1
|
Kurz MJ, Taylor BK, Heinrichs-Graham E, Spooner RK, Baker SE, Wilson TW. Motor practice related changes in the sensorimotor cortices of youth with cerebral palsy. Brain Commun 2024; 6:fcae332. [PMID: 39391334 PMCID: PMC11465084 DOI: 10.1093/braincomms/fcae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
The altered sensorimotor cortical dynamics seen in youth with cerebral palsy appear to be tightly coupled with their motor performance errors and uncharacteristic mobility. Very few investigations have used these cortical dynamics as potential biomarkers to predict the extent of the motor performance changes that might be seen after physical therapy or in the design of new therapeutic interventions that target a youth's specific neurophysiological deficits. This cohort investigation was directed at evaluating the practice dependent changes in the sensorimotor cortical oscillations exhibited by youth with cerebral palsy as a step towards addressing this gap. We used magnetoencephalography to image the changes in the cortical oscillations before and after youth with cerebral palsy (N = 25; age = 15.2 ± 4.5 years; Gross Motor Function Classification Score Levels I-III) and neurotypical controls (N = 18; age = 14.6 ± 3.1 years) practiced a knee extension isometric target-matching task. Subsequently, structural equation modelling was used to assess the multivariate relationship between changes in beta (16-22 Hz) and gamma (66-82 Hz) oscillations and the motor performance after practice. The structural equation modelling results suggested youth with cerebral palsy who had a faster reaction time after practice tended to also have a stronger peri-movement beta oscillation in the sensorimotor cortices following practicing. The stronger beta oscillations were inferred to reflect greater certainty in the selected motor plan. The models also indicated that youth with cerebral palsy who overshot the targets less and matched the targets sooner tended to have a stronger execution-related gamma response in the sensorimotor cortices after practice. This stronger gamma response may represent improve activation of the sensorimotor neural generators and/or alterations in the GABAergic interneuron inhibitory-excitatory dynamics. These novel neurophysiological results provide a window on the potential neurological changes governing the practice-related outcomes in the context of the physical therapy.
Collapse
Affiliation(s)
- Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Sarah E Baker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
2
|
Wang Y, Chen Y, Chen L, Herron BJ, Chen XY, Wolpaw JR. Motor learning changes the axon initial segment of the spinal motoneuron. J Physiol 2024; 602:2107-2126. [PMID: 38568869 PMCID: PMC11196014 DOI: 10.1113/jp283875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.
Collapse
Affiliation(s)
- Yu Wang
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Yi Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Lu Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
| | - Bruce J. Herron
- Wadsworth Center, New York State Department of Health, 150 New Scotland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Xiang Yang Chen
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| | - Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, 113 Holland Ave, Albany, NY 12208
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, New York
| |
Collapse
|
3
|
Grau JW, Hudson KE, Johnston DT, Partipilo SR. Updating perspectives on spinal cord function: motor coordination, timing, relational processing, and memory below the brain. Front Syst Neurosci 2024; 18:1184597. [PMID: 38444825 PMCID: PMC10912355 DOI: 10.3389/fnsys.2024.1184597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
Those studying neural systems within the brain have historically assumed that lower-level processes in the spinal cord act in a mechanical manner, to relay afferent signals and execute motor commands. From this view, abstracting temporal and environmental relations is the province of the brain. Here we review work conducted over the last 50 years that challenges this perspective, demonstrating that mechanisms within the spinal cord can organize coordinated behavior (stepping), induce a lasting change in how pain (nociceptive) signals are processed, abstract stimulus-stimulus (Pavlovian) and response-outcome (instrumental) relations, and infer whether stimuli occur in a random or regular manner. The mechanisms that underlie these processes depend upon signal pathways (e.g., NMDA receptor mediated plasticity) analogous to those implicated in brain-dependent learning and memory. New data show that spinal cord injury (SCI) can enable plasticity within the spinal cord by reducing the inhibitory effect of GABA. It is suggested that the signals relayed to the brain may contain information about environmental relations and that spinal cord systems can coordinate action in response to descending signals from the brain. We further suggest that the study of stimulus processing, learning, memory, and cognitive-like processing in the spinal cord can inform our views of brain function, providing an attractive model system. Most importantly, the work has revealed new avenues of treatment for those that have suffered a SCI.
Collapse
Affiliation(s)
- James W. Grau
- Lab of Dr. James Grau, Department of Psychological and Brain Sciences, Cellular and Behavioral Neuroscience, Texas A&M University, College Station, TX, United States
| | | | | | | |
Collapse
|
4
|
Refy O, Blanchard B, Miller-Peterson A, Dalrymple AN, Bedoy EH, Zaripova A, Motaghedi N, Mo O, Panthangi S, Reinhart A, Torres-Oviedo G, Geyer H, Weber DJ. Dynamic spinal reflex adaptation during locomotor adaptation. J Neurophysiol 2023; 130:1008-1014. [PMID: 37701940 DOI: 10.1152/jn.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
The dynamics and interaction of spinal and supraspinal centers during locomotor adaptation remain vaguely understood. In this work, we use Hoffmann reflex measurements to investigate changes in spinal reflex gains during split-belt locomotor adaptation. We show that spinal reflex gains are dynamically modulated during split-belt locomotor adaptation. During first exposure to split-belt transitions, modulation occurs mostly on the leg ipsilateral to the speed change and constitutes rapid suppression or facilitation of the reflex gains, followed by slow recovery to baseline. Over repeated exposure, the modulation pattern washes out. We further show that reflex gain modulation strongly correlates with correction of leg asymmetry, and cannot be explained by speed modulation solely. We argue that reflex modulation is likely of supraspinal origins and constitutes an integral part of the neural substrate underlying split-belt locomotor adaptation.NEW & NOTEWORTHY This work presents direct evidence for spinal reflex modulation during locomotor adaptation. In particular, we show that reflexes can be modulated on-demand unilaterally during split-belt locomotor adaptation and speculate about reflex modulation as an underlying mechanism for adaptation of gait asymmetry in healthy adults.
