1
|
Latash ML. Exactness as the Universal Currency of Research in Natural Science. Motor Control 2025; 29:131-141. [PMID: 39715613 DOI: 10.1123/mc.2024-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024]
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
2
|
Guo J, Cao J, Wu J, Gao J. Electrical stimulation and conductive materials: electrophysiology-based treatment for spinal cord injury. Biomater Sci 2024; 12:5704-5721. [PMID: 39403758 DOI: 10.1039/d4bm00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Spinal cord injury is a serious disease of the central nervous system. The electrophysiological properties of the spinal cord that are essential to maintaining neurotransmission can be impaired after the injury. Therefore, electrophysiological evaluation is becoming an important indicator of the injury extent or the therapeutic outcomes by reflecting the potential propagation of neural pathways. On the other hand, the repair of damaged nerves is one of the main goals of spinal cord injury treatment. Growing research interest has been concentrated on developing effective therapeutic solutions to restore the normal electrophysiological function of the injured spinal cord by using conductive materials and/or exerting the merits of electrical stimulation. Accordingly, this review introduces the current common electrophysiological evaluation in spinal cord injury. Then the cutting-edge therapeutic strategies aiming at electrophysiological improvement in spinal cord injury are summarized. Finally, the challenges and future prospects of neural restoration after spinal cord injury are presented.
Collapse
Affiliation(s)
- Jing Guo
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jian Cao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, China
| |
Collapse
|
3
|
Steingräber T, von Grönheim L, Klemm M, Straub J, Sasse L, Veldema J. High-Definition Trans-Spinal Current Stimulation Improves Balance and Somatosensory Control: A Randomised, Placebo-Controlled Trial. Biomedicines 2024; 12:2379. [PMID: 39457691 PMCID: PMC11504229 DOI: 10.3390/biomedicines12102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES To investigate and compare the effects of three different high-definition (HD) non-invasive current stimulation (NICS) protocols on the spinal cord on support balance and somatosensory abilities in healthy young people. METHODS Fifty-eight students were enrolled in this crossover study. All participants underwent application of (i) 1.5 mA anodal high-definition trans spinal direct current stimulation (HD-tsDCS), (ii) 1.5 mA cathodal HD-tsDCS, (iii) 1.5 mA high-definition trans spinal alternating current stimulation (HD-tsACS), and (iv) sham HD-tsDCS/ACS over the eighth thoracic vertebra in a randomised order. Balance (Y Balance test), deep sensitivity (Tuning Fork Test), and superficial sensitivity (Monofilament Test) of the lower limbs were tested immediately before and after each intervention. RESULTS Balance ability improved significantly following anodal HD-tsDCS and HD-tsACS compared with that following sham HD-tsDCS/ACS. Similarly, deep sensitivity increased significantly with anodal HD-tsDCS and HD-tsACS compared to that with sham HD-tsDCS/ACS and cathodal HD-tsDCS. Furthermore, superficial sensitivity improved significantly following anodal HD-tsDCS compared with that after HD-tsACS and cathodal HD-tsDCS. CONCLUSIONS Our data show that HD-tsNICS effectively modulates the balance and somatosensory control of the lower limbs. Several diseases are associated with illness-induced changes in the spinal network in parallel with sensorimotor disabilities. Non-invasive spinal modulation may be a favourable alternative to conventional brain applications in rehabilitation. Future studies should therefore investigate these promising approaches among cohorts of patients with disabilities.
Collapse
Affiliation(s)
| | | | | | | | | | - Jitka Veldema
- Department of Sport Science, Faculty of Psychology and Sports Science, Bielefeld University, 33501 Bielefeld, Germany; (T.S.)
| |
Collapse
|
4
|
Kim YK, Gwerder M, Taylor WR, Baur H, Singh NB. Adaptive gait responses to varying weight-bearing conditions: Inferences from gait dynamics and H-reflex magnitude. Exp Physiol 2024; 109:754-765. [PMID: 38488681 PMCID: PMC11061628 DOI: 10.1113/ep091492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/28/2024] [Indexed: 05/02/2024]
Abstract
This study investigates the effects of varying loading conditions on excitability in neural pathways and gait dynamics. We focussed on evaluating the magnitude of the Hoffman reflex (H-reflex), a neurophysiological measure representing the capability to activate motor neurons and the timing and placement of the foot during walking. We hypothesized that weight manipulation would alter H-reflex magnitude, footfall and lower body kinematics. Twenty healthy participants were recruited and subjected to various weight-loading conditions. The H-reflex, evoked by stimulating the tibial nerve, was assessed from the dominant leg during walking. Gait was evaluated under five conditions: body weight, 20% and 40% additional body weight, and 20% and 40% reduced body weight (via a harness). Participants walked barefoot on a treadmill under each condition, and the timing of electrical stimulation was set during the stance phase shortly after the heel strike. Results show that different weight-loading conditions significantly impact the timing and placement of the foot and gait stability. Weight reduction led to a 25% decrease in double limb support time and an 11% narrowing of step width, while weight addition resulted in an increase of 9% in step width compared to body weight condition. Furthermore, swing time variability was higher for both the extreme weight conditions, while the H-reflex reduced to about 45% between the extreme conditions. Finally, the H-reflex showed significant main effects on variability of both stance and swing phases, indicating that muscle-motor excitability might serve as feedback for enhanced regulation of gait dynamics under challenging conditions.
Collapse
Affiliation(s)
- Yong Kuk Kim
- Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Michelle Gwerder
- Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland
| | - William R. Taylor
- Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
| | - Heiner Baur
- School of Health Professions, PhysiotherapyUniversity of Applied SciencesBernSwitzerland
| | - Navrag B. Singh
- Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and TechnologyETH ZurichZurichSwitzerland
- Singapore‐ETH Centre, Future Health Technologies ProgramSingaporeSingapore
| |
Collapse
|
5
|
Brangaccio JA, Phipps AM, Gemoets DE, Sniffen JM, Thompson AK. Variability of corticospinal and spinal reflex excitability for the ankle dorsiflexor tibialis anterior across repeated measurements in people with and without incomplete spinal cord injury. Exp Brain Res 2024; 242:727-743. [PMID: 38267736 PMCID: PMC10894771 DOI: 10.1007/s00221-024-06777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
To adequately evaluate the corticospinal and spinal plasticity in health and disease, it is essential to understand whether and to what extent the corticospinal and spinal responses fluctuate systematically across multiple measurements. Thus, in this study, we examined the session-to-session variability of corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA) in people with and without incomplete spinal cord injury (SCI). In neurologically normal participants, the following measures were obtained across 4 days at the same time of day (N = 13) or 4 sessions over a 12-h period (N = 9, at 8:00, 12:00, 16:00, and 20:00): maximum voluntary contraction (MVC), maximum M-wave and H-reflex (Mmax and Hmax), motor evoked potential (MEP) amplitude, and silent period (SP) after MEP. In participants with chronic incomplete SCI (N = 17), the same measures were obtained across 4 days. We found no clear diurnal variation in the spinal and corticospinal excitability of the TA in individuals with no known neurological conditions, and no systematic changes in any experimental measures of spinal and corticospinal excitability across four measurement days in individuals with or without SCI. Overall, mean deviations across four sessions remained in a range of 5-13% for all measures in participants with or without SCI. The study shows the limited extent of non-systematic session-to-session variability in the TA corticospinal excitability in individuals with and without chronic incomplete SCI, supporting the utility of corticospinal and spinal excitability measures in mechanistic investigation of neuromodulation interventions. The information provided through this study may serve as the reference in evaluating corticospinal plasticity across multiple experimental sessions.
