1
|
Aleman TS, Roman AJ, Uyhazi KE, Jiang YY, Bedoukian EC, Sumaroka A, Wu V, Swider M, Viarbitskaya I, Russell RC, Shagena EO, Santos AJ, Serrano LW, Parchinski KM, Kim RJ, Weber ML, Garafalo AV, Thompson DA, Maguire AM, Bennett J, Scoles DH, O'Neil EC, Morgan JIW, Cideciyan AV. Retinal Degeneration Associated With Biallelic RDH12 Variants: Longitudinal Evaluation of Retinal Structure and Visual Function in Pediatric Patients. Invest Ophthalmol Vis Sci 2024; 65:30. [PMID: 39693083 DOI: 10.1167/iovs.65.14.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
Purpose The purpose of this study was to determine the natural history of the photoreceptor disease in a large group of pediatric patients with RHD12-associated Leber congenital amaurosis (RDH12-LCA), to estimate the changes expected over the duration of a clinical trial, and to define the relationship between the photoreceptor loss and visual dysfunction. Methods Forty-six patients representing 36 families were included. The great majority of patients were under the age of 18 years. Patients underwent complete ophthalmic examinations and imaging with various modalities including adaptive optics scanning laser ophthalmoscopy. Visual function was assessed with static and kinetic perimetry, and full-field stimulus test (FST) under dark- and light-adapted conditions. Results Patients had a severe and early onset retinal degeneration (EORD). Visual acuity losses showed a progression rate of 0.04 logMAR per year. A small foveal island could be retained but showed degeneration over time. Foveal cone sensitivity losses were predictable by the loss of photoreceptors. Peripapillary retina could be retained with no significant progression detectable. Peripapillary rod sensitivity was substantially less than expected from photoreceptor structure pointing to a large improvement potential. FST sensitivities were reliably recordable in pediatric patients and showed a small but significant improvement with age. Locally and globally, loss of rod sensitivity tended to be larger than loss of cone sensitivity. Conclusions Foveal cones of RDH12-LCA should be targeted with treatments aimed to slow progression, whereas peripapillary rod photoreceptors should be targeted with treatments aimed to improve night vision. Pediatric FST testing may be complicated by age-related maturation of decision making regarding threshold criteria.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Alejandro J Roman
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Katherine E Uyhazi
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yu You Jiang
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Emma C Bedoukian
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Vivian Wu
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Malgorzata Swider
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Iryna Viarbitskaya
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Robert C Russell
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elizabeth O Shagena
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arlene J Santos
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Leona W Serrano
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kelsey M Parchinski
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca J Kim
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Mariejel L Weber
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V Garafalo
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Dorothy A Thompson
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Albert M Maguire
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jean Bennett
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Drew H Scoles
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Erin C O'Neil
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Division of Ophthalmology and The Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jessica I W Morgan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
2
|
Kruczek K, Swaroop A. Patient stem cell-derived in vitro disease models for developing novel therapies of retinal ciliopathies. Curr Top Dev Biol 2023; 155:127-163. [PMID: 38043950 DOI: 10.1016/bs.ctdb.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Primary cilia are specialized organelles on the surface of almost all cells in vertebrate tissues and are primarily involved in the detection of extracellular stimuli. In retinal photoreceptors, cilia are uniquely modified to form outer segments containing components required for the detection of light in stacks of membrane discs. Not surprisingly, vision impairment is a frequent phenotype associated with ciliopathies, a heterogeneous class of conditions caused by mutations in proteins required for formation, maintenance and/or function of primary cilia. Traditionally, immortalized cell lines and model organisms have been used to provide insights into the biology of ciliopathies. The advent of methods for reprogramming human somatic cells into pluripotent stem cells has enabled the generation of in vitro disease models directly from patients suffering from ciliopathies. Such models help us in investigating pathological mechanisms specific to human physiology and in developing novel therapeutic approaches. In this article, we review current protocols to differentiate human pluripotent stem cells into retinal cell types, and discuss how these cellular and/or organoid models can be utilized to interrogate pathobiology of ciliopathies affecting the retina and for testing prospective treatments.
Collapse
Affiliation(s)
- Kamil Kruczek
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
3
|
Nita M, Grzybowski A. Antioxidative Role of Heterophagy, Autophagy, and Mitophagy in the Retina and Their Association with the Age-Related Macular Degeneration (AMD) Etiopathogenesis. Antioxidants (Basel) 2023; 12:1368. [PMID: 37507908 PMCID: PMC10376332 DOI: 10.3390/antiox12071368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Age-related macular degeneration (AMD), an oxidative stress-linked neurodegenerative disease, leads to irreversible damage of the central retina and severe visual impairment. Advanced age and the long-standing influence of oxidative stress and oxidative cellular damage play crucial roles in AMD etiopathogenesis. Many authors emphasize the role of heterophagy, autophagy, and mitophagy in maintaining homeostasis in the retina. Relevantly modifying the activity of both macroautophagy and mitophagy pathways represents one of the new therapeutic strategies in AMD. Our review provides an overview of the antioxidative roles of heterophagy, autophagy, and mitophagy and presents associations between dysregulations of these molecular mechanisms and AMD etiopathogenesis. The authors performed an extensive analysis of the literature, employing PubMed and Google Scholar, complying with the 2013-2023 period, and using the following keywords: age-related macular degeneration, RPE cells, reactive oxygen species, oxidative stress, heterophagy, autophagy, and mitophagy. Heterophagy, autophagy, and mitophagy play antioxidative roles in the retina; however, they become sluggish and dysregulated with age and contribute to AMD development and progression. In the retina, antioxidative roles also play in RPE cells, NFE2L2 and PGC-1α proteins, NFE2L2/PGC-1α/ARE signaling cascade, Nrf2 factor, p62/SQSTM1/Keap1-Nrf2/ARE pathway, circulating miRNAs, and Yttrium oxide nanoparticles performed experimentally in animal studies.