Collapse
Affiliation(s)
- Omar Refy
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Legged Systems Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Belle Blanchard
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Abigail Miller-Peterson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, Utah, United States
| | - Ernesto H Bedoy
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Amelia Zaripova
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Nadim Motaghedi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Owen Mo
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Shalini Panthangi
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Alex Reinhart
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Gelsy Torres-Oviedo
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hartmut Geyer
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Legged Systems Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Wolpaw JR, Thompson AK. Enhancing neurorehabilitation by targeting beneficial plasticity. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1198679. [PMID: 37456795 PMCID: PMC10338914 DOI: 10.3389/fresc.2023.1198679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Neurorehabilitation is now one of the most exciting areas in neuroscience. Recognition that the central nervous system (CNS) remains plastic through life, new understanding of skilled behaviors (skills), and novel methods for engaging and guiding beneficial plasticity combine to provide unprecedented opportunities for restoring skills impaired by CNS injury or disease. The substrate of a skill is a distributed network of neurons and synapses that changes continually through life to ensure that skill performance remains satisfactory as new skills are acquired, and as growth, aging, and other life events occur. This substrate can extend from cortex to spinal cord. It has recently been given the name "heksor." In this new context, the primary goal of rehabilitation is to enable damaged heksors to repair themselves so that their skills are once again performed well. Skill-specific practice, the mainstay of standard therapy, often fails to optimally engage the many sites and kinds of plasticity available in the damaged CNS. New noninvasive technology-based interventions can target beneficial plasticity to critical sites in damaged heksors; these interventions may thereby enable much wider beneficial plasticity that enhances skill recovery. Targeted-plasticity interventions include operant conditioning of a spinal reflex or corticospinal motor evoked potential (MEP), paired-pulse facilitation of corticospinal connections, and brain-computer interface (BCI)-based training of electroencephalographic (EEG) sensorimotor rhythms. Initial studies in people with spinal cord injury, stroke, or multiple sclerosis show that these interventions can enhance skill recovery beyond that achieved by skill-specific practice alone. After treatment ends, the repaired heksors maintain the benefits.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, United States
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
6
|
McCane LM, Wolpaw JR, Thompson AK. Effects of active and sham tDCS on the soleus H-reflex during standing. Exp Brain Res 2023; 241:1611-1622. [PMID: 37145136 PMCID: PMC10224818 DOI: 10.1007/s00221-023-06624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Weak transcranial direct current stimulation (tDCS) is known to affect corticospinal excitability and enhance motor skill acquisition, whereas its effects on spinal reflexes in actively contracting muscles are yet to be established. Thus, in this study, we examined the acute effects of Active and Sham tDCS on the soleus H-reflex during standing. In fourteen adults without known neurological conditions, the soleus H-reflex was repeatedly elicited at just above M-wave threshold throughout 30 min of Active (N = 7) or Sham (N = 7) 2-mA tDCS over the primary motor cortex in standing. The maximum H-reflex (Hmax) and M-wave (Mmax) were also measured before and immediately after 30 min of tDCS. The soleus H-reflex amplitudes became significantly larger (by 6%) ≈1 min into Active or Sham tDCS and gradually returned toward the pre-tDCS values, on average, within 15 min. With Active tDCS, the amplitude reduction from the initial increase appeared to occur more swiftly than with Sham tDCS. An acute temporary increase in the soleus H-reflex amplitude within the first minute of Active and Sham tDCS found in this study indicates a previously unreported effect of tDCS on the H-reflex excitability. The present study suggests that neurophysiological characterization of Sham tDCS effects is just as important as investigating Active tDCS effects in understanding and defining acute effects of tDCS on the excitability of spinal reflex pathways.
Collapse
Affiliation(s)
- Lynn M McCane
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, 02881, USA
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, 12208, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VAMC, Albany, NY, 12208, USA
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, MSC 700, Charleston, SC, 29425, USA.
| |
Collapse
|
7
|
Kim K, Akbas T, Lee R, Manella K, Sulzer J. Self-modulation of rectus femoris reflex excitability in humans. Sci Rep 2023; 13:8134. [PMID: 37208394 DOI: 10.1038/s41598-023-34709-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Hyperreflexia is common after neurological injury such as stroke, yet clinical interventions have had mixed success. Our previous research has shown that hyperreflexia of the rectus femoris (RF) during pre-swing is closely associated with reduced swing phase knee flexion in those with post-stroke Stiff-Knee gait (SKG). Thus, reduction of RF hyperreflexia may improve walking function in those with post-stroke SKG. A non-pharmacological procedure for reducing hyperreflexia has emerged based on operant conditioning of H-reflex, an electrical analog of the spinal stretch reflex. It is currently unknown whether operant conditioning can be applied to the RF. This feasibility study trained 7 participants (5 neurologically intact, 2 post-stroke) to down-condition the RF H-reflex using visual feedback. We found an overall decrease in average RF H-reflex amplitude among all 7 participants (44% drop, p < 0.001, paired t-test), of which the post-stroke individuals contributed (49% drop). We observed a generalized training effect across quadriceps muscles. Post-stroke individuals exhibited improvements in peak knee-flexion velocity, reflex excitability during walking, and clinical measures of spasticity. These outcomes provide promising initial results that operant RF H-reflex conditioning is feasible, encouraging expansion to post-stroke individuals. This procedure could provide a targeted alternative in spasticity management.
Collapse
Affiliation(s)
| | | | - Robert Lee
- St. David's Medical Center, Austin, TX, USA
| | | | - James Sulzer
- University of Texas at Austin, Austin, TX, USA.
- MetroHealth Hospital and Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
8
|
Pal A, Park H, Ramamurthy A, Asan AS, Bethea T, Johnkutty M, Carmel JB. Spinal cord associative plasticity improves forelimb sensorimotor function after cervical injury. Brain 2022; 145:4531-4544. [PMID: 36063483 PMCID: PMC10200304 DOI: 10.1093/brain/awac235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 01/06/2023] Open
Abstract
Associative plasticity occurs when two stimuli converge on a common neural target. Previous efforts to promote associative plasticity have targeted cortex, with variable and moderate effects. In addition, the targeted circuits are inferred, rather than tested directly. In contrast, we sought to target the strong convergence between motor and sensory systems in the spinal cord. We developed spinal cord associative plasticity, precisely timed pairing of motor cortex and dorsal spinal cord stimulations, to target this interaction. We tested the hypothesis that properly timed paired stimulation would strengthen the sensorimotor connections in the spinal cord and improve recovery after spinal cord injury. We tested physiological effects of paired stimulation, the pathways that mediate it, and its function in a preclinical trial. Subthreshold spinal cord stimulation strongly augmented motor cortex evoked muscle potentials at the time they were paired, but only when they arrived synchronously in the spinal cord. This paired stimulation effect depended on both cortical descending motor and spinal cord proprioceptive afferents; selective inactivation of either of these pathways fully abrogated the paired stimulation effect. Spinal cord associative plasticity, repetitive pairing of these pathways for 5 or 30 min in awake rats, increased spinal excitability for hours after pairing ended. To apply spinal cord associative plasticity as therapy, we optimized the parameters to promote strong and long-lasting effects. This effect was just as strong in rats with cervical spinal cord injury as in uninjured rats, demonstrating that spared connections after moderate spinal cord injury were sufficient to support plasticity. In a blinded trial, rats received a moderate C4 contusive spinal cord injury. Ten days after injury, they were randomized to 30 min of spinal cord associative plasticity each day for 10 days or sham stimulation. Rats with spinal cord associative plasticity had significantly improved function on the primary outcome measure, a test of dexterity during manipulation of food, at 50 days after spinal cord injury. In addition, rats with spinal cord associative plasticity had persistently stronger responses to cortical and spinal stimulation than sham stimulation rats, indicating a spinal locus of plasticity. After spinal cord associative plasticity, rats had near normalization of H-reflex modulation. The groups had no difference in the rat grimace scale, a measure of pain. We conclude that spinal cord associative plasticity strengthens sensorimotor connections within the spinal cord, resulting in partial recovery of reflex modulation and forelimb function after moderate spinal cord injury. Since both motor cortex and spinal cord stimulation are performed routinely in humans, this approach can be trialled in people with spinal cord injury or other disorders that damage sensorimotor connections and impair dexterity.