Collapse
Affiliation(s)
- J A Brangaccio
- National Center for Adaptive Neurotechnologies and Stratton VA Medical Center, Albany, NY, USA
| | - A M Phipps
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, MSC 700, Charleston, SC, 29425, USA
| | - D E Gemoets
- National Center for Adaptive Neurotechnologies and Stratton VA Medical Center, Albany, NY, USA
| | - J M Sniffen
- State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, 77 President Street, MSC 700, Charleston, SC, 29425, USA.
| |
Collapse
|
6
|
Urbin MA, Lafe CW, Bautista ME, Wittenberg GF, Simpson TW. Effects of noninvasive neuromodulation targeting the spinal cord on early learning of force control by the digits. CNS Neurosci Ther 2024; 30:e14561. [PMID: 38421127 PMCID: PMC10851178 DOI: 10.1111/cns.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS Control of finger forces underlies our capacity for skilled hand movements acquired during development and reacquired after neurological injury. Learning force control by the digits, therefore, predicates our functional independence. Noninvasive neuromodulation targeting synapses that link corticospinal neurons onto the final common pathway via spike-timing-dependent mechanisms can alter distal limb motor output on a transient basis, yet these effects appear subject to individual differences. Here, we investigated how this form of noninvasive neuromodulation interacts with task repetition to influence early learning of force control during precision grip. METHODS The unique effects of neuromodulation, task repetition, and neuromodulation coinciding with task repetition were tested in three separate conditions using a within-subject, cross-over design (n = 23). RESULTS We found that synchronizing depolarization events within milliseconds of stabilizing precision grip accelerated learning but only after accounting for individual differences through inclusion of subjects who showed upregulated corticospinal excitability at 2 of 3 time points following conditioning stimulation (n = 19). CONCLUSIONS Our findings provide insights into how the state of the corticospinal system can be leveraged to drive early motor skill learning, further emphasizing individual differences in the response to noninvasive neuromodulation. We interpret these findings in the context of biological mechanisms underlying the observed effects and implications for emerging therapeutic applications.
Collapse
Affiliation(s)
- Michael A. Urbin
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Charley W. Lafe
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Manuel E. Bautista
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - George F. Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tyler W. Simpson
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Refy O, Blanchard B, Miller-Peterson A, Dalrymple AN, Bedoy EH, Zaripova A, Motaghedi N, Mo O, Panthangi S, Reinhart A, Torres-Oviedo G, Geyer H, Weber DJ. Dynamic spinal reflex adaptation during locomotor adaptation. J Neurophysiol 2023; 130:1008-1014. [PMID: 37701940 DOI: 10.1152/jn.00248.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
The dynamics and interaction of spinal and supraspinal centers during locomotor adaptation remain vaguely understood. In this work, we use Hoffmann reflex measurements to investigate changes in spinal reflex gains during split-belt locomotor adaptation. We show that spinal reflex gains are dynamically modulated during split-belt locomotor adaptation. During first exposure to split-belt transitions, modulation occurs mostly on the leg ipsilateral to the speed change and constitutes rapid suppression or facilitation of the reflex gains, followed by slow recovery to baseline. Over repeated exposure, the modulation pattern washes out. We further show that reflex gain modulation strongly correlates with correction of leg asymmetry, and cannot be explained by speed modulation solely. We argue that reflex modulation is likely of supraspinal origins and constitutes an integral part of the neural substrate underlying split-belt locomotor adaptation.NEW & NOTEWORTHY This work presents direct evidence for spinal reflex modulation during locomotor adaptation. In particular, we show that reflexes can be modulated on-demand unilaterally during split-belt locomotor adaptation and speculate about reflex modulation as an underlying mechanism for adaptation of gait asymmetry in healthy adults.
Collapse
Affiliation(s)
- Omar Refy
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Legged Systems Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Belle Blanchard
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Abigail Miller-Peterson
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, Utah, United States
| | - Ernesto H Bedoy
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Amelia Zaripova
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Nadim Motaghedi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Owen Mo
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Shalini Panthangi
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Alex Reinhart
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Gelsy Torres-Oviedo
- Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hartmut Geyer
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Legged Systems Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
McKinnon ML, Hill NJ, Carp JS, Dellenbach B, Thompson AK. Methods for automated delineation and assessment of EMG responses evoked by peripheral nerve stimulation in diagnostic and closed-loop therapeutic applications. J Neural Eng 2023; 20:10.1088/1741-2552/ace6fb. [PMID: 37437593 PMCID: PMC10445400 DOI: 10.1088/1741-2552/ace6fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
Objective.Surface electromyography measurements of the Hoffmann (H-) reflex are essential in a wide range of neuroscientific and clinical applications. One promising emerging therapeutic application is H-reflex operant conditioning, whereby a person is trained to modulate the H-reflex, with generalized beneficial effects on sensorimotor function in chronic neuromuscular disorders. Both traditional diagnostic and novel realtime therapeutic applications rely on accurate definitions of the H-reflex and M-wave temporal bounds, which currently depend on expert case-by-case judgment. The current study automates such judgments.Approach.Our novel wavelet-based algorithm automatically determines temporal extent and amplitude of the human soleus H-reflex and M-wave. In each of 20 participants, the algorithm was trained on data from a preliminary 3 or 4 min recruitment-curve measurement. Output was evaluated on parametric fits to subsequent sessions' recruitment curves (92 curves across all participants) and on the conditioning protocol's subsequent baseline trials (∼1200 per participant) performed nearHmax. Results were compared against the original temporal bounds estimated at the time, and against retrospective estimates made by an expert 6 years later.Main results.Automatic bounds agreed well with manual estimates: 95% lay within ±2.5 ms. The resulting H-reflex magnitude estimates showed excellent agreement (97.5% average across participants) between automatic and retrospective bounds regarding which trials would be considered successful for operant conditioning. Recruitment-curve parameters also agreed well between automatic and manual methods: 95% of the automatic estimates of the current required to elicitHmaxfell within±1.4%of the retrospective estimate; for the 'threshold' current that produced an M-wave 10% of maximum, this value was±3.5%.Significance.Such dependable automation of M-wave and H-reflex definition should make both established and emerging H-reflex protocols considerably less vulnerable to inter-personnel variability and human error, increasing translational potential.