Collapse
Affiliation(s)
- Małgorzata Nita
- Domestic and Specialized Medicine Centre "Dilmed", 40-231 Katowice, Poland
| | - Andrzej Grzybowski
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Gorczyczewskiego 2/3, 61-553 Poznań, Poland
| |
Collapse
|
4
|
Hofmann KP, Lamb TD. Rhodopsin, light-sensor of vision. Prog Retin Eye Res 2023; 93:101116. [PMID: 36273969 DOI: 10.1016/j.preteyeres.2022.101116] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022]
Abstract
The light sensor of vertebrate scotopic (low-light) vision, rhodopsin, is a G-protein-coupled receptor comprising a polypeptide chain with bound chromophore, 11-cis-retinal, that exhibits remarkable physicochemical properties. This photopigment is extremely stable in the dark, yet its chromophore isomerises upon photon absorption with 70% efficiency, enabling the activation of its G-protein, transducin, with high efficiency. Rhodopsin's photochemical and biochemical activities occur over very different time-scales: the energy of retinaldehyde's excited state is stored in <1 ps in retinal-protein interactions, but it takes milliseconds for the catalytically active state to form, and many tens of minutes for the resting state to be restored. In this review, we describe the properties of rhodopsin and its role in rod phototransduction. We first introduce rhodopsin's gross structural features, its evolution, and the basic mechanisms of its activation. We then discuss light absorption and spectral sensitivity, photoreceptor electrical responses that result from the activity of individual rhodopsin molecules, and recovery of rhodopsin and the visual system from intense bleaching exposures. We then provide a detailed examination of rhodopsin's molecular structure and function, first in its dark state, and then in the active Meta states that govern its interactions with transducin, rhodopsin kinase and arrestin. While it is clear that rhodopsin's molecular properties are exquisitely honed for phototransduction, from starlight to dawn/dusk intensity levels, our understanding of how its molecular interactions determine the properties of scotopic vision remains incomplete. We describe potential future directions of research, and outline several major problems that remain to be solved.
Collapse
Affiliation(s)
- Klaus Peter Hofmann
- Institut für Medizinische Physik und Biophysik (CC2), Charité, and, Zentrum für Biophysik und Bioinformatik, Humboldt-Unversität zu Berlin, Berlin, 10117, Germany.
| | - Trevor D Lamb
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
| |
Collapse
|
5
|
Towards a New Biomarker for Diabetic Retinopathy: Exploring RBP3 Structure and Retinoids Binding for Functional Imaging of Eyes In Vivo. Int J Mol Sci 2023; 24:ijms24054408. [PMID: 36901838 PMCID: PMC10002987 DOI: 10.3390/ijms24054408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe disease with a growing number of afflicted patients, which places a heavy burden on society, both socially and financially. While there are treatments available, they are not always effective and are usually administered when the disease is already at a developed stage with visible clinical manifestation. However, homeostasis at a molecular level is disrupted before visible signs of the disease are evident. Thus, there has been a constant search for effective biomarkers that could signal the onset of DR. There is evidence that early detection and prompt disease control are effective in preventing or slowing DR progression. Here, we review some of the molecular changes that occur before clinical manifestations are observable. As a possible new biomarker, we focus on retinol binding protein 3 (RBP3). We argue that it displays unique features that make it a very good biomarker for non-invasive, early-stage DR detection. Linking chemistry to biological function and focusing on new developments in eye imaging and two-photon technology, we describe a new potential diagnostic tool that would allow rapid and effective quantification of RBP3 in the retina. Moreover, this tool would also be useful in the future to monitor therapeutic effectiveness if levels of RBP3 are elevated by DR treatments.
Collapse
|
6
|
Kalargyrou AA, Guilfoyle SE, Smith AJ, Ali RR, Pearson RA. Extracellular vesicles in the retina - putative roles in physiology and disease. Front Mol Neurosci 2023; 15:1042469. [PMID: 36710933 PMCID: PMC9877344 DOI: 10.3389/fnmol.2022.1042469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The retina encompasses a network of neurons, glia and epithelial and vascular endothelia cells, all coordinating visual function. Traditionally, molecular information exchange in this tissue was thought to be orchestrated by synapses and gap junctions. Recent findings have revealed that many cell types are able to package and share molecular information via extracellular vesicles (EVs) and the technological advancements in visualisation and tracking of these delicate nanostructures has shown that the role of EVs in cell communication is pleiotropic. EVs are released under physiological conditions by many cells but they are also released during various disease stages, potentially reflecting the health status of the cells in their cargo. Little is known about the physiological role of EV release in the retina. However, administration of exogenous EVs in vivo after injury suggest a neurotrophic role, whilst photoreceptor transplantation in early stages of retina degeneration, EVs may facilitate interactions between photoreceptors and Müller glia cells. In this review, we consider some of the proposed roles for EVs in retinal physiology and discuss current evidence regarding their potential impact on ocular therapies via gene or cell replacement strategies and direct intraocular administration in the diseased eye.
