1
|
Wang H, Schlader ZJ, Lei TH, Mündel T, Amano T, Fujii N, Nishiyasu T, Kondo N. The effect of biological sex on cool seeking behavior during passive heat stress in young adults. Eur J Appl Physiol 2025:10.1007/s00421-025-05702-8. [PMID: 39939563 DOI: 10.1007/s00421-025-05702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 12/28/2024] [Indexed: 02/14/2025]
Abstract
PURPOSE This study tested the hypothesis that females engage in cool seeking behavior to a greater extent during passive heating compared to males. METHODS 27 healthy participants (14 males) underwent two trials of 50 min lower leg passive heating with (Fan trial) and without the fan (No fan trial) in a 27 °C, 50% relative humidity environment. In the Fan trials, participants were allowed to use the fan by pressing the button to keep themselves comfortable while they were not allowed in the No fan trial. RESULTS Cool seeking behavior was initiated at the same change (∆) in rectal temperature (0.2 (0.2) °C vs 0.2 (0.1) °C, p = 0.281) and ∆ mean skin temperature (2.1 (0.6) °C vs 2.3 (0.6) °C, p = 0.307), but cooling time was longer (13.5 (5.4) min vs 17.3 (3.9) min, p = 0.040) and cumulative number of times pressing the button is more often (7.3 (3.6) times vs 10.8 (4.6) times, p = 0.049) in females compared to males. Thermal sensation, thermal discomfort, and perceived skin wetness were not different between sexes during lower leg passive heating in all trials (all p > 0.145). Furthermore, whole body sweat loss and local sweat rate on the forearm were significantly higher in males compared to females (all p < 0.042) across Fan and No fan trials. CONCLUSION In conclusion, females engage in cool seeking behavior to a greater extent than males. Furthermore, thermal perceptions are not different between sexes during passive heating.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-Ku, Kobe, 657-8501, Japan
| | - Zachary J Schlader
- Department of Kinesiology, Indiana University School of Public Health, Bloomington, IN, USA
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Tatsuro Amano
- Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-Ku, Kobe, 657-8501, Japan.
| |
Collapse
|
2
|
Filingeri D, Blount H, Valenza A. Female thermal sensitivity and behaviour across the lifespan: A unique journey. Exp Physiol 2025; 110:191-195. [PMID: 38451148 PMCID: PMC11782171 DOI: 10.1113/ep091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
Women are a group of individuals that undergo unique anatomical, physiological and hormonal changes across the lifespan. For example, consider the impact of the menstrual cycle, pregnancy and menopause, all of which are accompanied by both short- and long-term effects on female body morphology (e.g., changes in breast size) and temperature regulation, heat tolerance, thermal sensitivity and comfort. However, empirical evidence on how skin thermal and wetness sensitivity might change across the lifespan of women, and the implications that this has for female-specific thermal behaviours, continues to be lacking. This paper is based on a symposium presentation given at Physiology 2023 in Harrogate, UK. It aims to review new evidence on anatomical and physiological mechanisms underpinning differences in skin thermal and wetness sensitivity amongst women varying in breast size and age, in addition to their role in driving female thermal behaviours. It is hoped that this brief overview will stimulate the development of testable hypotheses to increase our understanding of the behavioural thermal physiology of women across the lifespan and at a time of climate change.
