1
|
Feord RC, Gomoliszewska A, Pienaar A, Mouland JW, Brown TM. Colour opponency is widespread across the mouse subcortical visual system and differentially targets GABAergic and non-GABAergic neurons. Sci Rep 2023; 13:9313. [PMID: 37291239 PMCID: PMC10250360 DOI: 10.1038/s41598-023-35885-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Colour vision plays many important roles in animal behaviour but the brain pathways processing colour remain surprisingly poorly understood, including in the most commonly used laboratory mammal, mice. Indeed, particular features of mouse retinal organisation present challenges in defining the mechanisms underlying colour vision in mice and have led to suggestions that this may substantially rely on 'non-classical' rod-cone opponency. By contrast, studies using mice with altered cone spectral sensitivity, to facilitate application of photoreceptor-selective stimuli, have revealed widespread cone-opponency across the subcortical visual system. To determine the extent to which such findings are truly reflective of wildtype mouse colour vision, and facilitate neural circuit mapping of colour-processing pathways using intersectional genetic approaches, we here establish and validate stimuli for selectively manipulating excitation of the native mouse S- and M-cone opsin classes. We then use these to confirm the widespread appearance of cone-opponency (> 25% of neurons) across the mouse visual thalamus and pretectum. We further extend these approaches to map the occurrence of colour-opponency across optogenetically identified GABAergic (GAD2-expressing) cells in key non-image forming visual centres (pretectum and intergeniculate leaflet/ventral lateral geniculate; IGL/vLGN). Strikingly, throughout, we find S-ON/M-OFF opponency is specifically enriched in non-GABAergic cells, with identified GABAergic cells in the IGL/VLGN entirely lacking this property. Collectively, therefore, we establish an important new approach for studying cone function in mice, confirming a surprisingly extensive appearance of cone-opponent processing in the mouse visual system and providing new insight into functional specialisation of the pathways processing such signals.
Collapse
Affiliation(s)
- R C Feord
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Gomoliszewska
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A Pienaar
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - J W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - T M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Wu XQ, Tan B, Du Y, Yang L, Hu TT, Ding YL, Qiu XY, Moutal A, Khanna R, Yu J, Chen Z. Glutamatergic and GABAergic neurons in the vLGN mediate the nociceptive effects of green and red light on neuropathic pain. Neurobiol Dis 2023; 183:106164. [PMID: 37217103 DOI: 10.1016/j.nbd.2023.106164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Phototherapy is an emerging non-pharmacological treatment for depression, circadian rhythm disruptions, and neurodegeneration, as well as pain conditions including migraine and fibromyalgia. However, the mechanism of phototherapy-induced antinociception is not well understood. Here, using fiber photometry recordings of population-level neural activity combined with chemogenetics, we found that phototherapy elicits antinociception via regulation of the ventral lateral geniculate body (vLGN) located in the visual system. Specifically, both green and red lights caused an increase of c-fos in vLGN, with red light increased more. In vLGN, green light causes a large increase in glutamatergic neurons, whereas red light causes a large increase in GABAergic neurons. Green light preconditioning increases the sensitivity of glutamatergic neurons to noxious stimuli in vLGN of PSL mice. Green light produces antinociception by activating glutamatergic neurons in vLGN, and red light promotes nociception by activating GABAergic neurons in vLGN. Together, these results demonstrate that different colors of light exert different pain modulation effects by regulating glutamatergic and GABAergic subpopulations in the vLGN. This may provide potential new therapeutic strategies and new therapeutic targets for the precise clinical treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xue-Qing Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yu Du
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Ting-Ting Hu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Yi-La Ding
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, and NYU Pain Research Center, New York University, New York, NY 10010, USA.
