1
|
Gao J, Sterling E, Hankin R, Sikal A, Yao Y. Therapeutics Targeting Skeletal Muscle in Amyotrophic Lateral Sclerosis. Biomolecules 2024; 14:878. [PMID: 39062592 PMCID: PMC11275039 DOI: 10.3390/biom14070878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex neuromuscular disease characterized by progressive motor neuron degeneration, neuromuscular junction dismantling, and muscle wasting. The pathological and therapeutic studies of ALS have long been neurocentric. However, recent insights have highlighted the significance of peripheral tissue, particularly skeletal muscle, in disease pathology and treatment. This is evidenced by restricted ALS-like muscle atrophy, which can retrogradely induce neuromuscular junction and motor neuron degeneration. Moreover, therapeutics targeting skeletal muscles can effectively decelerate disease progression by modulating muscle satellite cells for muscle repair, suppressing inflammation, and promoting the recovery or regeneration of the neuromuscular junction. This review summarizes and discusses therapeutic strategies targeting skeletal muscles for ALS treatment. It aims to provide a comprehensive reference for the development of novel therapeutics targeting skeletal muscles, potentially ameliorating the progression of ALS.
Collapse
Affiliation(s)
| | | | | | | | - Yao Yao
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Science, University of Georgia, Athens, GA 30602, USA (E.S.)
| |
Collapse
|
2
|
Ovsepian SV, O'Leary VB, Martinez S. Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates. Brain Struct Funct 2024; 229:1-14. [PMID: 37999738 PMCID: PMC10827929 DOI: 10.1007/s00429-023-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why some motor neurons are especially susceptible to the disease, while others are affected less or even spared. In this article, we review the neurobiological mechanisms, neurochemical profiles, and morpho-functional characteristics of various motor neuron groups and types of motor units implicated in their differential exposure to degeneration. We discuss specific cell-autonomous (intrinsic) and extrinsic factors influencing the vulnerability gradient of motor units and motor neuron types to ALS, with their impact on disease manifestation, course, and prognosis, as revealed in preclinical and clinical studies. We consider the outstanding challenges and emerging opportunities for interpreting the phenotypic and mechanistic variability of the disease to identify targets for clinical interventions.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, Avda. Ramon y Cajal, 03550, San Juan de Alicante, Spain.
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, Madrid, Spain.
| |
Collapse
|
3
|
Stella R, Bonadio RS, Cagnin S, Andreotti R, Massimino ML, Bertoli A, Peggion C. Secreted Metabolome of ALS-Related hSOD1(G93A) Primary Cultures of Myocytes and Implications for Myogenesis. Cells 2023; 12:2751. [PMID: 38067180 PMCID: PMC10706027 DOI: 10.3390/cells12232751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease associated with progressive muscle atrophy, paralysis, and eventually death. Growing evidence demonstrates that the pathological process leading to ALS is the result of multiple altered mechanisms occurring not only in MNs but also in other cell types inside and outside the central nervous system. In this context, the involvement of skeletal muscle has been the subject of a few studies on patients and ALS animal models. In this work, by using primary myocytes derived from the ALS transgenic hSOD1(G93A) mouse model, we observed that the myogenic capability of such cells was defective compared to cells derived from control mice expressing the nonpathogenic hSOD1(WT) isoform. The correct in vitro myogenesis of hSOD1(G93A) primary skeletal muscle cells was rescued by the addition of a conditioned medium from healthy hSOD1(WT) myocytes, suggesting the existence of an in trans activity of secreted factors. To define a dataset of molecules participating in such safeguard action, we conducted comparative metabolomic profiling of a culture medium collected from hSOD1(G93A) and hSOD1(WT) primary myocytes and report here an altered secretion of amino acids and lipid-based signaling molecules. These findings support the urgency of better understanding the role of the skeletal muscle secretome in the regulation of the myogenic program and mechanisms of ALS pathogenesis and progression.
Collapse
Affiliation(s)
- Roberto Stella
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy
| | | | - Stefano Cagnin
- Department of Biology, University of Padova, 35131 Padova, Italy (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy (A.B.)
| | - Maria Lina Massimino
- Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35131 Padova, Italy;
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy (A.B.)