Collapse
Affiliation(s)
- Ajay Pal
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - HongGeun Park
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Aditya Ramamurthy
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Ahmet S Asan
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Thelma Bethea
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Meenu Johnkutty
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
| | - Jason B Carmel
- Department of Orthopedics, Columbia University, New York, NY 10032, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
9
|
Behboodi A, Lee WA, Hinchberger VS, Damiano DL. Determining optimal mobile neurofeedback methods for motor neurorehabilitation in children and adults with non-progressive neurological disorders: a scoping review. J Neuroeng Rehabil 2022; 19:104. [PMID: 36171602 PMCID: PMC9516814 DOI: 10.1186/s12984-022-01081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Background Brain–computer interfaces (BCI), initially designed to bypass the peripheral motor system to externally control movement using brain signals, are additionally being utilized for motor rehabilitation in stroke and other neurological disorders. Also called neurofeedback training, multiple approaches have been developed to link motor-related cortical signals to assistive robotic or electrical stimulation devices during active motor training with variable, but mostly positive, functional outcomes reported. Our specific research question for this scoping review was: for persons with non-progressive neurological injuries who have the potential to improve voluntary motor control, which mobile BCI-based neurofeedback methods demonstrate or are associated with improved motor outcomes for Neurorehabilitation applications? Methods We searched PubMed, Web of Science, and Scopus databases with all steps from study selection to data extraction performed independently by at least 2 individuals. Search terms included: brain machine or computer interfaces, neurofeedback and motor; however, only studies requiring a motor attempt, versus motor imagery, were retained. Data extraction included participant characteristics, study design details and motor outcomes. Results From 5109 papers, 139 full texts were reviewed with 23 unique studies identified. All utilized EEG and, except for one, were on the stroke population. The most commonly reported functional outcomes were the Fugl-Meyer Assessment (FMA; n = 13) and the Action Research Arm Test (ARAT; n = 6) which were then utilized to assess effectiveness, evaluate design features, and correlate with training doses. Statistically and functionally significant pre-to post training changes were seen in FMA, but not ARAT. Results did not differ between robotic and electrical stimulation feedback paradigms. Notably, FMA outcomes were positively correlated with training dose. Conclusion This review on BCI-based neurofeedback training confirms previous findings of effectiveness in improving motor outcomes with some evidence of enhanced neuroplasticity in adults with stroke. Associative learning paradigms have emerged more recently which may be particularly feasible and effective methods for Neurorehabilitation. More clinical trials in pediatric and adult neurorehabilitation to refine methods and doses and to compare to other evidence-based training strategies are warranted.
Collapse
Affiliation(s)
- Ahad Behboodi
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | - Walker A Lee
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA
| | | | - Diane L Damiano
- Rehabilitation Medicine Department, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
10
|
Thompson AK, Gill CR, Feng W, Segal RL. Operant down-conditioning of the soleus H-reflex in people after stroke. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:859724. [PMID: 36188979 PMCID: PMC9397863 DOI: 10.3389/fresc.2022.859724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023]
Abstract
Through operant conditioning, spinal reflex behaviors can be changed. Previous studies in rats indicate that the sensorimotor cortex and corticospinal tract are essential in inducing and maintaining reflex changes induced through conditioning. In people with incomplete spinal cord injury (SCI), an operant down-conditioning protocol decreased the soleus H-reflex size and improved walking speed and symmetry, suggesting that a partially preserved spinal cord can support conditioning-induced plasticity and benefit from it. This study examined whether down-conditioning can decrease the soleus H-reflex in people with supraspinal injury (i.e., cortical or subcortical stroke). Operant down-conditioning was applied to the soleus H-reflex in a cohort of 12 stroke people with chronic spastic hemiparesis (>12 months from stroke onset of symptoms). Each participant completed 6 baseline and 30 conditioning sessions over 12 weeks. In each baseline session, 225 control H-reflexes were elicited without any feedback on H-reflex size. In each conditioning session, 225 conditioned H-reflexes were elicited while the participant was asked to decrease H-reflex size and was given visual feedback as to whether the resulting H-reflex was smaller than a criterion value. In six of 12 participants, the conditioned H-reflex became significantly smaller by 30% on average, whereas in other 6 participants, it did not. The difference between the subgroups was largely attributable to the difference in across-session control reflex change. Ten-meter walking speed was increased by various extent (+0.04 to +0.35, +0.14 m/s on average) among the six participants whose H-reflex decreased, whereas the change was 0.00 m/s on average for the rest of participants. Although less than what was seen in participants with SCI, the fact that conditioning succeeded in 50% of stroke participants supports the feasibility of reflex down-conditioning in people after stroke. At the same time, the difference in across-session control reflex change and conditioning success rate may reflect a critical role of supraspinal activity in producing long-term plasticity in the spinal cord, as previous animal studies suggested.
Collapse
Affiliation(s)
- Aiko K. Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Christina R. Gill
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Wuwei Feng
- Department of Neurology, College of Health Professions, Duke University School of Medicine, Durham, NC, United States
| | - Richard L. Segal
- Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
11
|
Loeb GE. Developing Intelligent Robots that Grasp Affordance. Front Robot AI 2022; 9:951293. [PMID: 35865329 PMCID: PMC9294137 DOI: 10.3389/frobt.2022.951293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Humans and robots operating in unstructured environments both need to classify objects through haptic exploration and use them in various tasks, but currently they differ greatly in their strategies for acquiring such capabilities. This review explores nascent technologies that promise more convergence. A novel form of artificial intelligence classifies objects according to sensory percepts during active exploration and decides on efficient sequences of exploratory actions to identify objects. Representing objects according to the collective experience of manipulating them provides a substrate for discovering causality and affordances. Such concepts that generalize beyond explicit training experiences are an important aspect of human intelligence that has eluded robots. For robots to acquire such knowledge, they will need an extended period of active exploration and manipulation similar to that employed by infants. The efficacy, efficiency and safety of such behaviors depends on achieving smooth transitions between movements that change quickly from exploratory to executive to reflexive. Animals achieve such smoothness by using a hierarchical control scheme that is fundamentally different from those of conventional robotics. The lowest level of that hierarchy, the spinal cord, starts to self-organize during spontaneous movements in the fetus. This allows its connectivity to reflect the mechanics of the musculoskeletal plant, a bio-inspired process that could be used to adapt spinal-like middleware for robots. Implementation of these extended and essential stages of fetal and infant development is impractical, however, for mechatronic hardware that does not heal and replace itself like biological tissues. Instead such development can now be accomplished in silico and then cloned into physical robots, a strategy that could transcend human performance.