Collapse
Affiliation(s)
- Davide Filingeri
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| | - Hannah Blount
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| | - Alessandro Valenza
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
- Sport and Exercise Sciences Research Unit, Scienze Psicologiche, Pedagogiche, dell'Esercizio Fisico e della FormazioneUniversity of PalermoPalermoItaly
| |
Collapse
|
3
|
Wang H, Schlader ZJ, Lei TH, Mündel T, Amano T, Fujii N, Nishiyasu T, Cotter J, Kondo N. The effect of seasonal heat acclimatization on cool-seeking behaviour during passive heat stress in young adults. Exp Physiol 2024. [PMID: 39252442 DOI: 10.1113/ep091969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/31/2024] [Indexed: 09/11/2024]
Abstract
Seasonal heat acclimatization is known to enhance autonomic thermoeffector responses, whereas the behavioural response following seasonal heat acclimatization remains unknown. We investigated whether seasonal heat acclimatization would alter autonomic and behavioural thermoregulatory responses. Sixteen healthy participants (eight males and eight females) underwent two trials involving 50 min of lower-leg passive heating (lower-leg submersion in 42°C water) with (Fan trial) and without (No fan trial) the voluntary use of a fan in a moderate thermal environment (27°C, 50% relative humidity) across winter and summer months. In Fan trials, participants were allowed to use a fan to maintain thermal comfort, but this was not allowed in the No fan trials. Cool-seeking behaviour was initiated at a lower change in rectal temperature [mean (SD): 0.21 (0.18)°C vs. 0.11 (0.13)°C, P = 0.0327] and change in mean skin temperature [2.34 (0.56)°C vs. 1.81 (0.32)°C, P < 0.0001], and cooling time was longer [16.46 (5.62) vs. 20.40 (4.87) min, P = 0.0224] in summer compared with winter. However, thermal perception was not modified by season during lower-leg passive heating (all P > 0.0864). Furthermore, rectal temperature was higher in summer (P = 0.0433), whereas mean body temperature and skin temperature were not different (all P > 0.0631) between the two seasons in Fan trials. In conclusion, seasonal heat acclimatization enhanced the cool-seeking behaviour from winter to summer.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Zachary J Schlader
- Department of Kinesiology, Indiana University School of Public Health, Bloomington, Indiana, USA
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Tatsuro Amano
- Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - James Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| |
Collapse
|
4
|
Valenza A, Blount H, Bianco A, Worsley PR, Filingeri D. Biophysical, thermo-physiological and perceptual determinants of cool-seeking behaviour during exercise in younger and older women. Exp Physiol 2024; 109:255-270. [PMID: 37975151 PMCID: PMC10988754 DOI: 10.1113/ep091533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Women continue to be under-represented in thermoregulatory research despite their undergoing unique physiological changes across the lifespan. This study investigated the biophysical, thermo-physiological, and perceptual determinants of cool-seeking behaviour during exercise in younger and older women. Eleven younger (25 ± 5 years; 1.7 ± 0.1 m; 63.1 ± 5.2 kg) and 11 older women (53 ± 6 years; 1.7 ± 0.1 m; 65.4 ± 13.9 kg) performed a 40-min incremental cycling test in a thermoneutral environment (22 ± 1.7°C; 36 ± 4% relative humidity). Throughout the test, participants freely adjusted the temperature of a cooling probe applied to their wrists to offset their thermal discomfort. We continuously recorded the probe-wrist interface temperature to quantify participants' cool-seeking behaviour. We also measured changes in participants' rate of metabolic heat production, core and mean skin temperatures, and skin wetness. Finally, we body-mapped participants' skin heat, cold and wetness sensitivity. Our results indicated that: (1) older and younger women exhibited similar onset and magnitude of cool-seeking behaviour, despite older women presented reduced autonomic heat-dissipation responses (i.e., whole-body sweat losses); (2) older women's thermal behaviour was less determined by changes in core temperature (this being a key driver in younger women), and more by changes in multiple thermo-physiological and biophysical parameters (i.e., physical skin wetness, temperature and heat production); (3) older women did not present lower regional skin thermal and wetness sensitivity than younger women. We conclude that predictions of female cool-seeking behaviours based on thermo-physiological variables should consider the effects of ageing. These findings are relevant for the design of wearable cooling systems and sports garments that meet the thermal needs of women across the lifespan.