Collapse
Affiliation(s)
| | - N. Jeremy Hill
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, USA
- Electrical and Computer Engineering Dept., State University of New York at Albany, NY, USA
| | - Jonathan S. Carp
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, Albany, NY, USA
- School of Public Health, State University of New York at Albany, NY, USA
| | | | | |
Collapse
|
9
|
Wolpaw JR, Thompson AK. Enhancing neurorehabilitation by targeting beneficial plasticity. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1198679. [PMID: 37456795 PMCID: PMC10338914 DOI: 10.3389/fresc.2023.1198679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Neurorehabilitation is now one of the most exciting areas in neuroscience. Recognition that the central nervous system (CNS) remains plastic through life, new understanding of skilled behaviors (skills), and novel methods for engaging and guiding beneficial plasticity combine to provide unprecedented opportunities for restoring skills impaired by CNS injury or disease. The substrate of a skill is a distributed network of neurons and synapses that changes continually through life to ensure that skill performance remains satisfactory as new skills are acquired, and as growth, aging, and other life events occur. This substrate can extend from cortex to spinal cord. It has recently been given the name "heksor." In this new context, the primary goal of rehabilitation is to enable damaged heksors to repair themselves so that their skills are once again performed well. Skill-specific practice, the mainstay of standard therapy, often fails to optimally engage the many sites and kinds of plasticity available in the damaged CNS. New noninvasive technology-based interventions can target beneficial plasticity to critical sites in damaged heksors; these interventions may thereby enable much wider beneficial plasticity that enhances skill recovery. Targeted-plasticity interventions include operant conditioning of a spinal reflex or corticospinal motor evoked potential (MEP), paired-pulse facilitation of corticospinal connections, and brain-computer interface (BCI)-based training of electroencephalographic (EEG) sensorimotor rhythms. Initial studies in people with spinal cord injury, stroke, or multiple sclerosis show that these interventions can enhance skill recovery beyond that achieved by skill-specific practice alone. After treatment ends, the repaired heksors maintain the benefits.
Collapse
Affiliation(s)
- Jonathan R. Wolpaw
- National Center for Adaptive Neurotechnologies, Albany Stratton VA Medical Center, Albany, NY, United States
- Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, United States
| | - Aiko K. Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
10
|
Kim K, Akbas T, Lee R, Manella K, Sulzer J. Self-modulation of rectus femoris reflex excitability in humans. Sci Rep 2023; 13:8134. [PMID: 37208394 DOI: 10.1038/s41598-023-34709-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/05/2023] [Indexed: 05/21/2023] Open
Abstract
Hyperreflexia is common after neurological injury such as stroke, yet clinical interventions have had mixed success. Our previous research has shown that hyperreflexia of the rectus femoris (RF) during pre-swing is closely associated with reduced swing phase knee flexion in those with post-stroke Stiff-Knee gait (SKG). Thus, reduction of RF hyperreflexia may improve walking function in those with post-stroke SKG. A non-pharmacological procedure for reducing hyperreflexia has emerged based on operant conditioning of H-reflex, an electrical analog of the spinal stretch reflex. It is currently unknown whether operant conditioning can be applied to the RF. This feasibility study trained 7 participants (5 neurologically intact, 2 post-stroke) to down-condition the RF H-reflex using visual feedback. We found an overall decrease in average RF H-reflex amplitude among all 7 participants (44% drop, p < 0.001, paired t-test), of which the post-stroke individuals contributed (49% drop). We observed a generalized training effect across quadriceps muscles. Post-stroke individuals exhibited improvements in peak knee-flexion velocity, reflex excitability during walking, and clinical measures of spasticity. These outcomes provide promising initial results that operant RF H-reflex conditioning is feasible, encouraging expansion to post-stroke individuals. This procedure could provide a targeted alternative in spasticity management.
Collapse
Affiliation(s)
| | | | - Robert Lee
- St. David's Medical Center, Austin, TX, USA
| | | | - James Sulzer
- University of Texas at Austin, Austin, TX, USA.
- MetroHealth Hospital and Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
11
|
Johnson KA, Petrie MA, Shields RK. Biomarkers for rapid H-reflex operant conditioning among females. J Neurophysiol 2023; 129:685-699. [PMID: 36791051 PMCID: PMC10010925 DOI: 10.1152/jn.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Operant conditioning of a spinal monosynaptic pathway using the Hoffman reflex (H-reflex) is well established in animal and human studies. There is a subset within the human population (∼20% nonresponders) who are unable to up train this pathway suggesting some distinct or unique identifying characteristics. Importantly, females, who have a nine times higher rate of injury during human performance activities than men, have been understudied in areas of CNS neuroplasticity. Our long-term goal is to understand if innate ability to rapidly up train the H-reflex is predictive of future performance-based injury among females. In this study, we primarily determined whether healthy, young females could rapidly increase the H-reflex within a single session of operant conditioning and secondarily determined if electro-physiological, humoral, cognitive, anthropometric, or anxiety biomarkers distinguished the responders from nonresponders. Eighteen females (mean age: 24) participated in the study. Overall, females showed a group main effect for up training the H-reflex (P < 0.05). Of the cohort, 10 of 18 females met the criteria for up training the H-reflex (responders). The responders showed lower levels of estradiol (P < 0.05). A multivariate stepwise regression model supported that extracellular to intracellular water ratio (ECW/ICW) and H-max/M-max ratio explained 60% of the variation in up training among females. These findings support that females can acutely upregulate the H-reflex with training and that electro-physiological and hormonal factors may be associated with the up training.NEW & NOTEWORTHY Young females who acutely increase their H-reflexes with operant conditioning had lower levels of estradiol. However, the best predictors of those who could up-train the H-reflex were baseline H-reflex excitability (H-max/M-max) and extracellular to intracellular water ratio (ECW/ICW). Future studies are warranted to understand the complex relationship between operant conditioning, human performance, and injury among active young females.
