1
|
Ruggiero L, Gruber M. Neuromuscular mechanisms for the fast decline in rate of force development with muscle disuse - a narrative review. J Physiol 2024. [PMID: 39467095 DOI: 10.1113/jp285667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The removal of skeletal muscle tension (unloading or disuse) is followed by many changes in the neuromuscular system, including muscle atrophy and loss of isometric maximal strength (measured by maximal force, Fmax). Explosive strength, i.e. the ability to develop the highest force in the shortest possible time, to maximise rate of force development (RFD), is a fundamental neuromuscular capability, often more functionally relevant than maximal muscle strength. In the present review, we discuss data from studies that looked at the effect of muscle unloading on isometric maximal versus explosive strength. We present evidence that muscle unloading yields a greater decline in explosive relative to maximal strength. The longer the unloading duration, the smaller the difference between the decline in the two measures. Potential mechanisms that may explain the greater decline in measures of RFD relative to Fmax after unloading are higher recruitment thresholds and lower firing rates of motor units, slower twitch kinetics, impaired excitation-contraction coupling, and decreased tendon stiffness. Using a Hill-type force model, we showed that this ensemble of adaptations minimises the loss of force production at submaximal contraction intensities, at the expense of a disproportionately lower RFD. With regard to the high functional relevance of RFD on one hand, and the boosted detrimental effects of inactivity on RFD on the other hand, it seems crucial to implement specific exercises targeting explosive strength in populations that experience muscle disuse over a longer time.
Collapse
Affiliation(s)
- Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Ruggiero L, McNeil CJ. UBC-Nepal Expedition: Motor Unit Characteristics in Lowlanders Acclimatized to High Altitude and Sherpa. Med Sci Sports Exerc 2023; 55:430-439. [PMID: 36730980 DOI: 10.1249/mss.0000000000003070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION With acclimatization to high altitude (HA), adaptations occur throughout the nervous system and at the level of the muscle, which may affect motor unit (MU) characteristics. However, despite the importance of MUs as the final common pathway for the control of voluntary movement, little is known about their adaptations with acclimatization. METHODS Ten lowlanders and Sherpa participated in this study 7 to 14 d after arrival at HA (5050 m), with seven lowlanders repeating the experiment at sea level (SL), 6 months after the expedition. The maximal compound muscle action potential (M max ) was recorded from relaxed biceps brachii. During isometric elbow flexions at 10% of maximal torque, a needle electrode recorded the MU discharge rate (MUDR) and MU potential (MUP) characteristics of single biceps brachii MUs. RESULTS Compared with SL, acclimatized lowlanders had ~10% greater MUDR, ~11% longer MUP duration, as well as ~18% lower amplitude and ~6% greater duration of the first phase of the M max (all P < 0.05). No differences were noted between SL and HA for variables related to MUP shape (e.g., jitter, jiggle; P > 0.08). Apart from lower near-fiber MUP area for Sherpa than acclimatized lowlanders ( P < 0.05), no M max or MU data were different between groups ( P > 0.10). CONCLUSIONS Like other components of the body, MUs in lowlanders adapt with acclimatization to HA. The absence of differences between acclimatized lowlanders and Sherpa suggests that evolutionary adaptations to HA are smaller for MUs than components of the cardiovascular or respiratory systems.
Collapse
Affiliation(s)
| | - Chris J McNeil
- Integrated Neuromuscular Physiology Laboratory, Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA
| |
Collapse
|
3
|
Ruggiero L, Harrison SWD, Rice CL, McNeil CJ. Neuromuscular fatigability at high altitude: Lowlanders with acute and chronic exposure, and native highlanders. Acta Physiol (Oxf) 2022; 234:e13788. [PMID: 35007386 PMCID: PMC9286620 DOI: 10.1111/apha.13788] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/18/2023]
Abstract
Ascent to high altitude is accompanied by a reduction in partial pressure of inspired oxygen, which leads to interconnected adjustments within the neuromuscular system. This review describes the unique challenge that such an environment poses to neuromuscular fatigability (peripheral, central and supraspinal) for individuals who normally reside near to sea level (SL) (<1000 m; ie, lowlanders) and for native highlanders, who represent the manifestation of high altitude-related heritable adaptations across millennia. Firstly, the effect of acute exposure to high altitude-related hypoxia on neuromuscular fatigability will be examined. Under these conditions, both supraspinal and peripheral fatigability are increased compared with SL. The specific mechanisms contributing to impaired performance are dependent on the exercise paradigm and amount of muscle mass involved. Next, the effect of chronic exposure to high altitude (ie, acclimatization of ~7-28 days) will be considered. With acclimatization, supraspinal fatigability is restored to SL values, regardless of the amount of muscle mass involved, whereas peripheral fatigability remains greater than SL except when exercise involves a small amount of muscle mass (eg, knee extensors). Indeed, when whole-body exercise is involved, peripheral fatigability is not different to acute high-altitude exposure, due to competing positive (haematological and muscle metabolic) and negative (respiratory-mediated) effects of acclimatization on neuromuscular performance. In the final section, we consider evolutionary adaptations of native highlanders (primarily Himalayans of Tibet and Nepal) that may account for their superior performance at altitude and lesser degree of neuromuscular fatigability compared with acclimatized lowlanders, for both single-joint and whole-body exercise.