Collapse
Affiliation(s)
- Alessandro Valenza
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
- Sport and Exercise Sciences Research Unit, SPPEFF DepartmentUniversity of PalermoPalermoItaly
| | - Hannah Blount
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| | - Antonino Bianco
- Sport and Exercise Sciences Research Unit, SPPEFF DepartmentUniversity of PalermoPalermoItaly
| | - Peter R. Worsley
- PRESSURELAB, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| | - Davide Filingeri
- ThermosenseLab, Skin Sensing Research Group, School of Health SciencesThe University of SouthamptonSouthamptonUK
| |
Collapse
|
5
|
Vanos J, Guzman-Echavarria G, Baldwin JW, Bongers C, Ebi KL, Jay O. A physiological approach for assessing human survivability and liveability to heat in a changing climate. Nat Commun 2023; 14:7653. [PMID: 38030628 PMCID: PMC10687011 DOI: 10.1038/s41467-023-43121-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Most studies projecting human survivability limits to extreme heat with climate change use a 35 °C wet-bulb temperature (Tw) threshold without integrating variations in human physiology. This study applies physiological and biophysical principles for young and older adults, in sun or shade, to improve current estimates of survivability and introduce liveability (maximum safe, sustained activity) under current and future climates. Our physiology-based survival limits show a vast underestimation of risks by the 35 °C Tw model in hot-dry conditions. Updated survivability limits correspond to Tw~25.8-34.1 °C (young) and ~21.9-33.7 °C (old)-0.9-13.1 °C lower than Tw = 35 °C. For older female adults, estimates are ~7.2-13.1 °C lower than 35 °C in dry conditions. Liveability declines with sun exposure and humidity, yet most dramatically with age (2.5-3.0 METs lower for older adults). Reductions in safe activity for younger and older adults between the present and future indicate a stronger impact from aging than warming.
Collapse
Affiliation(s)
- Jennifer Vanos
- School of Sustainability, Arizona State University, Tempe, AZ, USA.
| | - Gisel Guzman-Echavarria
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | - Jane W Baldwin
- Department of Earth System Science, University of California Irvine, Irvine, CA, USA
- Lamont-Doherty Earth Observatory, Palisades, NY, USA
| | - Coen Bongers
- Department of Medical Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| | - Kristie L Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, WA, USA
| | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Wang H, Lei TH, Schlader ZJ, Mündel T, Amano T, Fujii N, Nishiyasu T, Kondo N. Effect of voluntary electric fan use on autonomic and perceptual responses to lower leg passive heating in humans. J Therm Biol 2023; 118:103724. [PMID: 39491300 DOI: 10.1016/j.jtherbio.2023.103724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 11/05/2024]
Abstract
This study investigated the efficacy of voluntary fan utilization on autonomic thermoeffector responses and thermal perceptions during passive heating by lower leg immersion (42 °C) in a 27 °C ambient temperature, 50% relative humidity. Fourteen young healthy adults (8 females) were recruited for this study where they underwent two trials with (Fan) and without an electric fan (No fan) during 50 min of passive heat stress. The skin temperature on forearm and abdomen was lower in Fan than in No fan (all p < 0.02), and the local skin temperature on the chest, and mean skin temperature were significantly lower in Fan than in No fan in the final 20 min (mean value of mean skin temperature: 34.77(0.15) °C vs 35.11(0.12) °C, respectively, all p < 0.03), whilst the rectal temperature was not different between trials (37.11(0.23) °C vs 37.08(0.27) °C, p = 0.78). The sensitivity of local sweat rate (LSR) with the increase of mean body temperature on the chest and forearm was significantly lower in Fan than No fan trials (all p < 0.02). The sum value of thermal sensation was lower and wetness was higher in Fan than in No fan in the final 25 min (thermal sensation: 7.50 (1.25) vs 5.00 (3.06), wetness: -6.57 (2.31) vs -5.21 (2.46), all p<0.03) whilst thermal discomfort did not differ significantly between trials (p = 0.12). The voluntary use of an electric fan attenuates the autonomic thermoeffector response, such as sweating, and influences thermal sensation and wetness but did not affect core temperature and thermal discomfort during lower leg immersion.
Collapse
Affiliation(s)
- Hui Wang
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Zachary J Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Tatsuro Amano
- Faculty of Education, Niigata University, Niigata, Japan
| | - Naoto Fujii
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Takeshi Nishiyasu
- Institute of Health and Sports Science, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| |
Collapse
|
7
|
Greenfield AM, Alba BK, Giersch GEW, Seeley AD. Sex differences in thermal sensitivity and perception: Implications for behavioral and autonomic thermoregulation. Physiol Behav 2023; 263:114126. [PMID: 36787810 DOI: 10.1016/j.physbeh.2023.114126] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Temperature sensitive receptors in the skin and deep body enable the detection of the external and internal environment, including the perception of thermal stimuli. Changes in heat balance require autonomic (e.g., sweating) and behavioral (e.g., seeking shade) thermoeffector initiation to maintain thermal homeostasis. Sex differences in body morphology can largely, but not entirely, account for divergent responses in thermoeffector and perceptual responses to environmental stress between men and women. Thus, it has been suggested that innate differences in thermosensation may exist between men and women. Our goal in this review is to summarize the existing literature that investigates localized and whole-body cold and heat exposure pertaining to sex differences in thermal sensitivity and perception, and the interplay between autonomic and behavioral thermoeffector responses. Overall, it appears that local differences in thermal sensitivity and perception are minimized, yet still apparent, when morphological characteristics are well-controlled. Sex differences in the early vasomotor response to environmental stress and subsequent changes in blood flow likely contribute to the heightened thermal awareness observed in women. However, the contribution of thermoreceptors to observed sex differences in thermal perception and thermoeffector function is unclear, as human studies investigating these questions have not been performed.