Collapse
Affiliation(s)
- Aikaterini A. Kalargyrou
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Siobhan E. Guilfoyle
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Alexander J. Smith
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| | - Robin R. Ali
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
- Kellogg Eye Center, University of Michigan, Ann Arbor, MI, United States
| | - Rachael A. Pearson
- King’s College London, Guy’s Hospital, Centre for Gene Therapy and Regenerative Medicine, London, United Kingdom
| |
Collapse
|
7
|
Nikolaeva DA, Nekrasova MA, Rotov AY, Astakhova LA. Adaptation memory in photoreceptors: different mechanisms in rods and cones. Front Mol Neurosci 2023; 16:1135088. [PMID: 37168678 PMCID: PMC10165083 DOI: 10.3389/fnmol.2023.1135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/04/2023] [Indexed: 05/13/2023] Open
Abstract
Vertebrate rods and cones operate over a wide range of ambient illumination, which is provided by light adaptation mechanisms regulating the sensitivity and speed of the phototransduction cascade. Three calcium-sensitive feedback loops are well established in both rods and cones: acceleration of the quenching of a light-activated visual pigment and cGMP synthesis by guanylate cyclase, and increased affinity of ion channels for cGMP. Accumulating evidence suggests that the molecular mechanisms of light adaptation are more complex. While investigating these putative mechanisms, we discovered a novel phenomenon, observing that the recovery of light sensitivity in rods after turning off non-saturating adaptive light can take tens of seconds. Moreover, after a formal return of the membrane current to the dark level, cell sensitivity to the stimuli remains decreased for a further 1-2 min. We termed this phenomenon of prolonged photoreceptor desensitization 'adaptation memory' (of previous illumination) and the current study is focused on its detailed investigation in rods and an attempt to find the same phenomenon in cones. In rods, we have explored the dependencies of this phenomenon on adapting conditions, specifically, the intensity and duration of adapting illumination. Additionally, we report that fish and frog red-sensitive cones possess similar features of adaptation memory, such as a drop in sensitivity just after the steps of bright light and slow sensitivity recovery. However, we have found that the rate of this process and its nature are not the same as in rods. Our results indicate that the nature of the temporary drop in the sensitivity in rods and cones after adapting steps of light is different. In the rods, adaptation memory could be attributed to the existence of long-lasting modifications of the components of the phototransduction cascade after adapting illumination. In cones, the observed form of the adaptation memory seems to be due to the sensitivity drop caused by a decrease in the availability of the visual pigment, that is, by bleaching.
Collapse
Affiliation(s)
- Darya A. Nikolaeva
- Laboratory of Evolution of the Sense Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Maria A. Nekrasova
- Laboratory of Evolution of the Sense Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
| | - Alexander Yu. Rotov
- Laboratory of Evolution of the Sense Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- Laboratory of Toxinology and Molecular Systematics, L.A. Orbeli Institute of Physiology NAS RA, Yerevan, Armenia
| | - Luba A. Astakhova
- Laboratory of Evolution of the Sense Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, Saint Petersburg, Russia
- *Correspondence: Luba A. Astakhova,
| |
Collapse
|
8
|
Marchese NA, Ríos MN, Guido ME. Müller glial cell photosensitivity: a novel function bringing higher complexity to vertebrate retinal physiology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
9
|
Schlegel DK, Ramkumar S, von Lintig J, Neuhauss SC. Disturbed retinoid metabolism upon loss of rlbp1a impairs cone function and leads to subretinal lipid deposits and photoreceptor degeneration in the zebrafish retina. eLife 2021; 10:71473. [PMID: 34668483 PMCID: PMC8585484 DOI: 10.7554/elife.71473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
The RLBP1 gene encodes the 36 kDa cellular retinaldehyde-binding protein, CRALBP, a soluble retinoid carrier, in the visual cycle of the eyes. Mutations in RLBP1 are associated with recessively inherited clinical phenotypes, including Bothnia dystrophy, retinitis pigmentosa, retinitis punctata albescens, fundus albipunctatus, and Newfoundland rod–cone dystrophy. However, the etiology of these retinal disorders is not well understood. Here, we generated homologous zebrafish models to bridge this knowledge gap. Duplication of the rlbp1 gene in zebrafish and cell-specific expression of the paralogs rlbp1a in the retinal pigment epithelium and rlbp1b in Müller glial cells allowed us to create intrinsically cell type-specific knockout fish lines. Using rlbp1a and rlbp1b single and double mutants, we investigated the pathological effects on visual function. Our analyses revealed that rlbp1a was essential for cone photoreceptor function and chromophore metabolism in the fish eyes. rlbp1a-mutant fish displayed reduced chromophore levels and attenuated cone photoreceptor responses to light stimuli. They accumulated 11-cis and all-trans-retinyl esters which displayed as enlarged lipid droplets in the RPE reminiscent of the subretinal yellow-white lesions in patients with RLBP1 mutations. During aging, these fish developed retinal thinning and cone and rod photoreceptor dystrophy. In contrast, rlbp1b mutants did not display impaired vision. The double mutant essentially replicated the phenotype of the rlbp1a single mutant. Together, our study showed that the rlbp1a zebrafish mutant recapitulated many features of human blinding diseases caused by RLBP1 mutations and provided novel insights into the pathways for chromophore regeneration of cone photoreceptors.