Collapse
Affiliation(s)
- Kristin A Johnson
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States
| | - Michael A Petrie
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States
| | - Richard K Shields
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
12
|
Phipps AM, Thompson AK. Altered cutaneous reflexes to non-noxious stimuli in the triceps surae of people with chronic incomplete spinal cord injury. J Neurophysiol 2023; 129:513-523. [PMID: 36722742 PMCID: PMC9970649 DOI: 10.1152/jn.00266.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023] Open
Abstract
Following spinal cord injury (SCI) task-dependent modulation of spinal reflexes are often impaired. To gain insight into the state of the spinal interneuronal pathways following injury, we studied the amplitude modulation of triceps surae cutaneous reflexes to non-noxious stimuli during standing and early-to-mid stance phase of walking in participants with and without chronic incomplete SCI. Reflex eliciting nerve stimulation was delivered to the superficial peroneal, sural, and distal tibial nerves about the ankle. Reflexes were analyzed in the short (SLR, 50-80 ms post stimulation onset) and the medium (MLR, 80-120 ms) latency response windows. Further, the relation between cutaneous and H-reflexes was also examined during standing. In participants without injuries the soleus SLR was modulated task-dependently with nerve specificity, and the soleus and medial gastrocnemius MLRs were modulated task-dependently. In contrast, participants with SCI, no task-dependent or nerve-specific modulation of triceps cutaneous reflexes was observed. The triceps surae cutaneous and H-reflexes were not correlated in either group (r = 0.01-0.37). The presence of cutaneous reflexes but the absence of significant amplitude modulation may suggest impaired function of spinal interneuronal pathways in this population. The lack of correlation between the cutaneous and H-reflexes may suggest that interneurons that are involved in H-reflex modulation and cutaneous reflex modulation do not receive common input, or the impact of the common input is outweighed by other input. Present findings highlight the importance of examining multiple spinal reflexes to better understanding spinal interneuronal pathways that affect motor control in people after SCI.
Collapse
Affiliation(s)
- Alan M Phipps
- Department of Health Science and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Aiko K Thompson
- Department of Health Science and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
13
|
Norman SL, Wolpaw JR, Reinkensmeyer DJ. Targeting neuroplasticity to improve motor recovery after stroke: an artificial neural network model. Brain Commun 2022; 4:fcac264. [PMID: 36458210 PMCID: PMC9700163 DOI: 10.1093/braincomms/fcac264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 06/18/2022] [Accepted: 10/19/2022] [Indexed: 10/23/2023] Open
Abstract
After a neurological injury, people develop abnormal patterns of neural activity that limit motor recovery. Traditional rehabilitation, which concentrates on practicing impaired skills, is seldom fully effective. New targeted neuroplasticity protocols interact with the central nervous system to induce beneficial plasticity in key sites and thereby enable wider beneficial plasticity. They can complement traditional therapy and enhance recovery. However, their development and validation is difficult because many different targeted neuroplasticity protocols are conceivable, and evaluating even one of them is lengthy, laborious, and expensive. Computational models can address this problem by triaging numerous candidate protocols rapidly and effectively. Animal and human empirical testing can then concentrate on the most promising ones. Here, we simulate a neural network of corticospinal neurons that control motoneurons eliciting unilateral finger extension. We use this network to (i) study the mechanisms and patterns of cortical reorganization after a stroke; and (ii) identify and parameterize a targeted neuroplasticity protocol that improves recovery of extension torque. After a simulated stroke, standard training produced abnormal bilateral cortical activation and suboptimal torque recovery. To enhance recovery, we interdigitated standard training with trials in which the network was given feedback only from a targeted population of sub-optimized neurons. Targeting neurons in secondary motor areas on ∼20% of the total trials restored lateralized cortical activation and improved recovery of extension torque. The results illuminate mechanisms underlying suboptimal cortical activity post-stroke; they enable the identification and parameterization of the most promising targeted neuroplasticity protocols. By providing initial guidance, computational models could facilitate and accelerate the realization of new therapies that improve motor recovery.
Collapse
Affiliation(s)
- Sumner L Norman
- Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Mechanical and Aerospace Engineering, University of California: Irvine, Irvine, CA 92697, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center and State University of New York, Albany, NY 12208, USA
| | - David J Reinkensmeyer
- Mechanical and Aerospace Engineering, Anatomy and Neurobiology, University of California: Irvine, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Hill NJ, Gupta D, Eftekhar A, Brangaccio JA, Norton JJS, McLeod M, Fake T, Wolpaw JR, Thompson AK. The Evoked Potential Operant Conditioning System (EPOCS): A Research Tool and an Emerging Therapy for Chronic Neuromuscular Disorders. J Vis Exp 2022:10.3791/63736. [PMID: 36094287 PMCID: PMC9948679 DOI: 10.3791/63736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The Evoked Potential Operant Conditioning System (EPOCS) is a software tool that implements protocols for operantly conditioning stimulus-triggered muscle responses in people with neuromuscular disorders, which in turn can improve sensorimotor function when applied appropriately. EPOCS monitors the state of specific target muscles-e.g., from surface electromyography (EMG) while standing, or from gait cycle measurements while walking on a treadmill-and automatically triggers calibrated stimulation when pre-defined conditions are met. It provides two forms of feedback that enable a person to learn to modulate the targeted pathway's excitability. First, it continuously monitors ongoing EMG activity in the target muscle, guiding the person to produce a consistent level of activity suitable for conditioning. Second, it provides immediate feedback of the response size following each stimulation and indicates whether it has reached the target value. To illustrate its use, this article describes a protocol through which a person can learn to decrease the size of the Hoffmann reflex-the electrically-elicited analog of the spinal stretch reflex-in the soleus muscle. Down-conditioning this pathway's excitability can improve walking in people with spastic gait due to incomplete spinal cord injury. The article demonstrates how to set up the equipment; how to place stimulating and recording electrodes; and how to use the free software to optimize electrode placement, measure the recruitment curve of direct motor and reflex responses, measure the response without operant conditioning, condition the reflex, and analyze the resulting data. It illustrates how the reflex changes over multiple sessions and how walking improves. It also discusses how the system can be applied to other kinds of evoked responses and to other kinds of stimulation, e.g., motor evoked potentials to transcranial magnetic stimulation; how it can address various clinical problems; and how it can support research studies of sensorimotor function in health and disease.
