across species.
Collapse
|
10
|
Liu D, Chen X, Huang Y, Zhang S, Wu J, Li J, Wang D, Tian B, Mei W. Acute continuous nocturnal light exposure decreases BSR under sevoflurane anesthesia in C57BL/6J mice: possible role of differentially spared light-sensitive pathways under anesthesia. Am J Transl Res 2020; 12:2843-2859. [PMID: 32655814 PMCID: PMC7344097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Brain responses to external stimuli such as light are preserved under general anesthesia. In nocturnal animals, acute light exposure can induce sleep, and acute dark can increase wakefulness. This study aims to investigate the effect of acute continuous nocturnal light exposure (ACNLE) on burst-suppression patterns under sevoflurane anesthesia using electroencephalogram (EEG) monitoring in mice. We set the initial sevoflurane dose to 2.0% and increased it by 0.5% every 20 min until it reached 4.0%. Burst-suppression ratio (BSR), EEG power and quantitative burst analysis were used to assess the effects of ACNLE on burst suppression patterns under sevoflurane anesthesia. Blood serum corticosterone measurement and c-Fos immunofluorescent staining of the suprachiasmatic nucleus (SCN) and ventrolateral preoptic nucleus (VLPO) were used to demonstrate the biological consequence induced by ACNLE. Compared to darkness, ACNLE caused significant changes in EEG power and decrease of BSR at 2.5%, 3.0% and 3.5% sevoflurane. ACNLE was also associated with an increase in burst duration and burst frequency as well as a decrease in burst maximum peak-to-peak amplitude and burst power in the beta (15-25 Hz) and gamma (25-80 Hz) bands. ACNLE increased the concentration of serum corticosterone and the expression of c-Fos in the SCN, while not changed c-Fos expression in the VLPO. These results demonstrated that ACNLE influences the BSR under sevoflurane anesthesia, possibly by activating light-sensitive nonvisual pathways including SCN and increasing of peripheral serum corticosterone levels.
Collapse
Affiliation(s)
- Daiqiang Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei Province, China
| | - Xinfeng Chen
- Chinese Institute for Brain ResearchBeijing (CIBR) No. 26 Science Park Road, ZGC Life Science Park, Changping District, Beijing 100085, China
| | - Yujie Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei Province, China
| | - Shuang Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei Province, China
| | - Jiayi Wu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei Province, China
| | - Jiayan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei Province, China
| | - Dan Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei Province, China
| | - Bo Tian
- Department of Neurobiology, Tongji Medical School, Huazhong University of Science and TechnologyWuhan 430030, Hubei Province, China
- Key Laboratory of Neurological Diseases, Ministry of Education13 Hangkong Road, Wuhan 430030, Hubei Province, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei Province, China
| |
Collapse
|
11
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
12
|
Aggarwal A, Brennan C, Shortal B, Contreras D, Kelz MB, Proekt A. Coherence of Visual-Evoked Gamma Oscillations Is Disrupted by Propofol but Preserved Under Equipotent Doses of Isoflurane. Front Syst Neurosci 2019; 13:19. [PMID: 31139058 PMCID: PMC6519322 DOI: 10.3389/fnsys.2019.00019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022] Open
Abstract
Previous research demonstrates that the underlying state of the brain influences how sensory stimuli are processed. Canonically, the state of the brain has been defined by quantifying the spectral characteristics of spontaneous fluctuations in local field potentials (LFP). Here, we utilized isoflurane and propofol anesthesia to parametrically alter the spectral state of the murine brain. With either drug, we produce slow wave activity, with low anesthetic doses, or burst suppression, with higher doses. We find that while spontaneous LFP oscillations were similar, the average visual-evoked potential (VEP) was always smaller in amplitude and shorter in duration under propofol than under comparable doses of isoflurane. This diminished average VEP results from increased trial-to-trial variability in VEPs under propofol. One feature of single trial VEPs that was consistent in all animals was visual-evoked gamma band oscillation (20-60 Hz). This gamma band oscillation was coherent between trials in the early phase (<250 ms) of the visual evoked potential under isoflurane. Inter trial phase coherence (ITPC) of gamma oscillations was dramatically attenuated in the same propofol anesthetized mice despite similar spontaneous oscillations in the LFP. This suggests that while both anesthetics lead to loss of consciousness (LOC), elicit slow oscillations and burst suppression, only the isoflurane permits phase resetting of gamma oscillations by visual stimuli. These results demonstrate that accurate characterization of a brain state must include both spontaneous as well as stimulus-induced perturbations of brain activity.