Collapse
|
12
|
Corcos DM, Myklebust BM, Latash ML. The legacy of Gerald L. Gottlieb in human movement neuroscience. J Neurophysiol 2022; 128:148-159. [PMID: 35675443 DOI: 10.1152/jn.00141.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper, we review the legacy of Gerald (Gerry) Gottlieb in various fields related to the neural control of human movement. His studies on the myotatic (stretch) reflex and postmyotatic responses to ankle joint perturbations paved the way for current explorations of long-loop reflexes and their role in the control of movement. The dual-strategy hypothesis introduced order into a large body of literature on the triphasic muscle activation patterns seen over a variety of voluntary movements in healthy persons. The dual-strategy hypothesis continues to be important for understanding the performance of subjects with disordered motor control. The principle of linear synergy (covariance of joint torques) was an attempt to solve one of the notorious problems of motor redundancy, which remains an important topic in the field. Gerry's attitude toward the equilibrium-point hypothesis varied between rejection and using it to explore patterns of hypothetical control variables and movement variability. The discovery of reciprocal excitation in healthy neonates fostered other studies of changes in spinal cord physiology as motor skills develop. In addition, studies of people with spasticity and the effects of treatment with intrathecal baclofen were crucial in demonstrating the possibility of unmasking voluntary movements after suppression of the hyperreflexia of spasticity. Gerry Gottlieb contributed a significant body of knowledge that formed a solid foundation from which to study a variety of neurological diseases and their treatments, and a more comprehensive and parsimonious foundation to describe the neural control of human movement.
Collapse
Affiliation(s)
- Daniel M Corcos
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Barbara M Myklebust
- Retired from the Office of Surveillance and Biometrics and the Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
13
|
Wolpaw JR, Kamesar A. Heksor: The CNS substrate of an adaptive behavior. J Physiol 2022; 600:3423-3452. [PMID: 35771667 PMCID: PMC9545119 DOI: 10.1113/jp283291] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past half‐century, the largely hardwired central nervous system (CNS) of 1970 has become the ubiquitously plastic CNS of today, in which change is the rule not the exception. This transformation complicates a central question in neuroscience: how are adaptive behaviours – behaviours that serve the needs of the individual – acquired and maintained through life? It poses a more basic question: how do many adaptive behaviours share the ubiquitously plastic CNS? This question compels neuroscience to adopt a new paradigm. The core of this paradigm is a CNS entity with unique properties, here given the name heksor from the Greek hexis. A heksor is a distributed network of neurons and synapses that changes itself as needed to maintain the key features of an adaptive behaviour, the features that make the behaviour satisfactory. Through their concurrent changes, the numerous heksors that share the CNS negotiate the properties of the neurons and synapses that they all use. Heksors keep the CNS in a state of negotiated equilibrium that enables each heksor to maintain the key features of its behaviour. The new paradigm based on heksors and the negotiated equilibrium they create is supported by animal and human studies of interactions among new and old adaptive behaviours, explains otherwise inexplicable results, and underlies promising new approaches to restoring behaviours impaired by injury or disease. Furthermore, the paradigm offers new and potentially important answers to extant questions, such as the generation and function of spontaneous neuronal activity, the aetiology of muscle synergies, and the control of homeostatic plasticity.
![]()
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- Director, National Center for Adaptive Neurotechnologies, Professor of Biomedical Sciences, State University of New York at Albany, Albany Stratton VA Medical Center, Albany, NY, 12208
| | - Adam Kamesar
- Professor of Judaeo-Hellenistic Literature, Hebrew Union College, Cincinnati, Ohio, 45220
| |
Collapse
|
14
|
Existing function in primary visual cortex is not perturbed by new skill acquisition of a non-matched sensory task. Nat Commun 2022; 13:3638. [PMID: 35752622 PMCID: PMC9233699 DOI: 10.1038/s41467-022-31440-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Acquisition of new skills has the potential to disturb existing network function. To directly assess whether previously acquired cortical function is altered during learning, mice were trained in an abstract task in which selected activity patterns were rewarded using an optical brain-computer interface device coupled to primary visual cortex (V1) neurons. Excitatory neurons were longitudinally recorded using 2-photon calcium imaging. Despite significant changes in local neural activity during task performance, tuning properties and stimulus encoding assessed outside of the trained context were not perturbed. Similarly, stimulus tuning was stable in neurons that remained responsive following a different, visual discrimination training task. However, visual discrimination training increased the rate of representational drift. Our results indicate that while some forms of perceptual learning may modify the contribution of individual neurons to stimulus encoding, new skill learning is not inherently disruptive to the quality of stimulus representation in adult V1.
Collapse
|
15
|
Abstract
When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands. In this article, we describe and discuss the essential contribution of somatosensory feedback to locomotion. We start with a discussion of how biomechanical properties of the body affect somatosensory feedback. We follow with the different types of mechanoreceptors and somatosensory afferents and their activity during locomotion. We then describe central projections to locomotor networks and the modulation of somatosensory feedback during locomotion and its mechanisms. We then discuss experimental approaches and animal models used to investigate the control of locomotion by somatosensory feedback before providing an overview of the different functional roles of somatosensory feedback for locomotion. Lastly, we briefly describe the role of somatosensory feedback in the recovery of locomotion after neurological injury. We highlight the fact that somatosensory feedback is an essential component of a highly integrated system for locomotor control. © 2021 American Physiological Society. Compr Physiol 11:1-71, 2021.
Collapse
Affiliation(s)
- Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Quebec, Canada
| | - Turgay Akay
- Department of Medical Neuroscience, Atlantic Mobility Action Project, Brain Repair Center, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Boris I Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Spinal cord representation of motor cortex plasticity reflects corticospinal tract LTP. Proc Natl Acad Sci U S A 2021; 118:2113192118. [PMID: 34934000 PMCID: PMC8719859 DOI: 10.1073/pnas.2113192118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Although it is well known that activity-dependent motor cortex (MCX) plasticity produces long-term potentiation (LTP) of local cortical circuits, leading to enhanced muscle function, the effects on the corticospinal projection to spinal neurons has not yet been thoroughly studied. Here, we investigate a spinal locus for corticospinal tract (CST) plasticity in anesthetized rats using multichannel recording of motor-evoked, intraspinal local field potentials (LFPs) at the sixth cervical spinal cord segment. We produced LTP by intermittent theta burst electrical stimulation (iTBS) of the wrist area of MCX. Approximately 3 min of MCX iTBS potentiated the monosynaptic excitatory LFP recorded within the CST termination field in the dorsal horn and intermediate zone for at least 15 min after stimulation. Ventrolaterally, in the spinal cord gray matter, which is outside the CST termination field in rats, iTBS potentiated an oligosynaptic negative LFP that was localized to the wrist muscle motor pool. Spinal LTP remained robust, despite pharmacological blockade of iTBS-induced LTP within MCX using MK801, showing that activity-dependent spinal plasticity can be induced without concurrent MCX LTP. Pyramidal tract iTBS, which preferentially activates the CST, also produced significant spinal LTP, indicating the capacity for plasticity at the CST-spinal interneuron synapse. Our findings show CST monosynaptic LTP in spinal interneurons and demonstrate that spinal premotor circuits are capable of further modifying descending MCX control signals in an activity-dependent manner.