Collapse
Affiliation(s)
- Andrew M Greenfield
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America; Oak Ridge Institute for Science and Education, Belcamp, MD, United States of America.
| | - Billie K Alba
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Gabrielle E W Giersch
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| | - Afton D Seeley
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States of America
| |
Collapse
|
8
|
Baldwin JW, Benmarhnia T, Ebi KL, Jay O, Lutsko NJ, Vanos JK. Humidity's Role in Heat-Related Health Outcomes: A Heated Debate. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:55001. [PMID: 37255302 PMCID: PMC10231239 DOI: 10.1289/ehp11807] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND As atmospheric greenhouse gas concentrations continue to rise, temperature and humidity will increase further, causing potentially dire increases in human heat stress. On physiological and biophysical grounds, exposure to higher levels of humidity should worsen heat stress by decreasing sweat evaporation. However, population-scale epidemiological studies of heat exposure and response often do not detect associations between high levels of humidity and heat-related mortality or morbidity. These divergent, disciplinary views regarding the role of humidity in heat-related health risks limit confidence in selecting which interventions are effective in reducing health impacts and in projecting future heat-related health risks. OBJECTIVES Via our multidisciplinary perspective we seek to a) reconcile the competing realities concerning the role of humidity in heat-related health impacts and b) help ensure robust projections of heat-related health risks with climate change. These objectives are critical pathways to identify and communicate effective approaches to cope with present and future heat challenges. DISCUSSION We hypothesize six key reasons epidemiological studies have found little impact of humidity on heat-health outcomes: a) At high temperatures, there may be limited influence of humidity on the health conditions that cause most heat-related deaths (i.e., cardiovascular collapse); b) epidemiological data sets have limited spatial extent, a bias toward extratropical (i.e., cooler and less humid), high-income nations, and tend to exist in places where temporal variations in temperature and humidity are positively correlated; c) analyses focus on older, vulnerable populations with sweating, and thus evaporative, impairments that may be further aggravated by dehydration; d) extremely high levels of temperature and humidity (seldom seen in the historical record) are necessary for humidity to substantially impact heat strain of sedentary individuals; e) relationships between temperature and humidity are improperly considered when interpreting epidemiological model results; and f) sub-daily meteorological phenomena, such as rain, occur at high temperatures and humidity, and may bias epidemiological studies based on daily data. Future research must robustly test these hypotheses to advance methods for more accurate incorporation of humidity in estimating heat-related health outcomes under present and projected future climates. https://doi.org/10.1289/EHP11807.
Collapse
Affiliation(s)
- Jane W. Baldwin
- Department of Earth System Science, University of California, Irvine, Irvine, California, USA
- Lamont-Doherty Earth Observatory, Palisades, New York, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, USA
| | - Kristie L. Ebi
- Center for Health and the Global Environment, University of Washington, Seattle, Washington, USA
| | - Ollie Jay
- Thermal Ergonomics Laboratory, Heat and Health Research Incubator, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Nicholas J. Lutsko
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, California, USA
| | - Jennifer K. Vanos
- School of Sustainability, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
9
|
Vargas NT, Schlader ZJ, Jay O, Hunter A. Prioritize research on human behaviour during extreme heat. Nat Hum Behav 2023; 7:473-474. [PMID: 36928783 DOI: 10.1038/s41562-023-01569-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Nicole T Vargas
- School of Medicine and Psychology, Australian National University, Acton, Australian Capital Territory, Australia.