Collapse
Affiliation(s)
- Luca Ruggiero
- Laboratory of Physiomechanics of LocomotionDepartment of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Scott W. D. Harrison
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
| | - Charles L. Rice
- School of KinesiologyFaculty of Health SciencesThe University of Western OntarioLondonOntarioCanada
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Chris J. McNeil
- Centre for Heart, Lung & Vascular HealthSchool of Health and Exercise SciencesUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| |
Collapse
|
4
|
Lancaster G, Debevec T, Millet GP, Poussel M, Willis SJ, Mramor M, Goričar K, Osredkar D, Dolžan V, Stefanovska A. Relationship between cardiorespiratory phase coherence during hypoxia and genetic polymorphism in humans. J Physiol 2020; 598:2001-2019. [PMID: 31957891 PMCID: PMC7317918 DOI: 10.1113/jp278829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS High altitude-induced hypoxia in humans evokes a pattern of breathing known as periodic breathing (PB), in which the regular oscillations corresponding to rhythmic expiration and inspiration are modulated by slow periodic oscillations. The phase coherence between instantaneous heart rate and respiration is shown to increase significantly at the frequency of periodic breathing during acute and sustained normobaric and hypobaric hypoxia. It is also shown that polymorphism in specific genes, NOTCH4 and CAT, is significantly correlated with this coherence, and thus with the incidence of PB. Differences in phase shifts between blood flow signals and respiratory and PB oscillations clearly demonstrate contrasting origins of the mechanisms underlying normal respiration and PB. These novel findings provide a better understanding of both the genetic and the physiological mechanisms responsible for respiratory control during hypoxia at altitude, by linking genetic factors with cardiovascular dynamics, as evaluated by phase coherence. ABSTRACT Periodic breathing (PB) occurs in most humans at high altitudes and is characterised by low-frequency periodic alternation between hyperventilation and apnoea. In hypoxia-induced PB the dynamics and coherence between heart rate and respiration and their relationship to underlying genetic factors is still poorly understood. The aim of this study was to investigate, through novel usage of time-frequency analysis methods, the dynamics of hypoxia-induced PB in healthy individuals genotyped for a selection of antioxidative and neurodevelopmental genes. Breathing, ECG and microvascular blood flow were simultaneously monitored for 30 min in 22 healthy males. The same measurements were repeated under normoxic and hypoxic (normobaric (NH) and hypobaric (HH)) conditions, at real and simulated altitudes of up to 3800 m. Wavelet phase coherence and phase difference around the frequency of breathing (approximately 0.3 Hz) and around the frequency of PB (approximately 0.06 Hz) were evaluated. Subjects were genotyped for common functional polymorphisms in antioxidative and neurodevelopmental genes. During hypoxia, PB resulted in increased cardiorespiratory coherence at the PB frequency. This coherence was significantly higher in subjects with NOTCH4 polymorphism, and significantly lower in those with CAT polymorphism (HH only). Study of the phase shifts clearly indicates that the physiological mechanism of PB is different from that of the normal respiratory cycle. The results illustrate the power of time-evolving oscillatory analysis content in obtaining important insight into high altitude physiology. In particular, it provides further evidence for a genetic predisposition to PB and may partly explain the heterogeneity in the hypoxic response.