Collapse
Affiliation(s)
- N Jeremy Hill
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center; Electrical & Computer Engineering Department, State University of New York at Albany;
| | - Disha Gupta
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center; Electrical & Computer Engineering Department, State University of New York at Albany
| | - Amir Eftekhar
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center
| | - Jodi A Brangaccio
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center; Electrical & Computer Engineering Department, State University of New York at Albany
| | - Michelle McLeod
- College of Health Professions, Medical University of South Carolina
| | - Tim Fake
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Stratton VA Medical Center; Electrical & Computer Engineering Department, State University of New York at Albany; Department of Biomedical Sciences, State University of New York at Albany
| | - Aiko K Thompson
- College of Health Professions, Medical University of South Carolina
| |
Collapse
|
15
|
Wolpaw JR, Kamesar A. Heksor: the central nervous system substrate of an adaptive behaviour. J Physiol 2022; 600:3423-3452. [PMID: 35771667 PMCID: PMC9545119 DOI: 10.1113/jp283291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Over the past half-century, the largely hardwired central nervous system (CNS) of 1970 has become the ubiquitously plastic CNS of today, in which change is the rule not the exception. This transformation complicates a central question in neuroscience: how are adaptive behaviours - behaviours that serve the needs of the individual - acquired and maintained through life? It poses a more basic question: how do many adaptive behaviours share the ubiquitously plastic CNS? This question compels neuroscience to adopt a new paradigm. The core of this paradigm is a CNS entity with unique properties, here given the name heksor from the Greek hexis. A heksor is a distributed network of neurons and synapses that changes itself as needed to maintain the key features of an adaptive behaviour, the features that make the behaviour satisfactory. Through their concurrent changes, the numerous heksors that share the CNS negotiate the properties of the neurons and synapses that they all use. Heksors keep the CNS in a state of negotiated equilibrium that enables each heksor to maintain the key features of its behaviour. The new paradigm based on heksors and the negotiated equilibrium they create is supported by animal and human studies of interactions among new and old adaptive behaviours, explains otherwise inexplicable results, and underlies promising new approaches to restoring behaviours impaired by injury or disease. Furthermore, the paradigm offers new and potentially important answers to extant questions, such as the generation and function of spontaneous neuronal activity, the aetiology of muscle synergies, and the control of homeostatic plasticity.
Collapse
Affiliation(s)
- Jonathan R. Wolpaw
- National Centre for Adaptive NeurotechnologiesAlbany Stratton VA Medical CentreAlbanyNYUSA
- Department of Biomedical SciencesState University of New YorkAlbanyNYUSA
| | | |
Collapse
|
16
|
Thompson AK, Gill CR, Feng W, Segal RL. Operant down-conditioning of the soleus H-reflex in people after stroke. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:859724. [PMID: 36188979 PMCID: PMC9397863 DOI: 10.3389/fresc.2022.859724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023]
Abstract
Through operant conditioning, spinal reflex behaviors can be changed. Previous studies in rats indicate that the sensorimotor cortex and corticospinal tract are essential in inducing and maintaining reflex changes induced through conditioning. In people with incomplete spinal cord injury (SCI), an operant down-conditioning protocol decreased the soleus H-reflex size and improved walking speed and symmetry, suggesting that a partially preserved spinal cord can support conditioning-induced plasticity and benefit from it. This study examined whether down-conditioning can decrease the soleus H-reflex in people with supraspinal injury (i.e., cortical or subcortical stroke). Operant down-conditioning was applied to the soleus H-reflex in a cohort of 12 stroke people with chronic spastic hemiparesis (>12 months from stroke onset of symptoms). Each participant completed 6 baseline and 30 conditioning sessions over 12 weeks. In each baseline session, 225 control H-reflexes were elicited without any feedback on H-reflex size. In each conditioning session, 225 conditioned H-reflexes were elicited while the participant was asked to decrease H-reflex size and was given visual feedback as to whether the resulting H-reflex was smaller than a criterion value. In six of 12 participants, the conditioned H-reflex became significantly smaller by 30% on average, whereas in other 6 participants, it did not. The difference between the subgroups was largely attributable to the difference in across-session control reflex change. Ten-meter walking speed was increased by various extent (+0.04 to +0.35, +0.14 m/s on average) among the six participants whose H-reflex decreased, whereas the change was 0.00 m/s on average for the rest of participants. Although less than what was seen in participants with SCI, the fact that conditioning succeeded in 50% of stroke participants supports the feasibility of reflex down-conditioning in people after stroke. At the same time, the difference in across-session control reflex change and conditioning success rate may reflect a critical role of supraspinal activity in producing long-term plasticity in the spinal cord, as previous animal studies suggested.
Collapse
Affiliation(s)
- Aiko K. Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Christina R. Gill
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Wuwei Feng
- Department of Neurology, College of Health Professions, Duke University School of Medicine, Durham, NC, United States
| | - Richard L. Segal
- Department of Rehabilitation Sciences, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
17
|
Lyle MA, McLeod MM, Pouliot BA, Thompson AK. Soleus H-reflex modulation during a double-legged drop landing task. Exp Brain Res 2022; 240:1093-1103. [PMID: 35122483 PMCID: PMC9018516 DOI: 10.1007/s00221-022-06316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/28/2022] [Indexed: 01/16/2023]
Abstract
Muscle spindle afferent feedback is modulated during different phases of locomotor tasks in a way that facilitates task goals. However, only a few studies have studied H-reflex modulation during landing. This study aimed to characterize soleus (SOL) H-reflex modulation during the flight and early landing period of drop landings. Since landing presumably involves a massive increase in spindle afferent firing due to rapid SOL muscle stretching, we hypothesized H-reflex size would decrease near landing reflecting neural modulation to prevent excessive motoneuron excitation. The soleus H-reflex was recorded during drop landings from a 30 cm height in nine healthy adults. Electromyography (SOL, tibialis anterior (TA), medial gastrocnemius, and vastus lateralis), ankle and knee joint motion and ground reaction force were recorded during landings. Tibial nerve stimulation was timed to elicit H-reflexes during the flight and early ground contact period (five 30 ms Bins from 90 ms before to 60 ms after landing). The H-reflexes recorded after landing (0-30 and 30-60 ms) were significantly smaller (21-36% less) than that recorded during the flight periods (90-0 ms before ground contact; P ≤ 0.004). The decrease in H-reflex size not occurring until after ground contact indicates a time-critical modulation of reflex gain during the last 30 ms of flight (i.e., time of tibial nerve stimulation). H-reflex size reduction after ground contact supports a probable neural strategy to prevent excessive reflex-mediated muscle activation and thereby facilitates appropriate musculotendon and joint stiffness.
Collapse
Affiliation(s)
- Mark A Lyle
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, 1441 Clifton Road, N.E. Room 205, Atlanta, GA, 30322, USA.
| | - Michelle M McLeod
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Bridgette A Pouliot
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Aiko K Thompson
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
Samejima S, Caskey CD, Inanici F, Shrivastav SR, Brighton LN, Pradarelli J, Martinez V, Steele KM, Saigal R, Moritz CT. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design. Phys Ther 2022; 102:6514473. [PMID: 35076067 PMCID: PMC8788019 DOI: 10.1093/ptj/pzab228] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/07/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study investigated the effect of cervical and lumbar transcutaneous spinal cord stimulation (tSCS) combined with intensive training to improve walking and autonomic function after chronic spinal cord injury (SCI). METHODS Two 64-year-old men with chronic motor incomplete cervical SCI participated in this single-subject design study. They each underwent 2 months of intensive locomotor training and 2 months of multisite cervical and lumbosacral tSCS paired with intensive locomotor training. RESULTS The improvement in 6-Minute Walk Test distance after 2 months of tSCS with intensive training was threefold greater than after locomotor training alone. Both participants improved balance ability measured by the Berg Balance Scale and increased their ability to engage in daily home exercises. Gait analysis demonstrated increased step length for each individual. Both participants experienced improved sensation and bowel function, and 1 participant eliminated the need for intermittent catheterization after the stimulation phase of the study. CONCLUSION These results suggest that noninvasive spinal cord stimulation might promote recovery of locomotor and autonomic functions beyond traditional gait training in people with chronic incomplete cervical SCI. IMPACT Multisite transcutaneous spinal stimulation may induce neuroplasticity of the spinal networks and confer functional benefits following chronic cervical SCI.