Collapse
Affiliation(s)
- Domino K Schlegel
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Srinivasagan Ramkumar
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, United States
| | - Stephan Cf Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| |
Collapse
|
10
|
Niu T, Fang J, Shi X, Zhao M, Xing X, Wang Y, Zhu S, Liu K. Pathogenesis Study Based on High-Throughput Single-Cell Sequencing Analysis Reveals Novel Transcriptional Landscape and Heterogeneity of Retinal Cells in Type 2 Diabetic Mice. Diabetes 2021; 70:1185-1197. [PMID: 33674409 DOI: 10.2337/db20-0839] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of acquired blindness in middle-aged people. The complex pathology of DR is difficult to dissect, given the convoluted cytoarchitecture of the retina. Here, we performed single-cell RNA sequencing (scRNA-seq) of retina from a model of type 2 diabetes, induced in leptin receptor-deficient (db/db) and control db/m mice, with the aim of elucidating the factors mediating the pathogenesis of DR. We identified 11 cell types and determined cell-type-specific expression of DR-associated loci via genome-wide association study (GWAS)-based enrichment analysis. DR also impacted cell-type-specific genes and altered cell-cell communication. Based on the scRNA-seq results, retinaldehyde-binding protein 1 (RLBP1) was investigated as a promising therapeutic target for DR. Retinal RLBP1 expression was decreased in diabetes, and its overexpression in Müller glia mitigated DR-associated neurovascular degeneration. These data provide a detailed analysis of the retina under diabetic and normal conditions, revealing new insights into pathogenic factors that may be targeted to treat DR and related dysfunctions.
Collapse
Affiliation(s)
- Tian Niu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xin Shi
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Mengya Zhao
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xindan Xing
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shaopin Zhu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Eye Diseases; Shanghai Key Laboratory of Ocular Fundus Diseases; Shanghai Engineering Center for Visual Science and Photo Medicine; and Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
11
|
Kolesnikov AV, Kiser PD, Palczewski K, Kefalov VJ. Function of mammalian M-cones depends on the level of CRALBP in Müller cells. J Gen Physiol 2021; 153:211551. [PMID: 33216847 PMCID: PMC7685772 DOI: 10.1085/jgp.202012675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022] Open
Abstract
Cone photoreceptors mediate daytime vision in vertebrates. The rapid and efficient regeneration of their visual pigments following photoactivation is critical for the cones to remain photoresponsive in bright and rapidly changing light conditions. Cone pigment regeneration depends on the recycling of visual chromophore, which takes place via the canonical visual cycle in the retinal pigment epithelium (RPE) and the Müller cell-driven intraretinal visual cycle. The molecular mechanisms that enable the neural retina to regenerate visual chromophore for cones have not been fully elucidated. However, one known component of the two visual cycles is the cellular retinaldehyde-binding protein (CRALBP), which is expressed both in the RPE and in Müller cells. To understand the significance of CRALBP in cone pigment regeneration, we examined the function of cones in mice heterozygous for Rlbp1, the gene encoding CRALBP. We found that CRALBP expression was reduced by ∼50% in both the RPE and retina of Rlbp1+/- mice. Electroretinography (ERG) showed that the dark adaptation of rods and cones is unaltered in Rlbp1+/- mice, indicating a normal RPE visual cycle. However, pharmacologic blockade of the RPE visual cycle revealed suppressed cone dark adaptation in Rlbp1+/- mice in comparison with controls. We conclude that the expression level of CRALPB specifically in the Müller cells modulates the efficiency of the retina visual cycle. Finally, blocking the RPE visual cycle also suppressed further cone dark adaptation in Rlbp1-/- mice, revealing a shunt in the classical RPE visual cycle that bypasses CRALBP and allows partial but unexpectedly rapid cone dark adaptation.
Collapse
Affiliation(s)
- Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| | - Philip D Kiser
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translation Vision Research, School of Medicine, University of California, Irvine, Irvine, CA.,Research Service, VA Long Beach Healthcare System, Long Beach, CA
| | - Krzysztof Palczewski
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Ophthalmology, Gavin Herbert Eye Institute, Center for Translation Vision Research, School of Medicine, University of California, Irvine, Irvine, CA.,Department of Chemistry, School of Medicine, University of California, Irvine, Irvine, CA
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
12
|
Kiser PD, Palczewski K. Pathways and disease-causing alterations in visual chromophore production for vertebrate vision. J Biol Chem 2021; 296:100072. [PMID: 33187985 PMCID: PMC7948990 DOI: 10.1074/jbc.rev120.014405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
All that we view of the world begins with an ultrafast cis to trans photoisomerization of the retinylidene chromophore associated with the visual pigments of rod and cone photoreceptors. The continual responsiveness of these photoreceptors is then sustained by regeneration processes that convert the trans-retinoid back to an 11-cis configuration. Recent biochemical and electrophysiological analyses of the retinal G-protein-coupled receptor (RGR) suggest that it could sustain the responsiveness of photoreceptor cells, particularly cones, even under bright light conditions. Thus, two mechanisms have evolved to accomplish the reisomerization: one involving the well-studied retinoid isomerase (RPE65) and a second photoisomerase reaction mediated by the RGR. Impairments to the pathways that transform all-trans-retinal back to 11-cis-retinal are associated with mild to severe forms of retinal dystrophy. Moreover, with age there also is a decline in the rate of chromophore regeneration. Both pharmacological and genetic approaches are being used to bypass visual cycle defects and consequently mitigate blinding diseases. Rapid progress in the use of genome editing also is paving the way for the treatment of disparate retinal diseases. In this review, we provide an update on visual cycle biochemistry and then discuss visual-cycle-related diseases and emerging therapeutics for these disorders. There is hope that these advances will be helpful in treating more complex diseases of the eye, including age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Philip D Kiser
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; Research Service, The VA Long Beach Health Care System, Long Beach, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA.
