1
|
Cairns SP, Renaud JM. The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue. J Physiol 2023; 601:5669-5687. [PMID: 37934587 DOI: 10.1113/jp285129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
A reduced muscle glycogen content and potassium (K+ ) disturbances across muscle membranes occur concomitantly during repeated intense exercise and together may contribute to skeletal muscle fatigue. Therefore, we examined whether raised extracellular K+ concentration ([K+ ]o ) (4 to 11 mM) interacts with lowered glycogen to reduce force production. Isometric contractions were evoked in isolated mouse soleus muscles (37°C) using direct supramaximal field stimulation. (1) Glycogen declined markedly in non-fatigued muscle with >2 h exposure in glucose-free physiological saline compared with control solutions (11 mM glucose), i.e. to <45% control. (2) Severe glycogen depletion was associated with increased 5'-AMP-activated protein kinase activity, indicative of metabolic stress. (3) The decline of peak tetanic force at 11 mM [K+ ]o was exacerbated from 67% initial at normal glycogen to 22% initial at lowered glycogen. This was due to a higher percentage of inexcitable fibres (71% vs. 43%), yet without greater sarcolemmal depolarisation or smaller amplitude action potentials. (4) Returning glucose while at 11 mM [K+ ]o increased both glycogen and force. (5) Exposure to 4 mM [K+ ]o glucose-free solutions (15 min) did not increase fatiguability during repeated tetani; however, after recovery there was a greater force decline at 11 mM [K+ ]o at lower than normal glycogen. (6) An important exponential relationship was established between relative peak tetanic force at 11 mM [K+ ]o and muscle glycogen content. These findings provide direct evidence of a synergistic interaction between raised [K+ ]o and lowered muscle glycogen as the latter shifts the peak tetanic force-resting EM relationship towards more negative resting EM due to lowered sarcolemmal excitability, which hence may contribute to muscle fatigue. KEY POINTS: Diminished muscle glycogen levels and raised extracellular potassium concentrations ([K+ ]o ) occur simultaneously during intense exercise and together may contribute to muscle fatigue. Prolonged exposure of isolated non-fatigued soleus muscles of mice to glucose-free physiological saline solutions markedly lowered muscle glycogen levels, as does fatigue then recovery in glucose-free solutions. For both approaches, the subsequent decline of maximal force at 11 mM [K+ ]o , which mimics interstitial [K+ ] levels during intense exercise, was exacerbated at lowered compared with normal glycogen. This was mainly due to many more muscle fibres becoming inexcitable. We established an important relationship that provides evidence of a synergistic interaction between raised [K+ ]o and lowered glycogen content to reduce force production. This paper indicates that partially lowered muscle glycogen (and/or metabolic stress) together with elevated interstitial [K+ ] interactively lowers muscle force, and hence may diminish performance especially during repeated high-intensity exercise.
Collapse
Affiliation(s)
- Simeon P Cairns
- SPRINZ, School of Sport and Recreation, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
- Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Neuromuscular Research Center, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Hoppe K, Sartorius T, Chaiklieng S, Wietzorrek G, Ruth P, Jurkat-Rott K, Wearing S, Lehmann-Horn F, Klingler W. Paxilline Prevents the Onset of Myotonic Stiffness in Pharmacologically Induced Myotonia: A Preclinical Investigation. Front Physiol 2020; 11:533946. [PMID: 33329012 PMCID: PMC7719791 DOI: 10.3389/fphys.2020.533946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Reduced Cl− conductance causes inhibited muscle relaxation after forceful voluntary contraction due to muscle membrane hyperexcitability. This represents the pathomechanism of myotonia congenita. Due to the prevailing data suggesting that an increased potassium level is a main contributor, we studied the effect of a modulator of a big conductance Ca2+- and voltage-activated K+ channels (BK) modulator on contraction and relaxation of slow- and high-twitch muscle specimen before and after the pharmacological induction of myotonia. Human and murine muscle specimens (wild-type and BK−/−) were exposed to anthracene-9-carboxylic acid (9-AC) to inhibit CLC-1 chloride channels and to induce myotonia in-vitro. Functional effects of BK-channel activation and blockade were investigated by exposing slow-twitch (soleus) and fast-twitch (extensor digitorum longus) murine muscle specimens or human musculus vastus lateralis to an activator (NS1608) and a blocker (Paxilline), respectively. Muscle-twitch force and relaxation times (T90/10) were monitored. Compared to wild type, fast-twitch muscle specimen of BK−/− mice resulted in a significantly decreased T90/10 in presence of 9-AC. Paxilline significantly shortened T90/10 of murine slow- and fast-twitch muscles as well as human vastus lateralis muscle. Moreover, twitch force was significantly reduced after application of Paxilline in myotonic muscle. NS1608 had opposite effects to Paxilline and aggravated the onset of myotonic activity by prolongation of T90/10. The currently used standard therapy for myotonia is, in some individuals, not very effective. This in vitro study demonstrated that a BK channel blocker lowers myotonic stiffness and thus highlights its potential therapeutic option in myotonia congenital (MC).