Collapse
Affiliation(s)
- Soshi Samejima
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Charlotte D Caskey
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Fatma Inanici
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Siddhi R Shrivastav
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA
| | - Lorie N Brighton
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Jared Pradarelli
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Vincente Martinez
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Katherine M Steele
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA,Center for Neurotechnology, University of Washington, Seattle, Washington, USA,Department of Electrical and Computer Engineering, University of Washington, Seattle, Washington, USA,Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA,Address all correspondence to Dr Moritz at:
| |
Collapse
|
19
|
Asan AS, McIntosh JR, Carmel JB. Targeting Sensory and Motor Integration for Recovery of Movement After CNS Injury. Front Neurosci 2022; 15:791824. [PMID: 35126040 PMCID: PMC8813971 DOI: 10.3389/fnins.2021.791824] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
The central nervous system (CNS) integrates sensory and motor information to acquire skilled movements, known as sensory-motor integration (SMI). The reciprocal interaction of the sensory and motor systems is a prerequisite for learning and performing skilled movement. Injury to various nodes of the sensorimotor network causes impairment in movement execution and learning. Stimulation methods have been developed to directly recruit the sensorimotor system and modulate neural networks to restore movement after CNS injury. Part 1 reviews the main processes and anatomical interactions responsible for SMI in health. Part 2 details the effects of injury on sites critical for SMI, including the spinal cord, cerebellum, and cerebral cortex. Finally, Part 3 reviews the application of activity-dependent plasticity in ways that specifically target integration of sensory and motor systems. Understanding of each of these components is needed to advance strategies targeting SMI to improve rehabilitation in humans after injury.
Collapse
Affiliation(s)
| | | | - Jason B. Carmel
- Departments of Neurology and Orthopedics, Columbia University, New York, NY, United States
| |
Collapse
|
20
|
Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 2022; 27:402-441. [PMID: 36543175 DOI: 10.1123/mc.2022-0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.
Collapse
|
21
|
Leech KA, Roemmich RT, Gordon J, Reisman DS, Cherry-Allen KM. Updates in Motor Learning: Implications for Physical Therapist Practice and Education. Phys Ther 2021; 102:6409654. [PMID: 34718787 PMCID: PMC8793168 DOI: 10.1093/ptj/pzab250] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/12/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022]
Abstract
Over the past 3 decades, the volume of human motor learning research has grown enormously. As such, the understanding of motor learning (ie, sustained change in motor behavior) has evolved. It has been learned that there are multiple mechanisms through which motor learning occurs, each with distinctive features. These mechanisms include use-dependent, instructive, reinforcement, and sensorimotor adaptation-based motor learning. It is now understood that these different motor learning mechanisms contribute in parallel or in isolation to drive desired changes in movement, and each mechanism is thought to be governed by distinct neural substrates. This expanded understanding of motor learning mechanisms has important implications for physical therapy. It has the potential to facilitate the development of new, more precise treatment approaches that physical therapists can leverage to improve human movement. This Perspective describes scientific advancements related to human motor learning mechanisms and discusses the practical implications of this work for physical therapist practice and education.
Collapse
Affiliation(s)
- Kristan A Leech
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
- Address all correspondence to Dr Leech at:
| | - Ryan T Roemmich
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - James Gordon
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA
| | - Darcy S Reisman
- Physical Therapy Department, University of Delaware, Newark, Delaware, USA
| | - Kendra M Cherry-Allen
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
22
|
van 't Veld RC, Flux E, Schouten AC, van der Krogt MM, van der Kooij H, van Asseldonk EHF. Reducing the Soleus Stretch Reflex With Conditioning: Exploring Game- and Impedance-Based Biofeedback. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:742030. [PMID: 36188848 PMCID: PMC9397960 DOI: 10.3389/fresc.2021.742030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022]
Abstract
People with spasticity, i.e., stretch hyperreflexia, have a limited functional independence and mobility. While a broad range of spasticity treatments is available, many treatments are invasive, non-specific, or temporary and might have negative side effects. Operant conditioning of the stretch reflex is a promising non-invasive paradigm with potential long-term sustained effects. Within this conditioning paradigm, seated participants have to reduce the mechanically elicited reflex response using biofeedback of reflex magnitude quantified using electromyography (EMG). Before clinical application of the conditioning paradigm, improvements are needed regarding the time-intensiveness and slow learning curve. Previous studies have shown that gamification of biofeedback can improve participant motivation and long-term engagement. Moreover, quantification of reflex magnitude for biofeedback using reflexive joint impedance may obtain similar effectiveness within fewer sessions. Nine healthy volunteers participated in the study, split in three groups. First, as a reference the “Conventional” group received EMG- and bar-based biofeedback similar to previous research. Second, we explored feasibility of game-based biofeedback with the “Gaming” group receiving EMG- and game-based biofeedback. Third, we explored feasibility of game- and impedance-based biofeedback with the “Impedance” group receiving impedance and game-based biofeedback. Participants completed five baseline sessions (without reflex biofeedback) and six conditioning sessions (with reflex biofeedback). Participants were instructed to reduce reflex magnitude without modulating background activity. The Conventional and Gaming groups showed feasibility of the protocol in 2 and 3 out of 3 participants, respectively. These participants achieved a significant Soleus short-latency (M1) within-session reduction in at least –15% in the 4th–6th conditioning session. None of the Impedance group participants showed any within-session decrease in Soleus reflex magnitude. The feasibility in the EMG- and game-based biofeedback calls for further research on gamification of the conditioning paradigm to obtain improved participant motivation and engagement, while achieving long-term conditioning effects. Before clinical application, the time-intensiveness and slow learning curve of the conditioning paradigm remain an open challenge.