| | - Krzysztof Palczewski
- The Department of Physiology & Biophysics, University of California, Irvine, California, USA; The Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine, California, USA; The Department of Chemistry, University of California, Irvine, California, USA.
| |
Collapse
|
13
|
Zeng S, Zhang T, Madigan MC, Fernando N, Aggio-Bruce R, Zhou F, Pierce M, Chen Y, Huang L, Natoli R, Gillies MC, Zhu L. Interphotoreceptor Retinoid-Binding Protein (IRBP) in Retinal Health and Disease. Front Cell Neurosci 2020; 14:577935. [PMID: 33328889 PMCID: PMC7710524 DOI: 10.3389/fncel.2020.577935] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
Interphotoreceptor retinoid-binding protein (IRBP), also known as retinol binding protein 3 (RBP3), is a lipophilic glycoprotein specifically secreted by photoreceptors. Enriched in the interphotoreceptor matrix (IPM) and recycled by the retinal pigment epithelium (RPE), IRBP is essential for the vision of all vertebrates as it facilitates the transfer of retinoids in the visual cycle. It also helps to transport lipids between the RPE and photoreceptors. The thiol-dependent antioxidant activity of IRBP maintains the delicate redox balance in the normal retina. Thus, its dysfunction is suspected to play a role in many retinal diseases. We have reviewed here the latest research on IRBP in both retinal health and disease, including the function and regulation of IRBP under retinal stress in both animal models and the human retina. We have also explored the therapeutic potential of targeting IRBP in retinal diseases. Although some technical barriers remain, it is possible that manipulating the expression of IRBP in the retina will rescue or prevent photoreceptor degeneration in many retinal diseases.
Collapse
Affiliation(s)
- Shaoxue Zeng
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Michele C Madigan
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Nilisha Fernando
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia
| | - Riemke Aggio-Bruce
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Matthew Pierce
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yingying Chen
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Lianlin Huang
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia.,School of Optometry and Vision Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Riccardo Natoli
- The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia.,The Australian National University Medical School, The Australian National University, Acton, ACT, Australia
| | - Mark C Gillies
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
14
|
Kubota R, Birch DG, Gregory JK, Koester JM. Randomised study evaluating the pharmacodynamics of emixustat hydrochloride in subjects with macular atrophy secondary to Stargardt disease. Br J Ophthalmol 2020; 106:403-408. [PMID: 33214244 PMCID: PMC8867285 DOI: 10.1136/bjophthalmol-2020-317712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022]
Abstract
Background/Aims Stargardt disease is a rare, inherited, degenerative disease of the retina that is the most common type of hereditary macular dystrophy. Currently, no approved treatments for the disease exist. The purpose of this study was to characterise the pharmacodynamics of emixustat, an orally available small molecule that targets the retinal pigment epithelium–specific 65 kDa protein (RPE65), in subjects with macular atrophy secondary to Stargardt disease. Methods In this multicentre study conducted at six study sites in the USA, 23 subjects with macular atrophy secondary to Stargardt disease were randomised to one of three doses of daily emixustat (2.5 mg, 5 mg or 10 mg) and treated for 1 month. The primary outcome was the suppression of the rod b-wave recovery rate on electroretinography after photobleaching, which is an indirect measure of RPE65 inhibition. Results Subjects who received 10 mg emixustat showed near-complete suppression of the rod b-wave amplitude recovery rate postphotobleaching (mean=91.86%, median=96.69%), whereas those who received 5 mg showed moderate suppression (mean=52.2%, median=68.0%). No effect was observed for subjects who received 2.5 mg emixustat (mean=−3.31%, median=−12.23%). The adverse event profile was consistent with prior studies in other patient populations and consisted primarily of ocular adverse events likely related to RPE65 inhibition. Conclusion This study demonstrated dose-dependent suppression of rod b-wave amplitude recovery postphotobleaching, confirming emixustat’s biological activity in patients with Stargardt disease. These findings informed dose selection for a 24-month phase 3 trial (SeaSTAR Study) that is now comparing emixustat to placebo in the treatment of Stargardt disease-associated macular atrophy.