| | - Jie Yu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Basic Medical Science, College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Tang YL, Liu AL, Lv SS, Zhou ZR, Cao H, Weng SJ, Zhang YQ. Green light analgesia in mice is mediated by visual activation of enkephalinergic neurons in the ventrolateral geniculate nucleus. Sci Transl Med 2022; 14:eabq6474. [PMID: 36475906 DOI: 10.1126/scitranslmed.abq6474] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Green light exposure has been shown to reduce pain in animal models. Here, we report a vision-associated enkephalinergic neural circuit responsible for green light-mediated analgesia. Full-field green light exposure at an intensity of 10 lux produced analgesic effects in healthy mice and in a model of arthrosis. Ablation of cone photoreceptors completely inhibited the analgesic effect, whereas rod ablation only partially reduced pain relief. The analgesic effect was not modulated by the ablation of intrinsically photosensitive retinal ganglion cells (ipRGCs), which are atypical photoreceptors that control various nonvisual effects of light. Inhibition of the retino-ventrolateral geniculate nucleus (vLGN) pathway completely abolished the analgesic effects. Activation of this pathway reduced nociceptive behavioral responses; such activation was blocked by the inhibition of proenkephalin (Penk)-positive neurons in the vLGN (vLGNPenk). Moreover, green light analgesia was prevented by knockdown of Penk in the vLGN or by ablation of vLGNPenk neurons. In addition, activation of the projections from vLGNPenk neurons to the dorsal raphe nucleus (DRN) was sufficient to suppress nociceptive behaviors, whereas its inhibition abolished the green light analgesia. Our findings indicate that cone-dominated retinal inputs mediated green light analgesia through the vLGNPenk-DRN pathway and suggest that this signaling pathway could be exploited for reducing pain.
Collapse
Affiliation(s)
- Yu-Long Tang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ai-Lin Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Su-Su Lv
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zi-Rui Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Hong Cao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Shi-Jun Weng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
The caudal prethalamus: Inhibitory switchboard for behavioral control? Neuron 2022; 110:2728-2742. [PMID: 36076337 DOI: 10.1016/j.neuron.2022.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
Abstract
Prethalamic nuclei in the mammalian brain include the zona incerta, the ventral lateral geniculate nucleus, and the intergeniculate leaflet, which provide long-range inhibition to many targets in the midbrain, hindbrain, and thalamus. These nuclei in the caudal prethalamus can integrate sensory and non-sensory information, and together they exert powerful inhibitory control over a wide range of brain functions and behaviors that encompass most aspects of the behavioral repertoire of mammals, including sleep, circadian rhythms, feeding, drinking, predator avoidance, and exploration. In this perspective, we highlight the evidence for this wide-ranging control and lay out the hypothesis that one role of caudal prethalamic nuclei may be that of a behavioral switchboard that-depending on the sensory input, the behavioral context, and the state of the animal-can promote a behavioral strategy and suppress alternative, competing behaviors by modulating inhibitory drive onto diverse target areas.
Collapse
|
5
|
Chrobok L, Belle MDC, Myung J. From Fast Oscillations to Circadian Rhythms: Coupling at Multiscale Frequency Bands in the Rodent Subcortical Visual System. Front Physiol 2021; 12:738229. [PMID: 34899375 PMCID: PMC8662821 DOI: 10.3389/fphys.2021.738229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
The subcortical visual system (SVS) is a unique collection of brain structures localised in the thalamus, hypothalamus and midbrain. The SVS receives ambient light inputs from retinal ganglion cells and integrates this signal with internal homeostatic demands to influence physiology. During this processing, a multitude of oscillatory frequency bands coalesces, with some originating from the retinas, while others are intrinsically generated in the SVS. Collectively, these rhythms are further modulated by the day and night cycle. The multiplexing of these diverse frequency bands (from circadian to infra-slow and gamma oscillations) makes the SVS an interesting system to study coupling at multiscale frequencies. We review the functional organisation of the SVS, and the various frequencies generated and processed by its neurons. We propose a perspective on how these different frequency bands couple with one another to synchronise the activity of the SVS to control physiology and behaviour.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jihwan Myung
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| |
Collapse
|
6
|
Fratzl A, Koltchev AM, Vissers N, Tan YL, Marques-Smith A, Stempel AV, Branco T, Hofer SB. Flexible inhibitory control of visually evoked defensive behavior by the ventral lateral geniculate nucleus. Neuron 2021; 109:3810-3822.e9. [PMID: 34614420 PMCID: PMC8648186 DOI: 10.1016/j.neuron.2021.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 01/23/2023]
Abstract