Collapse
Affiliation(s)
- Ronald C. van 't Veld
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Eline Flux
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Alfred C. Schouten
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Marjolein M. van der Krogt
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Edwin H. F. van Asseldonk
- Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
- *Correspondence: Edwin H. F. van Asseldonk
| |
Collapse
|
23
|
Pulverenti TS, Zaaya M, Grabowski M, Grabowski E, Islam MA, Li J, Murray LM, Knikou M. Neurophysiological Changes After Paired Brain and Spinal Cord Stimulation Coupled With Locomotor Training in Human Spinal Cord Injury. Front Neurol 2021; 12:627975. [PMID: 34040572 PMCID: PMC8141587 DOI: 10.3389/fneur.2021.627975] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/01/2021] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological changes that involve activity-dependent neuroplasticity mechanisms via repeated stimulation and locomotor training are not commonly employed in research even though combination of interventions is a common clinical practice. In this randomized clinical trial, we established neurophysiological changes when transcranial magnetic stimulation (TMS) of the motor cortex was paired with transcutaneous thoracolumbar spinal (transspinal) stimulation in human spinal cord injury (SCI) delivered during locomotor training. We hypothesized that TMS delivered before transspinal (TMS-transspinal) stimulation promotes functional reorganization of spinal networks during stepping. In this protocol, TMS-induced corticospinal volleys arrive at the spinal cord at a sufficient time to interact with transspinal stimulation induced depolarization of alpha motoneurons over multiple spinal segments. We further hypothesized that TMS delivered after transspinal (transspinal-TMS) stimulation induces less pronounced effects. In this protocol, transspinal stimulation is delivered at time that allows transspinal stimulation induced action potentials to arrive at the motor cortex and affect descending motor volleys at the site of their origin. Fourteen individuals with motor incomplete and complete SCI participated in at least 25 sessions. Both stimulation protocols were delivered during the stance phase of the less impaired leg. Each training session consisted of 240 paired stimuli delivered over 10-min blocks. In transspinal-TMS, the left soleus H-reflex increased during the stance-phase and the right soleus H-reflex decreased at mid-swing. In TMS-transspinal no significant changes were found. When soleus H-reflexes were grouped based on the TMS-targeted limb, transspinal-TMS and locomotor training promoted H-reflex depression at swing phase, while TMS-transspinal and locomotor training resulted in facilitation of the soleus H-reflex at stance phase of the step cycle. Furthermore, both transspinal-TMS and TMS-transspinal paired-associative stimulation (PAS) and locomotor training promoted a more physiological modulation of motor activity and thus depolarization of motoneurons during assisted stepping. Our findings support that targeted non-invasive stimulation of corticospinal and spinal neuronal pathways coupled with locomotor training produce neurophysiological changes beneficial to stepping in humans with varying deficits of sensorimotor function after SCI.
Collapse
Affiliation(s)
- Timothy S Pulverenti
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Morad Zaaya
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Monika Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Ewelina Grabowski
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Md Anamul Islam
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Jeffrey Li
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Lynda M Murray
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, New York, NY, United States.,Ph.D. Program in Biology and Collaborative Neuroscience Program, Graduate Center of the City University of New York and College of Staten Island, New York, NY, United States
| |
Collapse
|
24
|
Farina D, Mrachacz-Kersting N. Brain-computer interfaces and plasticity of the human nervous system. J Physiol 2021; 599:2349-2350. [PMID: 33928657 DOI: 10.1113/jp279845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Dario Farina
- Department of Bioengineering, Centre for Neurotechnologies, Imperial College London, London, UK
| | | |
Collapse
|
25
|
Sánchez N, Winstein CJ. Lost in Translation: Simple Steps in Experimental Design of Neurorehabilitation-Based Research Interventions to Promote Motor Recovery Post-Stroke. Front Hum Neurosci 2021; 15:644335. [PMID: 33958994 PMCID: PMC8093777 DOI: 10.3389/fnhum.2021.644335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/30/2021] [Indexed: 01/02/2023] Open
Abstract
Stroke continues to be a leading cause of disability. Basic neurorehabilitation research is necessary to inform the neuropathophysiology of impaired motor control, and to develop targeted interventions with potential to remediate disability post-stroke. Despite knowledge gained from basic research studies, the effectiveness of research-based interventions for reducing motor impairment has been no greater than standard of practice interventions. In this perspective, we offer suggestions for overcoming translational barriers integral to experimental design, to augment traditional protocols, and re-route the rehabilitation trajectory toward recovery and away from compensation. First, we suggest that researchers consider modifying task practice schedules to focus on key aspects of movement quality, while minimizing the appearance of compensatory behaviors. Second, we suggest that researchers supplement primary outcome measures with secondary measures that capture emerging maladaptive compensations at other segments or joints. Third, we offer suggestions about how to maximize participant engagement, self-direction, and motivation, by embedding the task into a meaningful context, a strategy more likely to enable goal-action coupling, associated with improved neuro-motor control and learning. Finally, we remind the reader that motor impairment post-stroke is a multidimensional problem that involves central and peripheral sensorimotor systems, likely influenced by chronicity of stroke. Thus, stroke chronicity should be given special consideration for both participant recruitment and subsequent data analyses. We hope that future research endeavors will consider these suggestions in the design of the next generation of intervention studies in neurorehabilitation, to improve translation of research advances to improved participation and quality of life for stroke survivors.