Collapse
Affiliation(s)
- Ryo Kubota
- President, Kubota Vision Inc, Seattle, Washington, USA
| | - David G Birch
- Scientific Director, Retina Foundation of the Southwest, Dallas, Texas, USA
| | - Jeff K Gregory
- Clinical Development, Kubota Vision Inc, Seattle, Washington, USA
| | - John M Koester
- Clinical Development, Kubota Vision Inc, Seattle, Washington, USA
| |
Collapse
|
15
|
Lima de Carvalho JR, Kim HJ, Ueda K, Zhao J, Owji AP, Yang T, Tsang SH, Sparrow JR. Effects of deficiency in the RLBP1-encoded visual cycle protein CRALBP on visual dysfunction in humans and mice. J Biol Chem 2020; 295:6767-6780. [PMID: 32188692 PMCID: PMC7212638 DOI: 10.1074/jbc.ra120.012695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
Mutations in retinaldehyde-binding protein 1 (RLBP1), encoding the visual cycle protein cellular retinaldehyde-binding protein (CRALBP), cause an autosomal recessive form of retinal degeneration. By binding to 11-cis-retinoid, CRALBP augments the isomerase activity of retinoid isomerohydrolase RPE65 (RPE65) and facilitates 11-cis-retinol oxidation to 11-cis-retinal. CRALBP also maintains the 11-cis configuration and protects against unwanted retinaldehyde activity. Studying a sibling pair that is compound heterozygous for mutations in RLBP1/CRALBP, here we expand the phenotype of affected individuals, elucidate a previously unreported phenotype in RLBP1/CRALBP carriers, and demonstrate consistencies between the affected individuals and Rlbp1/Cralbp−/− mice. In the RLBP1/CRALBP-affected individuals, nonrecordable rod-specific electroretinogram traces were recovered after prolonged dark adaptation. In ultrawide-field fundus images, we observed radially arranged puncta typical of RLBP1/CRALBP-associated disease. Spectral domain-optical coherence tomography (SD-OCT) revealed hyperreflective aberrations within photoreceptor-associated bands. In short-wavelength fundus autofluorescence (SW-AF) images, speckled hyperautofluorescence and mottling indicated macular involvement. In both the affected individuals and their asymptomatic carrier parents, reduced SW-AF intensities, measured as quantitative fundus autofluorescence (qAF), indicated chronic impairment in 11-cis-retinal availability and provided information on mutation severity. Hypertransmission of the SD-OCT signal into the choroid together with decreased near-infrared autofluorescence (NIR-AF) provided evidence for retinal pigment epithelial cell (RPE) involvement. In Rlbp1/Cralbp−/− mice, reduced 11-cis-retinal levels, qAF and NIR-AF intensities, and photoreceptor loss were consistent with the clinical presentation of the affected siblings. These findings indicate that RLBP1 mutations are associated with progressive disease involving RPE atrophy and photoreceptor cell degeneration. In asymptomatic carriers, qAF disclosed previously undetected visual cycle deficiency.
Collapse
Affiliation(s)
| | - Hye Jin Kim
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Keiko Ueda
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Jin Zhao
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Aaron P Owji
- Department of Pharmacology, Columbia University Irving Medical Center, New York, New York 10032
| | - Tingting Yang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
| | - Janet R Sparrow
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, New York 10032 .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
16
|
Kubota R, Calkins DJ, Henry SH, Linsenmeier RA. Emixustat Reduces Metabolic Demand of Dark Activity in the Retina. Invest Ophthalmol Vis Sci 2020; 60:4924-4930. [PMID: 31770432 DOI: 10.1167/iovs.19-28194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose In the dark, photoreceptor outer segments contain high levels of cyclic guanosine 3'-5' monophosphate (cGMP), which binds to ion channels, holding them open and allowing an influx of cations. Ion pumping activity, which balances cation influx, uses considerable amounts of adenosine triphosphate (ATP) and oxygen. Light reduces cation influx and thereby lowers metabolic demand. Blood vessels are compromised in the diabetic retina and may not be able to meet the higher metabolic demand in darkness. Emixustat is a visual cycle modulator (VCM) that reduces chromophore levels and, therefore, may mimic light conditions. We evaluated the effect of emixustat on oxygen consumption and cation influx in dark conditions. Methods Cation influx was measured in rats using Mn2+-magnetic resonance imaging (MEMRI). Retinal oxygen profiles were recorded to evaluate oxygen consumption. In the MEMRI protocol, animals were treated with either emixustat or vehicle. In the oxygen protocol, animals were untreated or treated with emixustat. Results In vehicle-treated animals, cation channel activity increased in the dark. Emixustat treatment reduced cation channel activity; activity was comparable to vehicle-treated controls in light conditions. In vehicle-treated animals, minimum retinal oxygen tension decreased as the retina recovered from a photobleach, indicating that more oxygen was being consumed. Emixustat treatment prevented the decrease in oxygen pressure after photobleach. Conclusions Emixustat reduced the cation influx and retinal oxygen consumption associated with dark conditions. VCMs are a promising potential treatment for ischemic retinal neovascularization, such as that in diabetic retinopathy.
Collapse
Affiliation(s)
- Ryo Kubota
- Acucela, Inc., Seattle, Washington, United States
| | - David J Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | | | - Robert A Linsenmeier
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, United States.,Department of Neurobiology, Northwestern University, Evanston, Illinois, United States
| |
Collapse
|
17
|
Pharmacotherapy for metabolic and cellular stress in degenerative retinal diseases. Drug Discov Today 2019; 25:292-304. [PMID: 31809750 DOI: 10.1016/j.drudis.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/08/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Retinal photoreceptors continually endure stresses associated with prolonged light exposure and the metabolic demands of dark adaptation. Although healthy photoreceptors are able to withstand these stresses for several decades, the disease-affected retina functions at a reduced capacity and is at an increased risk for dysfunction. To alleviate cellular and metabolic stressors in degenerative retinal diseases, a new class of drugs that modulate the metabolic activity of the retina have been developed. A clinical candidate in this class (emixustat) has been shown to reduce retinal pathology in various animal models of human retinal disease and is currently under clinical study. Here, we describe the pharmacological properties of emixustat, its mechanisms of action, and potential for use in the treatment of specific retinal diseases.