Collapse
|
17
|
Merlet AN, Harnie J, Frigon A. Inhibition and Facilitation of the Spinal Locomotor Central Pattern Generator and Reflex Circuits by Somatosensory Feedback From the Lumbar and Perineal Regions After Spinal Cord Injury. Front Neurosci 2021; 15:720542. [PMID: 34393721 PMCID: PMC8355562 DOI: 10.3389/fnins.2021.720542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023] Open
Abstract
Somatosensory feedback from peripheral receptors dynamically interacts with networks located in the spinal cord and brain to control mammalian locomotion. Although somatosensory feedback from the limbs plays a major role in regulating locomotor output, those from other regions, such as lumbar and perineal areas also shape locomotor activity. In mammals with a complete spinal cord injury, inputs from the lumbar region powerfully inhibit hindlimb locomotion, while those from the perineal region facilitate it. Our recent work in cats with a complete spinal cord injury shows that they also have opposite effects on cutaneous reflexes from the foot. Lumbar inputs increase the gain of reflexes while those from the perineal region decrease it. The purpose of this review is to discuss how somatosensory feedback from the lumbar and perineal regions modulate the spinal locomotor central pattern generator and reflex circuits after spinal cord injury and the possible mechanisms involved. We also discuss how spinal cord injury can lead to a loss of functional specificity through the abnormal activation of functions by somatosensory feedback, such as the concurrent activation of locomotion and micturition. Lastly, we discuss the potential functions of somatosensory feedback from the lumbar and perineal regions and their potential for promoting motor recovery after spinal cord injury.
Collapse
Affiliation(s)
- Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
18
|
Larrivee D. Values Evolution in Human Machine Relations: Grounding Computationalism and Neural Dynamics in a Physical a Priorism of Nature. Front Hum Neurosci 2021; 15:649544. [PMID: 34045948 PMCID: PMC8148575 DOI: 10.3389/fnhum.2021.649544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Denis Larrivee
- Mind and Brain Institute, School of Medicine, University of Navarra, Pamplona, Spain.,Department of Arts and Sciences, Loyola University, Chicago, IL, United States
| |
Collapse
|
19
|
Mrachacz-Kersting N, Ibáñez J, Farina D. Towards a mechanistic approach for the development of non-invasive brain-computer interfaces for motor rehabilitation. J Physiol 2021; 599:2361-2374. [PMID: 33728656 DOI: 10.1113/jp281314] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Brain-computer interfaces (BCIs) designed for motor rehabilitation use brain signals associated with motor-processing states to guide neuroplastic changes in a state-dependent manner. These technologies are uniquely positioned to induce targeted and functionally relevant plastic changes in the human motor nervous system. However, while several studies have shown that BCI-based neuromodulation interventions may improve motor function in patients with lesions in the central nervous system, the neurophysiological structures and processes targeted with the BCI interventions have not been identified. In this review, we first summarize current knowledge of the changes in the central nervous system associated with learning new motor skills. Then, we propose a classification of current BCI paradigms for plasticity induction and motor rehabilitation based on the expected neural plastic changes promoted. This classification proposes four paradigms based on two criteria: the plasticity induction methods and the brain states targeted. The existing evidence regarding the brain circuits and processes targeted with these different BCIs is discussed in detail. The proposed classification aims to serve as a starting point for future studies trying to elucidate the underlying plastic changes following BCI interventions.
Collapse
Affiliation(s)
| | - Jaime Ibáñez
- Department of Bioengineering, Centre for Neurotechnologies, Imperial College London, London, UK
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, UK
| | - Dario Farina
- Department of Bioengineering, Centre for Neurotechnologies, Imperial College London, London, UK
| |
Collapse
|
20
|
Oblak E, Lewis-Peacock J, Sulzer J. Differential neural plasticity of individual fingers revealed by fMRI neurofeedback. J Neurophysiol 2021; 125:1720-1734. [PMID: 33788634 DOI: 10.1152/jn.00509.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous work has shown that functional magnetic resonance imaging (fMRI) activity patterns associated with individual fingers can be shifted by temporary impairment of the hand. Here, we investigated whether these neural activity patterns could be modulated endogenously and whether any behavioral changes result from this modulation. We used decoded neurofeedback in healthy individuals to encourage participants to shift the neural activity pattern in sensorimotor cortex of the middle finger toward the index finger, and the ring finger toward the little finger. We first mapped the neural activity patterns for all fingers of the right hand in an fMRI pattern localizer session. Then, in three subsequent neurofeedback sessions, participants were rewarded after middle/ring finger presses according to their activity pattern overlap during each trial. A force-sensitive keyboard was used to ensure that participants were not altering their physical finger coordination patterns. We found evidence that participants could learn to shift the activity pattern of the ring finger but not of the middle finger. Increased variability of these activity patterns during the localizer session was associated with the ability of participants to modulate them using neurofeedback. Participants also showed an increased preference for the ring finger but not for the middle finger in a postneurofeedback motor task. Our results show that neural activity and behaviors associated with the ring finger are more readily modulated than those associated with the middle finger. These results have broader implications for rehabilitation of individual finger movements, which may be limited or enhanced by individual finger plasticity after neurological injury.NEW & NOTEWORTHY It may be possible to remobilize fingers after neurological injury by altering neural activity patterns. Toward this end, we examined whether finger-related neural activity patterns could be modified in healthy individuals without physical intervention, using fMRI neurofeedback. Our findings show that greater variability of neural patterns at baseline predicted a participant's ability to successfully shift these patterns. Because neural variability is common in individuals poststroke, this illustrates a potential clinical benefit of this procedure.