Animals can choose to act upon, or to ignore, sensory stimuli, depending on circumstance and prior knowledge. This flexibility is thought to depend on neural inhibition, through suppression of inappropriate and disinhibition of appropriate actions. Here, we identified the ventral lateral geniculate nucleus (vLGN), an inhibitory prethalamic area, as a critical node for control of visually evoked defensive responses in mice. The activity of vLGN projections to the medial superior colliculus (mSC) is modulated by previous experience of threatening stimuli, tracks the perceived threat level in the environment, and is low prior to escape from a visual threat. Optogenetic stimulation of the vLGN abolishes escape responses, and suppressing its activity lowers the threshold for escape and increases risk-avoidance behavior. The vLGN most strongly affects visual threat responses, potentially via modality-specific inhibition of mSC circuits. Thus, inhibitory vLGN circuits control defensive behavior, depending on an animal’s prior experience and its anticipation of danger in the environment. Activity of vLGN axons in the mSC reflects the previous experience of threat The vLGN bidirectionally controls escape from visual threat Activating the vLGN specifically reduces the activity of visual units in mSC Activating vLGN axons in the mSC specifically suppresses escape from visual threat
Collapse
Affiliation(s)
- Alex Fratzl
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Alice M Koltchev
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Nicole Vissers
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Yu Lin Tan
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Andre Marques-Smith
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - A Vanessa Stempel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
7
|
Salay LD, Huberman AD. Divergent outputs of the ventral lateral geniculate nucleus mediate visually evoked defensive behaviors. Cell Rep 2021; 37:109792. [PMID: 34610302 PMCID: PMC10954303 DOI: 10.1016/j.celrep.2021.109792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/24/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022] Open
Abstract
Rapid alternations between exploration and defensive reactions require ongoing risk assessment. How visual cues and internal states flexibly modulate the selection of behaviors remains incompletely understood. Here, we show that the ventral lateral geniculate nucleus (vLGN)-a major retinorecipient structure-is a critical node in the network controlling defensive behaviors to visual threats. We find that vLGNGABA neuron activity scales with the intensity of environmental illumination and is modulated by behavioral state. Chemogenetic activation of vLGNGABA neurons reduces freezing, whereas inactivation dramatically extends the duration of freezing to visual threats. Perturbations of vLGN activity disrupt exploration in brightly illuminated environments. We describe both a vLGN→nucleus reuniens (Re) circuit and a vLGN→superior colliculus (SC) circuit, which exert opposite influences on defensive responses. These findings reveal roles for genetic- and projection-defined vLGN subpopulations in modulating the expression of behavioral threat responses according to internal state.
Collapse
Affiliation(s)
- Lindsey D Salay
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA 94305, USA; BioX, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Mouland JW, Pienaar A, Williams C, Watson AJ, Lucas RJ, Brown TM. Extensive cone-dependent spectral opponency within a discrete zone of the lateral geniculate nucleus supporting mouse color vision. Curr Biol 2021; 31:3391-3400.e4. [PMID: 34111401 PMCID: PMC8360768 DOI: 10.1016/j.cub.2021.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/23/2021] [Accepted: 05/13/2021] [Indexed: 12/15/2022]
Abstract
Color vision, originating with opponent processing of spectrally distinct photoreceptor signals, plays important roles in animal behavior.1-4 Surprisingly, however, comparatively little is understood about color processing in the brain, including in widely used laboratory mammals such as mice. The retinal gradient in S- and M-cone opsin (co-)expression has traditionally been considered an impediment to mouse color vision.5-8 However, recent data indicate that mice exhibit robust chromatic discrimination within the central-upper visual field.9 Retinal color opponency has been reported to emerge from superimposing inhibitory surround receptive fields on the cone opsin expression gradient, and by introducing opponent rod signals in retinal regions with sparse M-cone opsin expression.10-13 The relative importance of these proposed mechanisms in determining the properties of neurons at higher visual processing stages remains unknown. We address these questions using multielectrode recordings from the lateral geniculate nucleus (LGN) in mice with altered M-cone spectral sensitivity (Opn1mwR) and multispectral stimuli that allow selective modulation of signaling by individual opsin classes. Remarkably, we find many (∼25%) LGN cells are color opponent, that such cells are localized to a distinct medial LGN zone and that their properties cannot simply be explained by the proposed retinal opponent mechanisms. Opponent responses in LGN can be driven solely by cones, independent of cone-opsin expression gradients and rod input, with many cells exhibiting spatially congruent antagonistic receptive fields. Our data therefore suggest previously unidentified mechanisms may support extensive and sophisticated color processing in the mouse LGN.
Collapse
Affiliation(s)
- Josh W Mouland
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Abigail Pienaar
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Christopher Williams
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Alex J Watson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
9
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|