Collapse
Affiliation(s)
- Adeeti Aggarwal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Connor Brennan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Brenna Shortal
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diego Contreras
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
13
|
Palanca BJA, Avidan MS, Mashour GA. Human neural correlates of sevoflurane-induced unconsciousness. Br J Anaesth 2019; 119:573-582. [PMID: 29121298 DOI: 10.1093/bja/aex244] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 01/01/2023] Open
Abstract
Sevoflurane, a volatile anaesthetic agent well-tolerated for inhalation induction, provides a useful opportunity to elucidate the processes whereby halogenated ethers disrupt consciousness and cognition. Multiple molecular targets of sevoflurane have been identified, complementing imaging and electrophysiologic markers for the mechanistically obscure progression from wakefulness to unconsciousness. Recent investigations have more precisely detailed scalp EEG activity during this transition, with practical clinical implications. The relative timing of scalp potentials in frontal and parietal EEG signals suggests that sevoflurane might perturb the propagation of neural information between underlying cortical regions. Spatially distributed brain activity during general anaesthesia has been further investigated with positron emission tomography (PET) and resting-state functional magnetic resonance imaging (fMRI). Combined EEG and PET investigations have identified changes in cerebral blood flow and metabolic activity in frontal, parietal, and thalamic regions during sevoflurane-induced loss of consciousness. More recent fMRI investigations have revealed that sevoflurane weakens the signal correlations among brain regions that share functionality and specialization during wakefulness. In particular, two such resting-state networks have shown progressive breakdown in intracortical and thalamocortical connectivity with increasing anaesthetic concentrations: the Default Mode Network (introspection and episodic memory) and the Ventral Attention Network (orienting of attention to salient feature of the external world). These data support the hypotheses that perturbations in temporally correlated activity across brain regions contribute to the transition between states of sevoflurane sedation and general anaesthesia.
Collapse
Affiliation(s)
- B J A Palanca
- Division of Biology and Biomedical Sciences.,Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - M S Avidan
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.,Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - G A Mashour
- Department of Anesthesiology, Center for Consciousness Science and Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Development and validation of brain target controlled infusion of propofol in mice. PLoS One 2018; 13:e0194949. [PMID: 29684039 PMCID: PMC5912730 DOI: 10.1371/journal.pone.0194949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/13/2018] [Indexed: 12/25/2022] Open
Abstract
Mechanisms through which anesthetics disrupt neuronal activity are incompletely understood. In order to study anesthetic mechanisms in the intact brain, tight control over anesthetic pharmacology in a genetically and neurophysiologically accessible animal model is essential. Here, we developed a pharmacokinetic model that quantitatively describes propofol distribution into and elimination out of the brain. To develop the model, we used jugular venous catheters to infuse propofol in mice and measured propofol concentration in serial timed brain and blood samples using high performance liquid chromatography (HPLC). We then used adaptive fitting procedures to find parameters of a three compartment pharmacokinetic model such that all measurements collected in the blood and in the brain across different infusion schemes are fit by a single model. The purpose of the model was to develop target controlled infusion (TCI) capable of maintaining constant brain propofol concentration at the desired level. We validated the model for two different targeted concentrations in independent cohorts of experiments not used for model fitting. The predictions made by the model were unbiased, and the measured brain concentration was indistinguishable from the targeted concentration. We also verified that at the targeted concentration, state of anesthesia evidenced by slowing of the electroencephalogram and behavioral unresponsiveness was attained. Thus, we developed a useful tool for performing experiments necessitating use of anesthetics and for the investigation of mechanisms of action of propofol in mice.