Collapse
|
18
|
Morshedian A, Kaylor JJ, Ng SY, Tsan A, Frederiksen R, Xu T, Yuan L, Sampath AP, Radu RA, Fain GL, Travis GH. Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells. Neuron 2019; 102:1172-1183.e5. [PMID: 31056353 PMCID: PMC6586478 DOI: 10.1016/j.neuron.2019.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 11/18/2022]
Abstract
While rods in the mammalian retina regenerate rhodopsin through a well-characterized pathway in cells of the retinal pigment epithelium (RPE), cone visual pigments are thought to regenerate in part through an additional pathway in Müller cells of the neural retina. The proteins comprising this intrinsic retinal visual cycle are unknown. Here, we show that RGR opsin and retinol dehydrogenase-10 (Rdh10) convert all-trans-retinol to 11-cis-retinol during exposure to visible light. Isolated retinas from Rgr+/+ and Rgr-/- mice were exposed to continuous light, and cone photoresponses were recorded. Cones in Rgr-/- retinas lost sensitivity at a faster rate than cones in Rgr+/+ retinas. A similar effect was seen in Rgr+/+ retinas following treatment with the glial cell toxin, α-aminoadipic acid. These results show that RGR opsin is a critical component of the Müller cell visual cycle and that regeneration of cone visual pigment can be driven by light.
Collapse
Affiliation(s)
- Ala Morshedian
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joanna J Kaylor
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sze Yin Ng
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Avian Tsan
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rikard Frederiksen
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tongzhou Xu
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lily Yuan
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alapakkam P Sampath
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Roxana A Radu
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gordon L Fain
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gabriel H Travis
- Stein Eye Institute and Department of Ophthalmology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Stockman A, Henning GB, Smithson HE, Rider AT. Delayed S-cone sensitivity losses following the onset of intense yellow backgrounds linked to the lifetime of a photobleaching product? J Vis 2018; 18:12. [PMID: 30029223 DOI: 10.1167/18.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Thirty years ago, Mollon, Stockman, & Polden (1987) reported that after the onset of intense yellow 581-nm backgrounds, S-cone threshold rose unexpectedly for several seconds before recovering to the light-adapted steady-state value-an effect they called: "transient-tritanopia of the second kind" (TT2). Given that 581-nm lights have little direct effect on S-cones, TT2 must arise indirectly from the backgrounds' effects on the L- and M-cones. We attribute the phenomenon to the action of an unknown L- and M-cone photobleaching product, X, which acts at their outputs like an "equivalent" background light that then inhibits S-cones at a cone-opponent, second-site. The time-course of TT2 is similar in form to the lifetime of X in a two-stage, first-order biochemical reaction A→X→C with successive best-fitting time-constants of 3.09 ± 0.35 and 7.73 ± 0.70 s. Alternatively, with an additional slowly recovering exponential "restoring-force" with a best-fitting time-constant 23.94 ± 1.42 s, the two-stage best-fitting time-constants become 4.15 ± 0.62 and 6.79 ± 1.00 s. Because the time-constants are roughly independent of the background illumination, and thus the rate of photoisomerization, A→X is likely to be a reaction subsidiary to the retinoid cycle, perhaps acting as a buffer when the bleaching rate is too high. X seems to be logarithmically related to S-cone threshold, which may result from the logarithmic cone-opponent, second-site response compression after multiplicative first-site adaptation. The restoring-force may be the same cone-opponent force that sets the rate of S-cone recovery following the unusual threshold increase following the offset of dimmer yellow backgrounds, an effect known as "transient-tritanopia" (TT1).
Collapse
Affiliation(s)
- Andrew Stockman
- UCL Institute of Ophthalmology, University College London, London, UK
| | - G Bruce Henning
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Hannah E Smithson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Andrew T Rider
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
20
|
Kiser PD, Zhang J, Sharma A, Angueyra JM, Kolesnikov AV, Badiee M, Tochtrop GP, Kinoshita J, Peachey NS, Li W, Kefalov VJ, Palczewski K. Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function. J Gen Physiol 2018; 150:571-590. [PMID: 29500274 PMCID: PMC5881442 DOI: 10.1085/jgp.201711815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/11/2022] Open
Abstract
RPE65 is a retinoid isomerase essential for rod function, but its contribution to cone vision is enigmatic. Using selective RPE65 inhibitors, Kiser et al. demonstrate that cone function depends only partially on continuous RPE65 activity, providing support for cone-specific regeneration mechanisms. Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1−/− mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. Complementary experiments in these animal models using the DES1 inhibitor fenretinide show more modest effects on cone recovery. Collectively, these studies demonstrate a role for continuous RPE65 activity in mammalian cone pigment regeneration and provide further evidence for RPE65-independent regeneration mechanisms.
