1
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
2
|
Simon MA, Csanády L. Optimization of CFTR gating through the evolution of its extracellular loops. J Gen Physiol 2023; 155:e202213264. [PMID: 36723516 PMCID: PMC9929929 DOI: 10.1085/jgp.202213264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
CFTR chloride channel mutations cause the lethal and incurable disease cystic fibrosis (CF). CFTR is activated by phosphorylation, and phosphorylated channels exhibit "bursting" behavior-"bursts" of openings separated by short "flickery" closures and flanked by long "interburst" closures-driven by ATP binding/hydrolysis at two nucleotide-binding domains. The human channel (hCFTR) and the distant zebrafish ortholog (zCFTR) display differences both in their gating properties and structures. In phosphorylated ATP-bound hCFTR, the hR117 side chain, conserved across evolution, forms an H-bond that stabilizes the open state. Lack of that bond in the hR117H mutant causes CF. In the phosphorylated ATP-bound zCFTR structure that H-bond is not observable. Here, we show that the zR118H mutation does not affect the function of zCFTR. Instead, we identify an H-bond between the zS109 and zS120 side chains of phosphorylated ATP-bound, but not of unphosphorylated apo-, zCFTR. We investigate the role of that interaction using thermodynamic mutant cycles built on gating parameters determined in inside-out patch clamp recordings. We find that zS109 indeed forms an H-bond with zN120 in the flickery closed state, but not in the open or interburst closed states. Although in hCFTR an isoleucine (hI119) replaces the asparagine, mutation hS108A produces a strong hR117H-like phenotype. Since the effects of the latter two mutations are not additive, we conclude that in hCFTR these two positions interact, and the hS108-hR117 and hR117-hE1124 H-bonds cooperate to stabilize the open state. These findings highlight an example of how the gating mechanism was optimized during CFTR molecular evolution.
Collapse
Affiliation(s)
- Márton A. Simon
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- ELKH-SE Ion Channel Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
- HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
- ELKH-SE Ion Channel Research Group, Budapest, Hungary
| |
Collapse
|
3
|
Mandal M, Banik D, Karak A, Manna SK, Mahapatra AK. Spiropyran-Merocyanine Based Photochromic Fluorescent Probes: Design, Synthesis, and Applications. ACS OMEGA 2022; 7:36988-37007. [PMID: 36312341 PMCID: PMC9608402 DOI: 10.1021/acsomega.2c04969] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 05/27/2023]
Abstract
Due to ever-increasing insights into their fundamental properties and photochromic behaviors, spiropyran derivatives are still a target of interest for researchers. The interswitching ability of this photochrome between the spiropyran (SP) and merocyanine (MC) isoforms under external stimuli (light, cations, anions, pH etc.) with different spectral properties as well as the protonation-deprotonation of its MC form allows researchers to use it suitably in sensing purposes by developing different colorimetric and fluorometric probes. Selective and sensitive recognition can be achieved by little modification of its SP moiety and functional groups. In this review, we emphasize the recent advancements (from 2019 to 2022) of spiropyran-merocyanine based fluorogenic and chromogenic probes for selective detection of various metal ions, anions, neutral analytes, and pH. We precisely explain their design strategies, sensing mechanisms, and biological and environmental applications. This review may accelerate the improvements in designing more advanced probes with innovative applications in the near future.
Collapse
Affiliation(s)
- Moumi Mandal
- Department
of Chemistry, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Dipanjan Banik
- Department
of Chemistry, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Anirban Karak
- Department
of Chemistry, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Saikat Kumar Manna
- Department
of Chemistry, Haldia Government College, Debhog, Haldia, Purba Medinipur 721657, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department
of Chemistry, Indian Institute of Engineering
Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| |
Collapse
|
4
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
5
|
Simon MA, Csanády L. Molecular pathology of the R117H cystic fibrosis mutation is explained by loss of a hydrogen bond. eLife 2021; 10:74693. [PMID: 34870594 PMCID: PMC8673840 DOI: 10.7554/elife.74693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
The phosphorylation-activated anion channel cystic fibrosis transmembrane conductance regulator (CFTR) is gated by an ATP hydrolysis cycle at its two cytosolic nucleotide-binding domains, and is essential for epithelial salt-water transport. A large number of CFTR mutations cause cystic fibrosis. Since recent breakthrough in targeted pharmacotherapy, CFTR mutants with impaired gating are candidates for stimulation by potentiator drugs. Thus, understanding the molecular pathology of individual mutations has become important. The relatively common R117H mutation affects an extracellular loop, but nevertheless causes a strong gating defect. Here, we identify a hydrogen bond between the side chain of arginine 117 and the backbone carbonyl group of glutamate 1124 in the cryo-electronmicroscopic structure of phosphorylated, ATP-bound CFTR. We address the functional relevance of that interaction for CFTR gating using macroscopic and microscopic inside-out patch-clamp recordings. Employing thermodynamic double-mutant cycles, we systematically track gating-state-dependent changes in the strength of the R117-E1124 interaction. We find that the H-bond is formed only in the open state, but neither in the short-lived ‘flickery’ nor in the long-lived ‘interburst’ closed state. Loss of this H-bond explains the strong gating phenotype of the R117H mutant, including robustly shortened burst durations and strongly reduced intraburst open probability. The findings may help targeted potentiator design.