Collapse
Affiliation(s)
- Natalia Sánchez
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Carolee J Winstein
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
26
|
Nakajima T, Suzuki S, Zehr EP, Komiyama T. Long-lasting changes in muscle activation and step cycle variables induced by repetitive sensory stimulation to discrete areas of the foot sole during walking. J Neurophysiol 2020; 125:331-343. [PMID: 33326346 DOI: 10.1152/jn.00376.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether repetitive electrical stimulation to discrete foot sole regions that are phase-locked to the step cycle modulates activity patterns of ankle muscles and induces neuronal adaptation during human walking. Nonnoxious repetitive foot sole stimulation (STIM; 67 pulses at 333 Hz) was given to the medial forefoot (f-M) or heel (HL) regions at 1) the stance-to-swing transition, 2) swing-to-stance transition, or 3) midstance, during every step cycle for 10 min. Stance, but not swing, durations were prolonged with f-M STIM delivered at stance-to-swing transition, and these changes remained for up to 20-30 min after the intervention. Electromyographic (EMG) burst durations and amplitudes in the ankle extensors were also prolonged and persisted for 20 min after the intervention. Interestingly, STIM to HL was ineffective at inducing modulation, suggesting stimulation location-specific adaptation. In contrast, STIM to HL (but not f-M), at the swing-to-stance phase transition, shortened the step cycle by premature termination of swing. Furthermore, the onset of EMG bursts in the ankle extensors appeared earlier than in the control condition. STIM delivered during the midstance phase was ineffective at modulating the step cycle, highlighting phase-dependent adaptation. These effects were absent when STIM was applied while mimicking static postures for each walking phase during standing. Our findings suggest that the combination of walking-related neuronal activity with repetitive sensory inputs from the foot can generate short-term adaptation that is phase-dependent and localized to the site of STIM.NEW & NOTEWORTHY Repetitive (∼10 min) long (200 ms) trains of sensory stimulation to discrete areas of the foot sole produce persistent changes in muscle activity and cycle timing during walking. Interactions between the delivery phase and stimulus location determine the expression of the adaptations. These observations bear striking similarities to those in decerebrate cat experiments and may be usefully translated to improving locomotor function after neurotrauma.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Japan.,Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Ishikari, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, University of Victoria, Victoria, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Koganei, Japan.,Division of Health and Sports Scieces, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
27
|
Kwon YT, Norton JJS, Cutrone A, Lim HR, Kwon S, Choi JJ, Kim HS, Jang YC, Wolpaw JR, Yeo WH. Breathable, large-area epidermal electronic systems for recording electromyographic activity during operant conditioning of H-reflex. Biosens Bioelectron 2020; 165:112404. [PMID: 32729524 PMCID: PMC7484316 DOI: 10.1016/j.bios.2020.112404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Operant conditioning of Hoffmann's reflex (H-reflex) is a non-invasive and targeted therapeutic intervention for patients with movement disorders following spinal cord injury. The reflex-conditioning protocol uses electromyography (EMG) to measure reflexes from specific muscles elicited using transcutaneous electrical stimulation. Despite recent advances in wearable electronics, existing EMG systems that measure muscle activity for operant conditioning of spinal reflexes still use rigid metal electrodes with conductive gels and aggressive adhesives, while requiring precise positioning to ensure reliability of data across experimental sessions. Here, we present the first large-area epidermal electronic system (L-EES) and demonstrate its use in every step of the reflex-conditioning protocol. The L-EES is a stretchable and breathable composite of nanomembrane electrodes (16 electrodes in a four by four array), elastomer, and fabric. The nanomembrane electrode array enables EMG recording from a large surface area on the skin and the breathable elastomer with fabric is biocompatible and comfortable for patients. We show that L-EES can record direct muscle responses (M-waves) and H-reflexes, both of which are comparable to those recorded using conventional EMG recording systems. In addition, L-EES may improve the reflex-conditioning protocol; it has potential to automatically optimize EMG electrode positioning, which may reduce setup time and error across experimental sessions.
Collapse
Affiliation(s)
- Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - James J S Norton
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA; Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Andrew Cutrone
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA
| | - Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jeongmoon J Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hee Seok Kim
- Department of Mechanical Engineering, University of South Alabama, Mobile, AL, 36608, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jonathan R Wolpaw
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, 12208, USA; Stratton VA Medical Center, Albany, NY, 12208, USA
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Flexible and Wearable Electronics Advanced Research Program, Neural Engineering Center, Institute for Materials, and Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
28
|
Thompson AK, Sinkjær T. Can Operant Conditioning of EMG-Evoked Responses Help to Target Corticospinal Plasticity for Improving Motor Function in People With Multiple Sclerosis? Front Neurol 2020; 11:552. [PMID: 32765389 PMCID: PMC7381136 DOI: 10.3389/fneur.2020.00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022] Open
Abstract
Corticospinal pathway and its function are essential in motor control and motor rehabilitation. Multiple sclerosis (MS) causes damage to the brain and descending connections, and often diminishes corticospinal function. In people with MS, neural plasticity is available, although it does not necessarily remain stable over the course of disease progress. Thus, inducing plasticity to the corticospinal pathway so as to improve its function may lead to motor control improvements, which impact one's mobility, health, and wellness. In order to harness plasticity in people with MS, over the past two decades, non-invasive brain stimulation techniques have been examined for addressing common symptoms, such as cognitive deficits, fatigue, and spasticity. While these methods appear promising, when it comes to motor rehabilitation, just inducing plasticity or having a capacity for it does not guarantee generation of better motor functions. Targeting plasticity to a key pathway, such as the corticospinal pathway, could change what limits one's motor control and improve function. One of such neural training methods is operant conditioning of the motor-evoked potential that aims to train the behavior of the corticospinal-motoneuron pathway. Through up-conditioning training, the person learns to produce the rewarded neuronal behavior/state of increased corticospinal excitability, and through iterative training, the rewarded behavior/state becomes one's habitual, daily motor behavior. This minireview introduces operant conditioning approach for people with MS. Guiding beneficial CNS plasticity on top of continuous disease progress may help to prolong the duration of maintained motor function and quality of life in people living with MS.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States
| | - Thomas Sinkjær
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.,Lundbeck Foundation, Copenhagen, Denmark
| |
Collapse
|
29
|
Merlet AN, Harnie J, Macovei M, Doelman A, Gaudreault N, Frigon A. Mechanically stimulating the lumbar region inhibits locomotor-like activity and increases the gain of cutaneous reflexes from the paws in spinal cats. J Neurophysiol 2020; 123:1026-1041. [PMID: 32049598 DOI: 10.1152/jn.00747.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanically stimulating the dorsal lumbar region inhibits locomotion and reduces weight support during standing in rabbits and cats. However, how this inhibitory effect from the lumbar skin is mediated is poorly understood. Here we evaluated the effect of mechanically stimulating (vibration or pinch) the dorsal lumbar region on short-latency (8- to 13-ms onset) cutaneous reflex responses, evoked by electrically stimulating the superficial peroneal or distal tibial nerves, in seven adult cats with a low thoracic spinal transection (spinal cats). Cutaneous reflexes were evoked before, during, and after mechanical stimulation of the dorsal lumbar region. We found that mechanically stimulating the lumbar region by vibration or manual pinch abolished alternating bursts of activity between flexors and extensors initiated by nerve stimulation. The activity of extensor muscles was abolished bilaterally, whereas the activity of some ipsilateral flexor muscles was sustained during vibration/pinch. Mechanically stimulating the lumbar region increased ipsilateral and contralateral short-latency excitatory responses evoked by cutaneous inputs, a phenomenon that was generalized to muscles crossing different joints and located in different limbs. Our results indicate that the inhibitory effect on locomotion and weight support is not mediated by reducing cutaneous reflex gain and instead points to an inhibition of central pattern-generating circuitry, particularly the extensor component. The results provide greater insight into interactions between different types of somatosensory inputs within spinal motor circuits.NEW & NOTEWORTHY Vibration or pinch of the lumbar region in spinal-transected cats abolished alternating bursts of activity between flexors and extensors initiated by nerve stimulation. Mechanically stimulating the lumbar region increased ipsilateral and contralateral short-latency excitatory responses evoked by cutaneous inputs in hindlimb muscles. Sensory inputs from mechanoreceptors of the lumbar region do not mediate their inhibitory effect on locomotion and weight support by reducing the gain of short-latency excitatory cutaneous reflexes from the foot.
Collapse
Affiliation(s)
- Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Madalina Macovei
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Adam Doelman
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nathaly Gaudreault
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|