Collapse
Affiliation(s)
- Philip D Kiser
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH .,Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Jianye Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Aditya Sharma
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Juan M Angueyra
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Alexander V Kolesnikov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Mohsen Badiee
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | - Gregory P Tochtrop
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH
| | | | - Neal S Peachey
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH.,Cole Eye Institute, Cleveland Clinic, Cleveland, OH.,Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, Bethesda, MD
| | - Vladimir J Kefalov
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO
| | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
21
|
Ward R, Sundaramurthi H, Di Giacomo V, Kennedy BN. Enhancing Understanding of the Visual Cycle by Applying CRISPR/Cas9 Gene Editing in Zebrafish. Front Cell Dev Biol 2018; 6:37. [PMID: 29696141 PMCID: PMC5904205 DOI: 10.3389/fcell.2018.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/19/2018] [Indexed: 01/23/2023] Open
Abstract
During the vertebrate visual cycle, all-trans-retinal is exported from photoreceptors to the adjacent RPE or Müller glia wherein 11-cis-retinal is regenerated. The 11-cis chromophore is returned to photoreceptors, forming light-sensitive visual pigments with opsin GPCRs. Dysfunction of this process perturbs phototransduction because functional visual pigment cannot be generated. Mutations in visual cycle genes can result in monogenic inherited forms of blindness. Though key enzymatic processes are well characterized, questions remain as to the physiological role of visual cycle proteins in different retinal cell types, functional domains of these proteins in retinoid biochemistry and in vivo pathogenesis of disease mutations. Significant progress is needed to develop effective and accessible treatments for inherited blindness arising from mutations in visual cycle genes. Here, we review opportunities to apply gene editing technology to two crucial visual cycle components, RPE65 and CRALBP. Expressed exclusively in the human RPE, RPE65 enzymatically converts retinyl esters into 11-cis retinal. CRALBP is an 11-cis-retinal binding protein expressed in human RPE and Muller glia. Loss-of-function mutations in either protein results in autosomal recessive forms of blindness. Modeling these human conditions using RPE65 or CRALBP murine knockout models have enhanced our understanding of their biochemical function, associated disease pathogenesis and development of therapeutics. However, rod-dominated murine retinae provide a challenge to assess cone function. The cone-rich zebrafish model is amenable to cost-effective maintenance of a variety of strains. Interestingly, gene duplication in zebrafish resulted in three Rpe65 and two Cralbp isoforms with differential temporal and spatial expression patterns. Functional investigations of zebrafish Rpe65 and Cralbp were restricted to gene knockdown with morpholino oligonucleotides. However, transient silencing, off-target effects and discrepancies between knockdown and knockout models, highlight a need for more comprehensive alternatives for functional genomics. CRISPR/Cas9 in zebrafish has emerged as a formidable technology enabling targeted gene knockout, knock-in, activation, or silencing to single base-pair resolution. Effective, targeted gene editing by CRISPR/Cas9 in zebrafish enables unprecedented opportunities to create genetic research models. This review will discuss existing knowledge gaps regarding RPE65 and CRALBP. We explore the benefits of CRISPR/Cas9 to establish innovative zebrafish models to enhance knowledge of the visual cycle.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Husvinee Sundaramurthi
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Medicine, University College Dublin, Dublin, Ireland
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | - Breandán N. Kennedy
- UCD School of Biomolecular & Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- *Correspondence: Breandán N. Kennedy
| |
Collapse
|
22
|
Abstract
Vertebrate rod and cone photoreceptors require continuous supply of chromophore for regenerating their visual pigments after photoactivation. Cones, which mediate our daytime vision, demand a particularly rapid supply of 11-cis retinal chromophore in order to maintain their function in bright light. An important contribution to this process is thought to be the chromophore precursor 11-cis retinol, which is supplied to cones from Müller cells in the retina and subsequently oxidized to 11-cis retinal as part of the retina visual cycle. However, the molecular identity of the cis retinol oxidase in cones remains unclear. Here, as a first step in characterizing this enzymatic reaction, we sought to determine the subcellular localization of this activity in salamander red cones. We found that the onset of dark adaptation of isolated salamander red cones was substantially faster when exposing directly their outer vs. their inner segment to 9-cis retinol, an analogue of 11-cis retinol. In contrast, this difference was not observed when treating the outer vs. inner segment with 9-cis retinal, a chromophore analogue which can directly support pigment regeneration. These results suggest, surprisingly, that the cis-retinol oxidation occurs in the outer segments of cone photoreceptors. Confirming this notion, pigment regeneration with exogenously added 9-cis retinol was directly observed in the truncated outer segments of cones, but not in rods. We conclude that the enzymatic machinery required for the oxidation of recycled cis retinol as part of the retina visual cycle is present in the outer segments of cones.
Collapse
|
23
|
Xue Y, Sato S, Razafsky D, Sahu B, Shen SQ, Potter C, Sandell LL, Corbo JC, Palczewski K, Maeda A, Hodzic D, Kefalov VJ. The role of retinol dehydrogenase 10 in the cone visual cycle. Sci Rep 2017; 7:2390. [PMID: 28539612 PMCID: PMC5443843 DOI: 10.1038/s41598-017-02549-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Pigment regeneration is critical for the function of cone photoreceptors in bright and rapidly-changing light conditions. This process is facilitated by the recently-characterized retina visual cycle, in which Müller cells recycle spent all-trans-retinol visual chromophore back to 11-cis-retinol. This 11-cis-retinol is oxidized selectively in cones to the 11-cis-retinal used for pigment regeneration. However, the enzyme responsible for the oxidation of 11-cis-retinol remains unknown. Here, we sought to determine whether retinol dehydrogenase 10 (RDH10), upregulated in rod/cone hybrid retinas and expressed abundantly in Müller cells, is the enzyme that drives this reaction. We created mice lacking RDH10 either in cone photoreceptors, Müller cells, or the entire retina. In vivo electroretinography and transretinal recordings revealed normal cone photoresponses in all RDH10-deficient mouse lines. Notably, their cone-driven dark adaptation both in vivo and in isolated retina was unaffected, indicating that RDH10 is not required for the function of the retina visual cycle. We also generated transgenic mice expressing RDH10 ectopically in rod cells. However, rod dark adaptation was unaffected by the expression of RDH10 and transgenic rods were unable to use cis-retinol for pigment regeneration. We conclude that RDH10 is not the dominant retina 11-cis-RDH, leaving its primary function in the retina unknown.
Collapse
Affiliation(s)
- Yunlu Xue
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shinya Sato
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - David Razafsky
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
- MilliporeSigma, St. Louis, MO, 63103, USA
| | - Bhubanananda Sahu
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Susan Q Shen
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Chloe Potter
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, Kentucky, 40202, USA
| | - Joseph C Corbo
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Krzysztof Palczewski
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Akiko Maeda
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Didier Hodzic
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Vladimir J Kefalov
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| |
Collapse
|