- Neuroscience Institute, Consiglio Nazionale delle Ricerche, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy (S.C.)
| |
Collapse
|
4
|
Anakor E, Duddy WJ, Duguez S. The Cellular and Molecular Signature of ALS in Muscle. J Pers Med 2022; 12:1868. [PMID: 36579600 PMCID: PMC9692882 DOI: 10.3390/jpm12111868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a disease affecting upper and lower motor neurons. Although motor neuron death is the core event of ALS pathology, it is increasingly recognized that other tissues and cell types are affected in the disease, making potentially major contributions to the occurrence and progression of pathology. We review here the known cellular and molecular characteristics of muscle tissue affected by ALS. Evidence of toxicity in skeletal muscle tissue is considered, including metabolic dysfunctions, impaired proteostasis, and deficits in muscle regeneration and RNA metabolism. The role of muscle as a secretory organ, and effects on the skeletal muscle secretome are also covered, including the increase in secretion of toxic factors or decrease in essential factors that have consequences for neuronal function and survival.
Collapse
Affiliation(s)
| | | | - Stephanie Duguez
- Northern Ireland Center for Personalised Medicine, School of Medicine, Ulster University, Derry-Londonderry BT47 6SB, UK
| |
Collapse
|
5
|
Bauer US, Fiskum V, Nair RR, van de Wijdeven R, Kentros C, Sandvig I, Sandvig A. Validation of Functional Connectivity of Engineered Neuromuscular Junction With Recombinant Monosynaptic Pseudotyped ΔG-Rabies Virus Tracing. Front Integr Neurosci 2022; 16:855071. [PMID: 35669734 PMCID: PMC9163662 DOI: 10.3389/fnint.2022.855071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
Current preclinical models of neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS), can significantly benefit from in vitro neuroengineering approaches that enable the selective study and manipulation of neurons, networks, and functional units of interest. Custom-designed compartmentalized microfluidic culture systems enable the co-culture of different relevant cell types in interconnected but fluidically isolated microenvironments. Such systems can thus be applied for ALS disease modeling, as they enable the recapitulation and study of neuromuscular junctions (NMJ) through co-culturing of motor neurons and muscle cells in separate, but interconnected compartments. These in vitro systems are particularly relevant for investigations of mechanistic aspects of the ALS pathological cascade in engineered NMJ, as progressive loss of NMJ functionality may constitute one of the hallmarks of disease related pathology at early onset, in line with the dying back hypothesis. In such models, ability to test whether motor neuron degeneration in ALS starts at the nerve terminal or at the NMJ and retrogradely progresses to the motor neuron cell body largely relies on robust methods for verification of engineered NMJ functionality. In this study, we demonstrate the functionality of engineered NMJs within a microfluidic chip with a differentially perturbable microenvironment using a designer pseudotyped ΔG-rabies virus for retrograde monosynaptic tracing.
Collapse
Affiliation(s)
- Ulrich Stefan Bauer
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Vegard Fiskum
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rajeevkumar Raveendran Nair
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Rosanne van de Wijdeven
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Clifford Kentros
- Centre for Neural Computation, Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical Neuroscience, Umeå University Hospital, Umeå, Sweden
- Department of Community Medicine and Rehabilitation, Umeå University, Umeå, Sweden
- *Correspondence: Axel Sandvig,
| |
Collapse
|
6
|
Tsitkanou S, Della Gatta PA, Abbott G, Wallace MA, Lindsay A, Gerlinger-Romero F, Walker AK, Foletta VC, Russell AP. miR-23a suppression accelerates functional decline in the rNLS8 mouse model of TDP-43 proteinopathy. Neurobiol Dis 2021; 162:105559. [PMID: 34774794 DOI: 10.1016/j.nbd.2021.105559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Skeletal muscle dysfunction may contribute to the progression and severity of amyotrophic lateral sclerosis (ALS). In the present study, we characterized the skeletal muscle pathophysiology in an inducible transgenic mouse model (rNLS8) that develops a TAR-DNA binding protein (TDP-43) proteinopathy and ALS-like neuropathology and disease progression; representative of >90% of all familial and sporadic ALS cases. As we previously observed elevated levels of miR-23a in skeletal muscle of patients with familial and sporadic ALS, we also investigated the effect of miR-23a suppression on skeletal muscle pathophysiology and disease severity in rNLS8 