Collapse
Affiliation(s)
- Ethan Oblak
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
| | | | - James Sulzer
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
21
|
Grau JW, Baine RE, Bean PA, Davis JA, Fauss GN, Henwood MK, Hudson KE, Johnston DT, Tarbet MM, Strain MM. Learning to promote recovery after spinal cord injury. Exp Neurol 2020; 330:113334. [PMID: 32353465 PMCID: PMC7282951 DOI: 10.1016/j.expneurol.2020.113334] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The present review explores the concept of learning within the context of neurorehabilitation after spinal cord injury (SCI). The aim of physical therapy and neurorehabilitation is to bring about a lasting change in function-to encourage learning. Traditionally, it was assumed that the adult spinal cord is hardwired-immutable and incapable of learning. Research has shown that neurons within the lower (lumbosacral) spinal cord can support learning after communication with the brain has been disrupted by means of a thoracic transection. Noxious stimulation can sensitize nociceptive circuits within the spinal cord, engaging signal pathways analogous to those implicated in brain-dependent learning and memory. After a spinal contusion injury, pain input can fuel hemorrhage, increase the area of tissue loss (secondary injury), and undermine long-term recovery. Neurons within the spinal cord are sensitive to environmental relations. This learning has a metaplastic effect that counters neural over-excitation and promotes adaptive learning through an up-regulation of brain-derived neurotrophic factor (BDNF). Exposure to rhythmic stimulation, treadmill training, and cycling also enhances the expression of BDNF and counters the development of nociceptive sensitization. SCI appears to enable plastic potential within the spinal cord by down-regulating the Cl- co-transporter KCC2, which reduces GABAergic inhibition. This enables learning, but also fuels over-excitation and nociceptive sensitization. Pairing epidural stimulation with activation of motor pathways also promotes recovery after SCI. Stimulating motoneurons in response to activity within the motor cortex, or a targeted muscle, has a similar effect. It is suggested that a neurofunctionalist approach can foster the discovery of processes that impact spinal function and how they may be harnessed to foster recovery after SCI.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel E Baine
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Paris A Bean
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob A Davis
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Gizelle N Fauss
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Melissa K Henwood
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Kelsey E Hudson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - David T Johnston
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Megan M Tarbet
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Misty M Strain
- Battlefield Pain Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BHT-1, BSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
22
|
Thompson AK, Sinkjær T. Can Operant Conditioning of EMG-Evoked Responses Help to Target Corticospinal Plasticity for Improving Motor Function in People With Multiple Sclerosis? Front Neurol 2020; 11:552. [PMID: 32765389 PMCID: PMC7381136 DOI: 10.3389/fneur.2020.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
Corticospinal pathway and its function are essential in motor control and motor rehabilitation. Multiple sclerosis (MS) causes damage to the brain and descending connections, and often diminishes corticospinal function. In people with MS, neural plasticity is available, although it does not necessarily remain stable over the course of disease progress. Thus, inducing plasticity to the corticospinal pathway so as to improve its function may lead to motor control improvements, which impact one's mobility, health, and wellness. In order to harness plasticity in people with MS, over the past two decades, non-invasive brain stimulation techniques have been examined for addressing common symptoms, such as cognitive deficits, fatigue, and spasticity. While these methods appear promising, when it comes to motor rehabilitation, just inducing plasticity or having a capacity for it does not guarantee generation of better motor functions. Targeting plasticity to a key pathway, such as the corticospinal pathway, could change what limits one's motor control and improve function. One of such neural training methods is operant conditioning of the motor-evoked potential that aims to train the behavior of the corticospinal-motoneuron pathway. Through up-conditioning training, the person learns to produce the rewarded neuronal behavior/state of increased corticospinal excitability, and through iterative training, the rewarded behavior/state becomes one's habitual, daily motor behavior. This minireview introduces operant conditioning approach for people with MS. Guiding beneficial CNS plasticity on top of continuous disease progress may help to prolong the duration of maintained motor function and quality of life in people living with MS.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas Sinkjær
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Lundbeck Foundation, Copenhagen, Denmark
| |
Collapse
|
23
|
Giboin L, Tokuno C, Kramer A, Henry M, Gruber M. Motor learning induces time‐dependent plasticity that is observable at the spinal cord level. J Physiol 2020; 598:1943-1963. [DOI: 10.1113/jp278890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/28/2020] [Indexed: 01/22/2023] Open
Affiliation(s)
- Louis‐Solal Giboin
- Sensorimotor Performance Lab Human Performance Research Centre Department of Sport Science University of Konstanz Kinstanz Germany
| | - Craig Tokuno
- Department of Kinesiology Brock University St Catharines ON Canada
| | - Andreas Kramer
- Sensorimotor Performance Lab Human Performance Research Centre Department of Sport Science University of Konstanz Kinstanz Germany
| | - Mélanie Henry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology ULB Neuroscience Institute Université libre de Bruxelles Bruxelles Belgium
| | - Markus Gruber
- Sensorimotor Performance Lab Human Performance Research Centre Department of Sport Science University of Konstanz Kinstanz Germany
| |
Collapse
|
24
|
Contemori S, Dieni CV, Sullivan JA, Ferraresi A, Occhigrossi C, Calabrese F, Pettorossi VE, Biscarini A, Panichi R. Sensory inflow manipulation induces learning-like phenomena in motor behavior. Eur J Appl Physiol 2020; 120:811-828. [PMID: 32062702 DOI: 10.1007/s00421-020-04320-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Perceptual and goal-directed behaviors may be improved by repetitive sensory stimulations without practice-based training. Focal muscle vibration (f-MV) modulating the spatiotemporal properties of proprioceptive inflow is well-suited to investigate the effectiveness of sensory stimulation in influencing motor outcomes. Thus, in this study, we verified whether optimized f-MV stimulation patterns might affect motor control of upper limb movements. METHODS To answer this question, we vibrated the slightly tonically contracted anterior deltoid (AD), posterior deltoid (PD), and pectoralis major muscles in different combinations in forty healthy subjects at a frequency of 100 Hz for 10 min in single or repetitive administrations. We evaluated the vibration effect immediately after f-MV application on upper limb targeted movements tasks, and one week later. We assessed target accuracy, movement mean and peak speed, and normalized Jerk using a 3D optoelectronic motion capture system. Besides, we evaluated AD and PD activity during the tasks using wireless electromyography. RESULTS We found that f-MV may induce increases (p < 0.05) in movement accuracy, mean speed and smoothness, and changes (p < 0.05) in the electromyographic activity. The main effects of f-MV occurred overtime after repetitive vibration of the AD and PD muscles. CONCLUSION Thus, in healthy subjects, optimized f-MV stimulation patterns might over time affect the motor control of the upper limb movement. This finding implies that f-MV may improve the individual's ability to produce expected motor outcomes and suggests that it may be used to boost motor skills and learning during training and to support functional recovery in rehabilitation.
Collapse
Affiliation(s)
- Samuele Contemori
- School of Human Movement and Nutrition Sciences, Centre for Sensorimotor Performance, The University of Queensland, Brisbane, Australia
| | - Cristina V Dieni
- Department of Ophthalmology, University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | | | - Aldo Ferraresi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Chiara Occhigrossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Francesco Calabrese
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Vito E Pettorossi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Andrea Biscarini
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy
| | - Roberto Panichi
- Department of Experimental Medicine, Section of Physiology and Biochemistry, University of Perugia, Via Gambuli 1, 06132, Perugia, Italy.