Collapse
|
15
|
Iliescu DA, Ciubotaru A, Ghiţă MA, Păun AM, Ion T, Zăgrean L. Electrophysiologic evaluation of the visual pathway at different depths of sevoflurane anesthesia in diabetic rats. Rom J Ophthalmol 2018; 62:34-41. [PMID: 29796432 PMCID: PMC5959023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Our study investigated the changes produced by diabetes on the visual pathway in a Wistar rat model. The impact of diabetes at 10 weeks after intraperitoneal streptozotocin (STZ) injection was evaluated through electrophysiological methods like visual evoked potentials (VEP) and electroretinogram (ERG). VEP and ERG were recorded simultaneously under different sevoflurane anesthetic depths. In all tested concentrations, sevoflurane affected the amplitude and latency of VEP and ERG component elements. With increasing anesthetic depths, sevoflurane increased the latencies of VEP N1, P1 and N2 peaks and ERG a- and b- waves in both control and diabetic animals. On the other hand, the amplitude of VEP showed enhancement in higher concentrations of sevoflurane, contrariwise to the drop of amplitude seen in the ERG. Diabetes additionally increased the latencies of VEP peaks and decreased the N1-P1 amplitude of the VEP when compared to control at the same anesthetic depth. The a- and b- waves were also delayed by diabetes at 10 weeks post-STZ diabetic induction, with the exception of highly profound anesthetic depth in which the result for the b wave were conflicting. We found a reduction in amplitude of the a-b wave in diabetic animals, when ERG was recorded under 6% and 8% sevoflurane concentration. In conclusion, neurophysiological studies like VEP and ERG are useful in the assessment of retinal and optic nerve dysfunctions produced by diabetes, yet considering the alterations that occur during anesthesia if this is used.
Collapse
Affiliation(s)
- Daniela Adriana Iliescu
- Physiology Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
,Ophthalmology Department, “Dr. Carol Davila” Central Military University Emergency Hospital, Bucharest, Romania
| | - Alexandra Ciubotaru
- Physiology Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Aurelian Ghiţă
- Physiology Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
,Ophthalmology Department, University Emergency Hospital, Bucharest, Romania
| | - Adrian Marius Păun
- Physiology Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Tudor Ion
- Physiology Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Leon Zăgrean
- Physiology Department, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
16
|
Ferro M, Lamanna J, Ripamonti M, Racchetti G, Arena A, Spadini S, Montesano G, Cortese R, Zimarino V, Malgaroli A. Functional mapping of brain synapses by the enriching activity-marker SynaptoZip. Nat Commun 2017; 8:1229. [PMID: 29089485 PMCID: PMC5663910 DOI: 10.1038/s41467-017-01335-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/08/2017] [Indexed: 01/27/2023] Open
Abstract
Ideally, elucidating the role of specific brain circuits in animal behavior would require the ability to measure activity at all involved synapses, possibly with unrestricted field of view, thus even at those boutons deeply located into the brain. Here, we introduce and validate an efficient scheme reporting synaptic vesicle cycling in vivo. This is based on SynaptoZip, a genetically encoded molecule deploying in the vesicular lumen a bait moiety designed to capture upon exocytosis a labeled alien peptide, Synbond. The resulting signal is cumulative and stores the number of cycling events occurring at individual synapses. Since this functional signal is enduring and measurable both online and ex post, SynaptoZip provides a unique method for the analysis of the history of synaptic activity in regions several millimeters below the brain surface. We show its broad applicability by reporting stimulus-evoked and spontaneous circuit activity in wide cortical fields, in anesthetized and freely moving animals. Visualization of synaptic activity in the living brain is challenging. This study devises a simple and efficient scheme that reports synaptic vesicle recycling in vivo using SynaptoZip, a genetically encoded sensor of past synaptic activities.
Collapse
Affiliation(s)
- Mattia Ferro
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Jacopo Lamanna
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Maddalena Ripamonti
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Gabriella Racchetti
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Alessandro Arena
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.,Department of Physiology, Institute of Basal Medical Sciences, University of Oslo, Oslo, 0315, Norway
| | - Sara Spadini
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Giovanni Montesano
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.,Dipartimento Testa-Collo, San Paolo Hospital, University of Milan, Milan, 20122, Italy
| | | | - Vincenzo Zimarino
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Antonio Malgaroli
- Università Vita-Salute San Raffaele, Milan, 20132, Italy. .,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.
| |
Collapse
|