Collapse
Affiliation(s)
- Kerstin Hoppe
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe University, Frankfurt University Hospital, Frankfurt, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Wuerzburg University Hospital, Wuerzburg, Germany
| | - Tina Sartorius
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Sunisa Chaiklieng
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Ulm, Germany.,Faculty of Public Health, Khon Kaen University, Muang Khon Kaen, Thailand
| | - Georg Wietzorrek
- Institute for Molecular and Cellular Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tuebingen, Tuebingen, Germany
| | - Karin Jurkat-Rott
- Division of Experimental Anesthesiology, University Medical Center Ulm, Ulm, Germany
| | - Scott Wearing
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Conservative and Rehabilitation Orthopedics, Faculty of Sport and Health Science, Technical University of Munich, Munich, Germany
| | - Frank Lehmann-Horn
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Ulm, Germany
| | - Werner Klingler
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Ulm, Germany.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Department of Conservative and Rehabilitation Orthopedics, Faculty of Sport and Health Science, Technical University of Munich, Munich, Germany.,Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, SRH Clinincs, Sigmaringen, Germany
| |
Collapse
|
3
|
Hoppe K, Chaiklieng S, Lehmann-Horn F, Jurkat-Rott K, Wearing S, Klingler W. Preclinical pharmacological in vitro investigations on low chloride conductance myotonia: effects of potassium regulation. Pflugers Arch 2020; 472:1481-1494. [PMID: 32748018 DOI: 10.1007/s00424-020-02410-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
In myotonia, reduced Cl- conductance of the mutated ClC-1 channels causes hindered muscle relaxation after forceful voluntary contraction due to muscle membrane hyperexcitability. Repetitive contraction temporarily decreases myotonia, a phenomena called "warm up." The underlying mechanism for the reduction of hyperexcitability in warm-up is currently unknown. Since potassium displacement is known to reduce excitability in, for example, muscle fatigue, we characterized the role of potassium in native myotonia congenita (MC) muscle. Muscle specimens of ADR mice (an animal model for low gCl- conductance myotonia) were exposed to increasing K+ concentrations. To characterize functional effects of potassium ion current, the muscle of ADR mice was exposed to agonists and antagonists of the big conductance Ca2+-activated K+ channel (BK) and the voltage-gated Kv7 channel. Effects were monitored by functional force and membrane potential measurements. By increasing [K+]0 to 5 mM, the warm-up phenomena started earlier and at [K+]0 7 mM only weak myotonia was detected. The increase of [K+]0 caused a sustained membrane depolarization accompanied with a reduction of myotonic bursts in ADR mice. Retigabine, a Kv7.2-Kv7.5 activator, dose-dependently reduced relaxation deficit of ADR myotonic muscle contraction and promoted the warm-up phenomena. In vitro results of this study suggest that increasing potassium conductivity via activation of voltage-gated potassium channels enhanced the warm-up phenomena, thereby offering a potential therapeutic treatment option for myotonia congenita.
Collapse
Affiliation(s)
- Kerstin Hoppe
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Wuerzburg, Oberduerrbacher Str. 6, 97080, Wuerzburg, Germany.
| | - Sunisa Chaiklieng
- Division of Neurophysiology in the Center of Rare Diseases, Ulm University, Albert Einstein Allee 23, 89081, Ulm, Germany
- Faculty of Public Health, Khon Kaen University, Muang Khon Kaen, Thailand
| | - Frank Lehmann-Horn
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Wuerzburg, Oberduerrbacher Str. 6, 97080, Wuerzburg, Germany
| | - Karin Jurkat-Rott
- Universtiy Medical Center Ulm, Division of Experimental Anesthesiology, Albert-Einstein-Allee 23, 89081, Ullm, Germany
| | - Scott Wearing
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, 4059, Australia
- Department of Conservative and Rehabilitation Orthopedics, Faculty of Sport and Health Science, Technical University of Munich, Gerog-Brauchle-Ring 60/62, Munich, Germany
| | - Werner Klingler
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, 4059, Australia
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, SRH Clinincs, Hohenzollernstraße 40, 72488, Sigmaringen, Germany
- Department of Conservative and Rehabilitation Orthopedics, Faculty of Sport and Health Science, Technical University of Munich, Gerog-Brauchle-Ring 60/62, Munich, Germany
| |
Collapse
|