Collapse
Affiliation(s)
- Márton A Simon
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.,HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.,HCEMM-SE Molecular Channelopathies Research Group, Budapest, Hungary.,MTA-SE Ion Channel Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Benitez-Martin C, Guadix JA, Pearson JR, Najera F, Perez-Pomares JM, Perez-Inestrosa E. Indolenine-Based Derivatives as Customizable Two-Photon Fluorescent Probes for pH Bioimaging in Living Cells. ACS Sens 2020; 5:1068-1074. [PMID: 32227860 DOI: 10.1021/acssensors.9b02590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Novel pH probes based on 2-(6-methoxynaphthalen-2-yl)-3,3-dimethyl-3H-indole have been synthesized and characterized. These compounds display excellent "off-on" fluorescence responses to acidic pH especially under two-photon (TP) excitation conditions as well as strong selectivity and sensitivity toward H+. These features are supported by fluorescence quantum yields over 35%, TP cross sections ∼60 GM, and good resistance to photodegradation under acidic conditions. The synthetic versatility of this model allows subcellular targets to be tuned through minor scaffold modifications without affecting its optical characteristics. The effectiveness of the probes' innate photophysical properties and the structural modifications for different pH-related applications are demonstrated in mouse embryonic fibroblast cells.
Collapse
Affiliation(s)
- Carlos Benitez-Martin
- Departamento de Quı́mica Orgánica, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - Juan A. Guadix
- Departamento de Biologı́a Animal, Facultad de Ciencias, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - John R. Pearson
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - Francisco Najera
- Departamento de Quı́mica Orgánica, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - Jose M. Perez-Pomares
- Departamento de Biologı́a Animal, Facultad de Ciencias, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| | - Ezequiel Perez-Inestrosa
- Departamento de Quı́mica Orgánica, Universidad de Málaga-IBIMA, Campus de Teatinos s/n, Málaga 29071, Spain
- Centro Andaluz de Nanomedicina y Biotecnologı́a-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, 29590 Campanillas, Málaga 29071, Spain
| |
Collapse
|
7
|
Chen JH. Protein kinase A phosphorylation potentiates cystic fibrosis transmembrane conductance regulator gating by relieving autoinhibition on the stimulatory C terminus of the regulatory domain. J Biol Chem 2020; 295:4577-4590. [PMID: 32102849 DOI: 10.1074/jbc.ra119.008427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/25/2020] [Indexed: 01/12/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel activated by protein kinase A (PKA) phosphorylation on the regulatory (R) domain. Phosphorylation at several R domain residues stimulates ATP-dependent channel openings and closings, termed channel gating. To explore the protein segment responsible for channel potentiation and PKA-dependent activation, deletion mutations were constructed by removing one to three protein segments of the R domain including residues 708-759 (ΔR708-759), R760-783, and R784-835, each of which contains one or two PKA phosphorylation sites. Deletion of R708-759 or R760-783 had little effect on CFTR gating, whereas all mutations lacking R784-835 reduced CFTR activity by decreasing the mean burst duration and increasing the interburst interval (IBI). The data suggest that R784-835 plays a major role in stimulating CFTR gating. For ATP-associated regulation, ΔR784-835 had minor impact on gating potentiation by 2'dATP, CaATP, and pyrophosphate. Interestingly, introducing a phosphorylated peptide matching R809-835 shortened the IBI of ΔR708-835-CFTR. Consistently, ΔR815-835, but not ΔR784-814, enhanced IBI, whereas both reduced mean burst duration. These data suggest that the entirety of R784-835 is required for stabilizing the open state of CFTR; however, R815-835, through interactions with the channel, is dominant for enhancing the opening rate. Of note, PKA markedly decreased the IBI of ΔR708-783-CFTR. Conversely, the IBI of ΔR708-814-CFTR was short and PKA-independent. These data reveal that for stimulating CFTR gating, PKA phosphorylation may relieve R784-814-mediated autoinhibition that prevents IBI shortening by R815-835 This mechanism may elucidate how the R domain potentiates channel gating and may unveil CFTR stimulation by other protein kinases.
Collapse
Affiliation(s)
- Jeng-Haur Chen
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province 321004, China .,University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen 518057, China .,Department of Internal Medicine and Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
8
|
VX-770-mediated potentiation of numerous human CFTR disease mutants is influenced by phosphorylation level. Sci Rep 2019; 9:13460. [PMID: 31530897 PMCID: PMC6749054 DOI: 10.1038/s41598-019-49921-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
VX-770 (ivacaftor) is approved for clinical use in CF patients bearing multiple CFTR mutations. VX-770 potentiated wildtype CFTR and several disease mutants expressed in oocytes in a manner modulated by PKA-mediated phosphorylation. Potentiation of some other mutants, including G551D-CFTR, was less dependent upon the level of phosphorylation, likely related to the severe gating defects in these mutants exhibited in part by a shift in PKA sensitivity to activation, possibly due to an electrostatic interaction of D551 with K1250. Phosphorylation-dependent potentiation of wildtype CFTR and other variants also was observed in epithelial cells. Hence, the efficacy of potentiators may be obscured by a ceiling effect when drug screening is performed under strongly phosphorylating conditions. These results should be considered in campaigns for CFTR potentiator discovery, and may enable the expansion of VX-770 to CF patients bearing ultra-orphan CFTR mutations.