| |
Collapse
|
25
|
Wolpaw JR, Millán JDR, Ramsey NF. Brain-computer interfaces: Definitions and principles. HANDBOOK OF CLINICAL NEUROLOGY 2020; 168:15-23. [PMID: 32164849 DOI: 10.1016/b978-0-444-63934-9.00002-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Throughout life, the central nervous system (CNS) interacts with the world and with the body by activating muscles and excreting hormones. In contrast, brain-computer interfaces (BCIs) quantify CNS activity and translate it into new artificial outputs that replace, restore, enhance, supplement, or improve the natural CNS outputs. BCIs thereby modify the interactions between the CNS and the environment. Unlike the natural CNS outputs that come from spinal and brainstem motoneurons, BCI outputs come from brain signals that represent activity in other CNS areas, such as the sensorimotor cortex. If BCIs are to be useful for important communication and control tasks in real life, the CNS must control these brain signals nearly as reliably and accurately as it controls spinal motoneurons. To do this, they might, for example, need to incorporate software that mimics the function of the subcortical and spinal mechanisms that participate in normal movement control. The realization of high reliability and accuracy is perhaps the most difficult and critical challenge now facing BCI research and development. The ongoing adaptive modifications that maintain effective natural CNS outputs take place primarily in the CNS. The adaptive modifications that maintain effective BCI outputs can also take place in the BCI. This means that the BCI operation depends on the effective collaboration of two adaptive controllers, the CNS and the BCI. Realization of this second adaptive controller, the BCI, and management of its interactions with concurrent adaptations in the CNS comprise another complex and critical challenge for BCI development. BCIs can use different kinds of brain signals recorded in different ways from different brain areas. Decisions about which signals recorded in which ways from which brain areas should be selected for which applications are empirical questions that can only be properly answered by experiments. BCIs, like other communication and control technologies, often face artifacts that contaminate or imitate their chosen signals. Noninvasive BCIs (e.g., EEG- or fNIRS-based) need to take special care to avoid interpreting nonbrain signals (e.g., cranial EMG) as brain signals. This typically requires comprehensive topographical and spectral evaluations. In theory, the outputs of BCIs can select a goal or control a process. In the future, the most effective BCIs will probably be those that combine goal selection and process control so as to distribute control between the BCI and the application in a fashion suited to the current action. Through such distribution, BCIs may most effectively imitate natural CNS operation. The primary measure of BCI development is the extent to which BCI systems benefit people with neuromuscular disorders. Thus, BCI clinical evaluation, validation, and dissemination is a key step. It is at the same time a complex and difficult process that depends on multidisciplinary collaboration and management of the demanding requirements of clinical studies. Twenty-five years ago, BCI research was an esoteric endeavor pursued in only a few isolated laboratories. It is now a steadily growing field that engages many hundreds of scientists, engineers, and clinicians throughout the world in an increasingly interconnected community that is addressing the key issues and pursuing the high potential of BCI technology.
Collapse
Affiliation(s)
- Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies and Stratton VA Medical Center, Wadsworth Center, Albany, NY, United States
| | - José Del R Millán
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, United States; Department of Neurology, The University of Texas at Austin, Austin, TX, United States
| | - Nick F Ramsey
- Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
26
|
Sun Y, Zehr EP. Training-Induced Neural Plasticity and Strength Are Amplified After Stroke. Exerc Sport Sci Rev 2019; 47:223-229. [PMID: 31283528 PMCID: PMC6887626 DOI: 10.1249/jes.0000000000000199] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Following stroke, sensorimotor brain networks and descending regulation are compromised but spinal interlimb neural connections remain morphologically intact. After cross-education strength and locomotion training, amplified neural plasticity and functional responses are observed in chronic stroke compared with neurologically intact participants. We hypothesize that poststroke neuroplasticity is amplified because of the involvement of interlimb neural connections that persist from our quadrupedal ancestry.
Collapse
Affiliation(s)
- Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC
- Human Discovery Science, International Collaboration on Repair Discovery (ICORD), Vancouver, BC
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC
- Human Discovery Science, International Collaboration on Repair Discovery (ICORD), Vancouver, BC
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
27
|
Thompson AK, Wolpaw JR. H-reflex conditioning during locomotion in people with spinal cord injury. J Physiol 2019; 599:2453-2469. [PMID: 31215646 PMCID: PMC7241089 DOI: 10.1113/jp278173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Key points In people or animals with incomplete spinal cord injury (SCI), changing a spinal reflex through an operant conditioning protocol can improve locomotion. All previous studies conditioned the reflex during steady‐state maintenance of a specific posture. By contrast, the present study down‐conditioned the reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The aim was to modify the functioning of the reflex in a specific phase of a dynamic movement. This novel swing‐phase conditioning protocol decreased the reflex much faster and farther than did the steady‐state protocol in people or animals with or without SCI, and it also improved locomotion. The reflex decrease persisted for at least 6 months after conditioning ended. The results suggest that conditioning reflex function in a specific phase of a dynamic movement offers a new approach to enhancing and/or accelerating recovery after SCI or in other disorders.
Abstract In animals and people with incomplete spinal cord injury, appropriate operant conditioning of a spinal reflex can improve impaired locomotion. In all previous conditioning studies, the reflex was conditioned during steady‐state maintenance of a stable posture; this steady‐state protocol aimed to change the excitability of the targeted reflex pathway; reflex size gradually changed over 8–10 weeks. The present study introduces a new protocol, comprising a dynamic protocol that aims to change the functioning of the reflex pathway during a specific phase of a complex movement. Specifically, we down‐conditioned the soleus H‐reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The swing‐phase H‐reflex, which is absent or very small in neurologically normal individuals, is abnormally large in this patient population. The results were clear. With swing‐phase down‐conditioning, the H‐reflex decreased much faster and farther than did the H‐reflex in all previous animal or human studies with the steady‐state protocol, and the decrease persisted for at least 6 months after conditioning ended. The H‐reflex decrease was accompanied by improvements in walking speed and in the modulation of locomotor electromyograph activity in proximal and distal muscles of both legs. These results provide new insight into the factors controlling spinal reflex conditioning; they suggest that the conditioning protocols targeting reflex function in a specific movement phase provide a promising new opportunity to enhance functional recovery after SCI or in other disorders. In people or animals with incomplete spinal cord injury (SCI), changing a spinal reflex through an operant conditioning protocol can improve locomotion. All previous studies conditioned the reflex during steady‐state maintenance of a specific posture. By contrast, the present study down‐conditioned the reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The aim was to modify the functioning of the reflex in a specific phase of a dynamic movement. This novel swing‐phase conditioning protocol decreased the reflex much faster and farther than did the steady‐state protocol in people or animals with or without SCI, and it also improved locomotion. The reflex decrease persisted for at least 6 months after conditioning ended. The results suggest that conditioning reflex function in a specific phase of a dynamic movement offers a new approach to enhancing and/or accelerating recovery after SCI or in other disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Jonathan R Wolpaw
- Wadsworth Center, NYS Department of Health, Albany, NY, USA.,Department of Neurology, Stratton VA Medical Center, Albany, NY, USA.,Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| |
Collapse
|
28
|