Collapse
Affiliation(s)
| | - Tadej Debevec
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
- Department of AutomationBiocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
| | | | - Mathias Poussel
- Department of Pulmonary Function Testing and Exercise PhysiologyCHRU de NancyNancyFrance
| | - Sarah J. Willis
- Institute of Sport SciencesUniversity of LausanneLausanneSwitzerland
| | - Minca Mramor
- University Children's HospitalUniversity Medical Center LjubljanaLjubljanaSlovenia
| | - Katja Goričar
- Pharmacogenetics LaboratoryInstitute of BiochemistryFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Damjan Osredkar
- University Children's HospitalUniversity Medical Center LjubljanaLjubljanaSlovenia
| | - Vita Dolžan
- Pharmacogenetics LaboratoryInstitute of BiochemistryFaculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
5
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
6
|
Grocott MPW, Levett DZH, Ward SA. Exercise physiology: exercise performance at altitude. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Ruggiero L, Hoiland RL, Hansen AB, Ainslie PN, McNeil CJ. High-Altitude Acclimatization Improves Recovery from Muscle Fatigue. Med Sci Sports Exerc 2019; 52:161-169. [PMID: 31343519 DOI: 10.1249/mss.0000000000002100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We investigated the effect of high-altitude acclimatization on peripheral fatigue compared with sea level and acute hypoxia. METHODS At sea level (350 m), acute hypoxia (environmental chamber), and chronic hypoxia (5050 m, 5-9 d) (partial pressure of inspired oxygen = 140, 74 and 76 mm Hg, respectively), 12 participants (11 in chronic hypoxia) had the quadriceps of their dominant leg fatigued by three bouts of 75 intermittent electrically evoked contractions (12 pulses at 15 Hz, 1.6 s between train onsets, and 15 s between bouts). The initial peak force was ~30% of maximal voluntary force. Recovery was assessed by single trains at 1, 2, and 3 min postprotocol. Tissue oxygenation of rectus femoris was recorded by near-infrared spectroscopy. RESULTS At the end of the fatigue protocol, the impairments of peak force and peak rates of force development and relaxation were greater (all P < 0.05) in acute hypoxia (~51%, 53%, and 64%, respectively) than sea level (~43%, 43%, and 52%) and chronic hypoxia (~38%, 35%, and 48%). Peak force and rate of force development recovered faster (P < 0.05) in chronic hypoxia (pooled data for 1-3 min: ~84% and 74% baseline, respectively) compared with sea level (~73% and 63% baseline) and acute hypoxia (~70% and 55% baseline). Tissue oxygenation did not differ among conditions for fatigue or recovery (P > 0.05). CONCLUSIONS Muscle adaptations occurring with chronic hypoxia, independent of other adaptations, positively influence muscle contractility during and after repeated contractions at high altitude.
Collapse
Affiliation(s)
- Luca Ruggiero
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, CANADA
| | | | | | | | | |
Collapse
|
8
|
Hoiland RL, Howe CA, Carter HH, Tremblay JC, Willie CK, Donnelly J, MacLeod DB, Gasho C, Stembridge M, Boulet LM, Niroula S, Ainslie PN. UBC‐Nepal expedition: phenotypical evidence for evolutionary adaptation in the control of cerebral blood flow and oxygen delivery at high altitude. J Physiol 2019; 597:2993-3008. [DOI: 10.1113/jp277596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/09/2019] [Indexed: 01/26/2023] Open
Affiliation(s)
- Ryan L. Hoiland
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| | - Connor A. Howe
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| | - Howard H. Carter
- Department of Nutrition, Exercise and SportsUniversity of Copenhagen Nørre Allé 51 DK‐2200 Copenhagen Denmark
| | - Joshua C. Tremblay
- Cardiovascular Stress Response Laboratory, School of Kinesiology and Health StudiesQueen's University 28 Division Street Kingston Ontario Canada K7L 3N6
| | - Chris K. Willie
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| | - Joseph Donnelly
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical NeurosciencesCambridge Biomedical Campus, University of Cambridge Cambridge CB2 0QQ UK
| | - David B. MacLeod
- Human Pharmacology and Physiology Lab, Department of AnesthesiologyDuke University Medical Center Durham NC 27708 USA
| | - Chris Gasho
- VA Loma Linda Healthcare System and Loma Linda University School of Medicine Loma Linda CA USA
| | - Mike Stembridge
- Cardiff Centre for Exercise and HealthCardiff Metropolitan University Cyncoed Road Cardiff CF23 6XD UK
| | - Lindsey M. Boulet
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| | | | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular HealthUniversity of British Columbia–Okanagan Campus, School of Health and Exercise Sciences 3333 University Way Kelowna British Columbia Canada V1V 1V7
| |
Collapse
|
9
|
Guilherme JPLF, Silveira AC. Could genetic and epigenetic factors explain hypoxia tolerance and superior muscle performance of Sherpas at high-altitude? J Physiol 2019; 597:1231-1232. [PMID: 30632151 DOI: 10.1113/jp277593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- João Paulo Limongi França Guilherme
- Endurance Performance Research Group, Department of Sport, School of Physical Education and Sport, University of Sao Paulo, São Paulo, SP, Brazil
| | - André Casanova Silveira
- Endurance Performance Research Group, Department of Sport, School of Physical Education and Sport, University of Sao Paulo, São Paulo, SP, Brazil
| |
Collapse
|