1
|
Wang Y, Niu K, Shi Y, Zhou F, Li X, Li Y, Chen T, Zhang Y. A review: targeting UBR5 domains to mediate emerging roles and mechanisms - chance or necessity? Int J Surg 2024; 110:4947-4964. [PMID: 38701508 PMCID: PMC11326040 DOI: 10.1097/js9.0000000000001541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Ubiquitinases are known to catalyze ubiquitin chains on target proteins to regulate various physiological functions like cell proliferation, autophagy, apoptosis, and cell cycle progression. As a member of E3 ligase, ubiquitin protein ligase E3 component n-recognin 5 (UBR5) belongs to the HECT E3 ligase and has been reported to be correlated with various pathophysiological processes. In this review, the authors give a comprehensive insight into the structure and function of UBR5. The authors discuss the specific domains of UBR5 and explore their biological functions separately. Furthermore, the authors describe the involvement of UBR5 in different pathophysiological conditions, including immune response, virus infection, DNA damage response, and protein quality control. Moreover, the authors provide a thorough summary of the important roles and regulatory mechanisms of UBR5 in cancers and other diseases. On the whole, investigating the domains and functions of UBR5, elucidating the underlying mechanisms of UBR5 with various substrates in detail may provide new theoretical basis for the treatment of diseases, including cancers, which could improve future studies to construct novel UBR5-targeted therapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
2
|
Hong SM, Lee EY, Park J, Kim J, Kim SY. Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity. Biomol Ther (Seoul) 2023; 31:573-582. [PMID: 37562979 PMCID: PMC10468420 DOI: 10.4062/biomolther.2023.130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Seong-Min Hong
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Eun Yoo Lee
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Jinho Park
- Department of Exercise Rehabilitation, Gachon University, Incheon 21936, Republic of Korea
| | - Jiyoun Kim
- Department of Exercise Rehabilitation, Gachon University, Incheon 21936, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
- Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
Sado T, Nielsen J, Glaister B, Takahashi KZ, Malcolm P, Mukherjee M. A passive exoskeleton can assist split-belt adaptation. Exp Brain Res 2022; 240:1159-1176. [PMID: 35165776 PMCID: PMC9103932 DOI: 10.1007/s00221-022-06314-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 01/25/2022] [Indexed: 11/04/2022]
Abstract
An exoskeletal device can assist walking in those with gait deficits. A passive exoskeleton can be a favorable choice for local or home rehabilitation settings because it is affordable, light weight, and less complex to utilize. While there is research that investigates the effects of exoskeleton on gait research examining the effects of such devices on gait adaptation, is rare. This is important because in diseases like stroke, the ability to flexibly adapt is affected, such that functional recovery becomes difficult. The purpose of this study was to characterize gait adaptation patterns that result from exoskeleton usage during a split-belt adaptation task. Healthy young participants were randomly assigned to a unilateral exoskeleton or a no-exoskeleton group. Each participant performed the specific split-belt adaptation tasks on the treadmill, where the speed of each belt could be controlled independently. Symmetry indices of spatiotemporal variables were calculated to quantify gait adaptation. To analyze the adaptation, trials were divided into early and late adaptation. We also analyzed degree of adaptation, and transfer effects. We also measured the symmetry of the positive power generated by the individual legs during the split-belt task to determine if using exoskeleton assistance reduced power in the exoskeleton group versus the no-exoskeleton group. Use of a passive exoskeleton device altered gait adaptation during a split-belt treadmill task in comparison to the control group. Such adaptation was found to be largely restricted to the temporal domain. Changes in the gait coordination patterns consisted of both early and late adaptive changes, especially in intra-limb patterns like stance time rather than inter-limb patterns like step time. Although the symmetry of the positive power generated during the split-belt task was found to be reduced for the exoskeleton-assistance group, it was shown that this was primarily the result of increased positive power generated by the side not receiving exoskeletal assistance. An unpowered assistive device can provide a unique solution for coordinating the lower limbs during different gait tasks. Such a solution could reduce the neural burden of adaptation consequently resulting in a reduction of the mechanical burden of walking during the bilateral gait coordination task. This may be useful for accelerating gait rehabilitation in different patient populations. However, balance control is important to consider during unilateral exoskeletal assistance.
Collapse
Affiliation(s)
- Takashi Sado
- Department of Biomechanics, University of Nebraska at Omaha, BRB#210, Biomechanics Research Building, 6160, University Drive, Omaha, NE, 68182-0860, USA
| | - James Nielsen
- Department of Biomechanics, University of Nebraska at Omaha, BRB#210, Biomechanics Research Building, 6160, University Drive, Omaha, NE, 68182-0860, USA
| | | | - Kota Z Takahashi
- Department of Biomechanics, University of Nebraska at Omaha, BRB#210, Biomechanics Research Building, 6160, University Drive, Omaha, NE, 68182-0860, USA
| | - Philippe Malcolm
- Department of Biomechanics, University of Nebraska at Omaha, BRB#210, Biomechanics Research Building, 6160, University Drive, Omaha, NE, 68182-0860, USA
| | - Mukul Mukherjee
- Department of Biomechanics, University of Nebraska at Omaha, BRB#210, Biomechanics Research Building, 6160, University Drive, Omaha, NE, 68182-0860, USA.
| |
Collapse
|
4
|
Mortreux M, Rosa‐Caldwell ME, Stiehl ID, Sung D, Thomas NT, Fry CS, Rutkove SB. Hindlimb suspension in Wistar rats: Sex-based differences in muscle response. Physiol Rep 2021; 9:e15042. [PMID: 34612585 PMCID: PMC8493566 DOI: 10.14814/phy2.15042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Ground-based animal models have been used extensively to understand the effects of microgravity on various physiological systems. Among them, hindlimb suspension (HLS), developed in 1979 in rats, remains the gold-standard and allows researchers to study the consequences of total unloading of the hind limbs while inducing a cephalic fluid shift. While this model has already brought valuable insights to space biology, few studies have directly compared functional decrements in the muscles of males and females during HLS. We exposed 28 adult Wistar rats (14 males and 14 females) to 14 days of HLS or normal loading (NL) to better assess how sex impacts disuse-induced muscle deconditioning. Females better maintained muscle function during HLS than males, as shown by a more moderate reduction in grip strength at 7 days (males: -37.5 ± 3.1%, females: -22.4 ± 6.5%, compared to baseline), that remains stable during the second week of unloading (males: -53.3 ± 5.7%, females: -22.4 ± 5.5%, compared to day 0) while the males exhibit a steady decrease over time (effect of sex × loading p = 0.0002, effect of sex × time × loading p = 0.0099). This was further supported by analyzing the force production in response to a tetanic stimulus. Further functional analyses using force production were also shown to correspond to sex differences in relative loss of muscle mass and CSA. Moreover, our functional data were supported by histomorphometric analyzes, and we highlighted differences in relative muscle loss and CSA. Specifically, female rats seem to experience a lesser muscle deconditioning during disuse than males thus emphasizing the need for more studies that will assess male and female animals concomitantly to develop tailored, effective countermeasures for all astronauts.
Collapse
Affiliation(s)
- Marie Mortreux
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Megan E. Rosa‐Caldwell
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Ian D. Stiehl
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
- Department of Physics and AstronomyDartmouth CollegeHanoverNew HampshireUSA
| | - Dong‐Min Sung
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Nicholas T. Thomas
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher S. Fry
- Department of Athletic Training and Clinical NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Seward B. Rutkove
- Department of NeurologyHarvard Medical School – Beth Israel Deaconess Medical CenterBostonMassachusettsUSA
| |
Collapse
|