Thompson AK, Fiorenza G, Smyth L, Favale B, Brangaccio J, Sniffen J. Operant conditioning of the motor-evoked potential and locomotion in people with and without chronic incomplete spinal cord injury. J Neurophysiol 2019; 121:853-866. [PMID: 30625010 DOI: 10.1152/jn.00557.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foot drop is very common among people with chronic incomplete spinal cord injury (SCI) and likely stems from SCI that disturbs the corticospinal activation of the ankle dorsiflexor tibialis anterior (TA). Thus, if one can recover or increase the corticospinal excitability reduced by SCI, motor function recovery may be facilitated. Here, we hypothesized that in people suffering from weak dorsiflexion due to chronic incomplete SCI, increasing the TA motor-evoked potential (MEP) through operant up-conditioning can improve dorsiflexion during locomotion, while in people without any injuries, it would have little impact on already normal locomotion. Before and after 24 MEP conditioning or control sessions, locomotor electromyography (EMG) and kinematics were measured. This study reports the results of these locomotor assessments. In participants without SCI, locomotor EMG activity, soleus Hoffmann reflex modulation, and joint kinematics did not change, indicating that MEP up-conditioning or repeated single-pulse transcranial magnetic stimulation (i.e., control protocol) does not influence normal locomotion. In participants with SCI, MEP up-conditioning increased TA activity during the swing-to-swing stance transition phases and ankle joint motion during locomotion in the conditioned leg and increased walking speed consistently. In addition, the swing-phase TA activity and ankle joint motion also improved in the contralateral leg. The results are consistent with our hypothesis. Together with the previous operant conditioning studies in humans and rats, the present study suggests that operant conditioning can be a useful therapeutic tool for enhancing motor function recovery in people with SCI and other central nervous system disorders. NEW & NOTEWORTHY This study examined the functional impact of operant conditioning of motor-evoked potential (MEP) to transcranial magnetic stimulation that aimed to increase corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA). In people with chronic incomplete spinal cord injury (SCI), MEP up-conditioning increased TA activity and improved dorsiflexion during locomotion, while in people without injuries, it had little impact on already normal locomotion. MEP conditioning may potentially be used to enhance motor function recovery after SCI.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| | - Gina Fiorenza
- United Technologies Aerospace Systems, Windsor Locks, Connecticut
| | - Lindsay Smyth
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Briana Favale
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Jodi Brangaccio
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Janice Sniffen
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University , Stony Brook, New York
| |
Collapse
|
29
|
Brumley MR, Strain MM, Devine N, Bozeman AL. The Spinal Cord, Not to Be Forgotten: the Final Common Path for Development, Training and Recovery of Motor Function. Perspect Behav Sci 2018; 41:369-393. [PMID: 31976401 DOI: 10.1007/s40614-018-00177-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Research on learning, memory, and neural plasticity has long focused on the brain. However, the spinal cord also exhibits these phenomena to a remarkable degree. Following a spinal cord injury, the isolated spinal cord in vivo can adapt to the environment and benefit from training. The amount of plasticity or recovery of function following a spinal injury often depends on the age at which the injury occurs. In this overview, we discuss learning in the spinal cord, including associative conditioning, neural mechanisms, development, and applications to clinical populations. We take an integrated approach to the spinal cord, one that combines basic and experimental information about experience-dependent learning in animal models to clinical treatment of spinal cord injuries in humans. From such an approach, an important goal is to better inform therapeutic treatments for individuals with spinal cord injuries, as well as develop a more accurate and complete account of spinal cord and behavioral functioning.
Collapse
Affiliation(s)
- Michele R Brumley
- 1Department of Psychology, Idaho State University, 921 South 8th Avenue, Stop 8112, Pocatello, ID 83209-8112 USA
| | - Misty M Strain
- 2United States Army Institute of Surgical Research, JBSA-Fort Sam Houston, San Antonio, TX USA
| | - Nancy Devine
- 3Department of Physical and Occupational Therapy, Idaho State University, Pocatello, ID USA
| | - Aimee L Bozeman
- 1Department of Psychology, Idaho State University, 921 South 8th Avenue, Stop 8112, Pocatello, ID 83209-8112 USA
| |
Collapse
|
30
|
Thompson AK, Carruth H, Haywood R, Hill NJ, Sarnacki WA, McCane LM, Wolpaw JR, McFarland DJ. Effects of Sensorimotor Rhythm Modulation on the Human Flexor Carpi Radialis H-Reflex. Front Neurosci 2018; 12:505. [PMID: 30090056 PMCID: PMC6068279 DOI: 10.3389/fnins.2018.00505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/04/2018] [Indexed: 11/18/2022] Open
Abstract
People can learn over training sessions to increase or decrease sensorimotor rhythms (SMRs) in the electroencephalogram (EEG). Activity-dependent brain plasticity is thought to guide spinal plasticity during motor skill learning; thus, SMR training may affect spinal reflexes and thereby influence motor control. To test this hypothesis, we investigated the effects of learned mu (8–13 Hz) SMR modulation on the flexor carpi radialis (FCR) H-reflex in 6 subjects with no known neurological conditions and 2 subjects with chronic incomplete spinal cord injury (SCI). All subjects had learned and practiced over more than 10 < 30-min training sessions to increase (SMR-up trials) and decrease (SMR-down trials) mu-rhythm amplitude over the hand/arm area of left sensorimotor cortex with ≥80% accuracy. Right FCR H-reflexes were elicited at random times during SMR-up and SMR-down trials, and in between trials. SMR modulation affected H-reflex size. In all the neurologically normal subjects, the H-reflex was significantly larger [116% ± 6 (mean ± SE)] during SMR-up trials than between trials, and significantly smaller (92% ± 1) during SMR-down trials than between trials (p < 0.05 for both, paired t-test). One subject with SCI showed similar H-reflex size dependence (high for SMR-up trials, low for SMR-down trials): the other subject with SCI showed no dependence. These results support the hypothesis that SMR modulation has predictable effects on spinal reflex excitability in people who are neurologically normal; they also suggest that it might be used to enhance therapies that seek to improve functional recovery in some individuals with SCI or other CNS disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Hannah Carruth
- Division Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Rachel Haywood
- Division Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - N Jeremy Hill
- Burke Neurological Institute, White Plains, NY, United States.,Blythedale Children's Hospital, Valhalla, NY, United States
| | - William A Sarnacki
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Lynn M McCane
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States.,Albany Stratton VA Medical Center, Albany, NY, United States
| | - Dennis J McFarland
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| |
Collapse
|
31
|
Eftekhar A, Norton JJS, McDonough CM, Wolpaw JR. Retraining Reflexes: Clinical Translation of Spinal Reflex Operant Conditioning. Neurotherapeutics 2018; 15:669-683. [PMID: 29987761 PMCID: PMC6095771 DOI: 10.1007/s13311-018-0643-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurological disorders, such as spinal cord injury, stroke, traumatic brain injury, cerebral palsy, and multiple sclerosis cause motor impairments that are a huge burden at the individual, family, and societal levels. Spinal reflex abnormalities contribute to these impairments. Spinal reflex measurements play important roles in characterizing and monitoring neurological disorders and their associated motor impairments, such as spasticity, which affects nearly half of those with neurological disorders. Spinal reflexes can also serve as therapeutic targets themselves. Operant conditioning protocols can target beneficial plasticity to key reflex pathways; they can thereby trigger wider plasticity that improves impaired motor skills, such as locomotion. These protocols may complement standard therapies such as locomotor training and enhance functional recovery. This paper reviews the value of spinal reflexes and the therapeutic promise of spinal reflex operant conditioning protocols; it also considers the complex process of translating this promise into clinical reality.
Collapse
Affiliation(s)
- Amir Eftekhar
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Christine M McDonough
- School of Health and Rehabilitation Services, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Neurology, Stratton VA Medical Center, Albany, NY, USA
| |
Collapse
|