Collapse
|
9
|
Csanády L, Vergani P, Gadsby DC. STRUCTURE, GATING, AND REGULATION OF THE CFTR ANION CHANNEL. Physiol Rev 2019; 99:707-738. [PMID: 30516439 DOI: 10.1152/physrev.00007.2018] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) belongs to the ATP binding cassette (ABC) transporter superfamily but functions as an anion channel crucial for salt and water transport across epithelial cells. CFTR dysfunction, because of mutations, causes cystic fibrosis (CF). The anion-selective pore of the CFTR protein is formed by its two transmembrane domains (TMDs) and regulated by its cytosolic domains: two nucleotide binding domains (NBDs) and a regulatory (R) domain. Channel activation requires phosphorylation of the R domain by cAMP-dependent protein kinase (PKA), and pore opening and closing (gating) of phosphorylated channels is driven by ATP binding and hydrolysis at the NBDs. This review summarizes available information on structure and mechanism of the CFTR protein, with a particular focus on atomic-level insight gained from recent cryo-electron microscopic structures and on the molecular mechanisms of channel gating and its regulation. The pharmacological mechanisms of small molecules targeting CFTR's ion channel function, aimed at treating patients suffering from CF and other diseases, are briefly discussed.
Collapse
Affiliation(s)
- László Csanády
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - Paola Vergani
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| | - David C Gadsby
- Department of Medical Biochemistry, Semmelweis University , Budapest , Hungary ; MTA-SE Ion Channel Research Group, Budapest , Hungary ; Department of Neuroscience, Physiology and Pharmacology, University College London , London , United Kingdom ; and Laboratory of Cardiac/Membrane Physiology, The Rockefeller University , New York, New York
| |
Collapse
|
10
|
Chen X, Zhu S, Zhenin M, Xu W, Bose SJ, Wong MPF, Leung GPH, Senderowitz H, Chen JH. A defective flexible loop contributes to the processing and gating defects of the predominant cystic fibrosis-causing mutation. FASEB J 2019; 33:5126-5142. [PMID: 30668920 DOI: 10.1096/fj.201801218rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
People with the genetic disease cystic fibrosis (CF) often carry a deletion mutation ΔF508 on the gene encoding the CF transmembrane conductance regulator (CFTR) Cl- channel. This mutation greatly reduces the CFTR maturation process and slows the channel opening rate. Here, we investigate whether residues near F508 contribute to these defects in ΔF508-CFTR. Most deletion mutations, but not alanine substitutions, of individual residues from positions 503 to 513 impaired CFTR maturation. Interestingly, only protein processing of ΔY512-CFTR, like that of ΔF508-CFTR, was greatly improved by low-temperature culture at 27°C or small-molecule corrector C18. The 2 mutant Cl- channels were equally slow to open, suggesting that they may share common structural flaws. Studies on the H3-H4 loop that links residues F508 and Y512 demonstrate that G509A/V510G mutations, moving G509 1 position backward in the loop, markedly enhanced ΔF508-CFTR maturation and opening rate while promoting protein stability and persistence of the H3 helix in ΔF508 nucleotide-binding domain 1. Moreover, V510A/S511A mutations noticeably increased ΔY512-CFTR maturation at 27°C and its opening rate. Thus, loop abnormalities may contribute to ΔF508- and ΔY512-CFTR defects. Importantly, correcting defects from G509 displacement in ΔF508-CFTR may offer a new avenue for drug discovery and CF treatments.-Chen, X., Zhu, S., Zhenin, M., Xu, W., Bose, S. J., Wong, M. P.-F., Leung, G. P. H., Senderowitz, H., Chen, J.-H. A defective flexible loop contributes to the processing and gating defects of the predominant cystic fibrosis-causing mutation.
Collapse
Affiliation(s)
- Xinying Chen
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Siyu Zhu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Michael Zhenin
- Department of Chemistry, Bar Ilan University, Ramat-Gan, Israel
| | - Weiyi Xu
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - Samuel J Bose
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom; and
| | - Molly Pik-Fan Wong
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| | - George P H Leung
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | | | - Jeng-Haur Chen
- School of Biomedical Sciences, University of Hong Kong, Hong Kong.,The University of Hong Kong Shenzhen Institute of Research and Innovation, Shenzhen, China
| |
Collapse
|
11
|
McNicholas CM. Beyond cystic fibrosis transmembrane conductance regulator (CFTR) single channel kinetics: implications for therapeutic intervention. J Physiol 2018; 595:1015-1016. [PMID: 28198020 DOI: 10.1113/jp273675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Carmel M McNicholas
- Department of Cell, Developmental and Integrative Biology and The Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|