mice. Five weeks after disease onset TDP-43 protein accumulation was observed in tibialis anterior (TA), quadriceps (QUAD) and diaphragm muscle lysates and associated with skeletal muscle atrophy. In the TA muscle TDP-43 was detected in muscle fibres that appeared atrophied and angular in appearance and that also contained β-amyloid aggregates. These fibres were also positive for neural cell adhesion molecule (NCAM), but not embryonic myosin heavy chain (eMHC), indicating TDP-43/ β-amyloid localization in denervated muscle fibres. There was an upregulation of genes associated with myogenesis and NMJ degeneration and a decrease in the MURF1 atrophy-related protein in skeletal muscle. Suppression of miR-23a impaired rotarod performance and grip strength and accelerated body weight loss during early stages of disease progression. This was associated with increased AchRα mRNA expression and decreased protein levels of PGC-1α. The TDP-43 proteinopathy-induced impairment of whole body and skeletal muscle functional performance is associated with muscle wasting and elevated myogenic and NMJ stress markers. Suppressing miR-23a in the rNLS8 mouse model of ALS contributes to an early acceleration of disease progression as measured by decline in motor function.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Paul A Della Gatta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Gavin Abbott
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Marita A Wallace
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Frederico Gerlinger-Romero
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Victoria C Foletta
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| |
Collapse
|
7
|
Giagnorio E, Malacarne C, Mantegazza R, Bonanno S, Marcuzzo S. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J Cell Sci 2021; 134:269129. [PMID: 34137441 DOI: 10.1242/jcs.258349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of both upper and lower motor neurons (MNs). The main clinical features of ALS are motor function impairment, progressive muscle weakness, muscle atrophy and, ultimately, paralysis. Intrinsic skeletal muscle deterioration plays a crucial role in the disease and contributes to ALS progression. Currently, there are no effective treatments for ALS, highlighting the need to obtain a deeper understanding of the molecular events underlying degeneration of both MNs and muscle tissue, with the aim of developing successful therapies. Muscle tissue is enriched in a group of microRNAs called myomiRs, which are effective regulators of muscle homeostasis, plasticity and myogenesis in both physiological and pathological conditions. After providing an overview of ALS pathophysiology, with a focus on the role of skeletal muscle, we review the current literature on myomiR network dysregulation as a contributing factor to myogenic perturbations and muscle atrophy in ALS. We argue that, in view of their critical regulatory function at the interface between MNs and skeletal muscle fiber, myomiRs are worthy of further investigation as potential molecular targets of therapeutic strategies to improve ALS symptoms and counteract disease progression.
Collapse
Affiliation(s)
- Eleonora Giagnorio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Claudia Malacarne
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| |
Collapse
|
8
|
Potential Roles of the WNT Signaling Pathway in Amyotrophic Lateral Sclerosis. Cells 2021; 10:cells10040839. [PMID: 33917816 PMCID: PMC8068170 DOI: 10.3390/cells10040839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The WNT signaling pathway plays an important role in the physiological and pathophysiological processes of the central nervous system and the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We reviewed the literature pertinent to WNT/β–catenin signaling in ALS from cellular studies, animal models, and human clinical trials. WNT, WNT receptors, and other components of the WNT signaling pathway are expressed in both ALS patients and transgenic mice, and are involved in the pathogenesis of ALS. Studies have shown that abnormal activation of the WNT/β–catenin signaling pathway is related to neuronal degeneration and glial cell proliferation. WNT/Ca2+ signaling is associated with the pro–inflammatory phenotype of microglia; data on the muscle skeletal receptor Tyr kinase receptor in superoxide dismutase–1–G93A mice indicate that gene therapy is necessary for successful treatment of ALS. The varying profiles of lipoprotein receptor–related protein 4 antibodies in different ethnic groups suggest that individual treatment and multifactorial personalized approaches may be necessary for effective ALS therapy. In conclusion, the WNT signaling pathway is important to the ALS disease process, making it a likely therapeutic target.
Collapse
|