- Heat and Health Research Incubator, University of Sydney, Camperdown, New South Wales, Australia.
| | | | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Camperdown, New South Wales, Australia
| | - Arnagretta Hunter
- School of Medicine and Psychology, Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
10
|
Bröde P, Aerts JM, De Bruyne G, Mayor TS, Annaheim S, Fiala D, Kuklane K. A modelling framework for local thermal comfort assessment related to bicycle helmet use. J Therm Biol 2023; 112:103457. [PMID: 36796903 DOI: 10.1016/j.jtherbio.2022.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Thermal discomfort due to accumulated sweat increasing head skin wettedness may contribute to low wearing rates of bicycle helmets. Using curated data on human head sweating and helmet thermal properties, a modelling framework for the thermal comfort assessment of bicycle helmet use is proposed. Local sweat rates (LSR) at the head were predicted as the ratio to the gross sweat rate (GSR) of the whole body or by sudomotor sensitivity (SUD), the change in LSR per change in body core temperature (Δtre). Combining those local models with Δtre and GSR output from thermoregulation models, we simulated head sweating depending on the characteristics of the thermal environment, clothing, activity, and exposure duration. Local thermal comfort thresholds for head skin wettedness were derived in relation to thermal properties of bicycle helmets. The modelling framework was supplemented by regression equations predicting the wind-related reductions in thermal insulation and evaporative resistance of the headgear and boundary air layer, respectively. Comparing the predictions of local models coupled with different thermoregulation models to LSR measured at the frontal, lateral and medial head under bicycle helmet use revealed a large spread in LSR predictions predominantly determined by the local models and the considered head region. SUD tended to overestimate frontal LSR but performed better for lateral and medial head regions, whereas predictions by LSR/GSR ratios were lower and agreed better with measured frontal LSR. However, even for the best models root mean squared prediction errors exceeded experimental SD by 18-30%. From the high correlation (R > 0.9) of skin wettedness comfort thresholds with local sweating sensitivity reported for different body regions, we derived a threshold value of 0.37 for head skin wettedness. We illustrate the application of the modelling framework using a commuter-cycling scenario, and discuss its potential as well as the needs for further research.
Collapse
Affiliation(s)
- Peter Bröde
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo)(1), Ardeystr. 67, 44139 Dortmund, Germany.
| | | | - Guido De Bruyne
- Department of Product Development, Faculty of Design Sciences, University of Antwerp, Belgium; Lazer Sport NV, Mechelen, Belgium
| | - Tiago Sotto Mayor
- Transport Phenomena Research Centre (CEFT), Engineering Faculty of Porto University, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Associate Laboratory in Chemical Engineering (ALiCE), Engineering Faculty of Porto University, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Dusan Fiala
- Ergonsim - Human Thermal Modelling, Messstetten, Germany
| | - Kalev Kuklane
- Netherlands Institute for Public Safety (NIPV), Zoetermeer, The Netherlands
| |
Collapse
|
11
|
Kato I, Masuda Y, Nagashima K. Characteristics of wet perception during the static touch of moist paper by the index fingertip alongside thermal stimulus application. Physiol Behav 2023; 258:114033. [PMID: 36395881 DOI: 10.1016/j.physbeh.2022.114033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Several factors have been reported to affect the perception of wetness. In the present study, we aimed to examine how wet perception changes when the factors related to thermal and/or wetness stimuli are modulated. First, the percentage of participants experiencing wet perception among filter papers with different water contents (0.00, 3.75, 7.50, 11.25, 15.00, and 18.75 µg/cm2, corresponding to 0.00, 0.18, 0.37, 0.55,0.73 and 0.91 µg/mm3) was evaluated during static touch by the right index finger pad. The stimulus temperature was maintained at 30 °C. Second, the wet perception of paper with a water content of 18.75 µg/cm2 was evaluated at stimulus temperature of 20 °C, 25 °C, 30 °C, 35 °C, and 40 °C. In the first experiment, the percentage of participants experiencing wet perception elevated with the increasing water content; however, the percentage plateaued at 11.25 µg/cm2 of water (68.1 ± 25.5%). In the second experiment, when the stimulus temperature was < 30 °C, the wet perception increased as the stimulation temperature decreased. However, the wet perception reached a plateau at a stimulation temperature ≥30 °C. Participants experienced wet perception more consistently as the water content increased when the stimulus temperature was 30 ˚C. The effect of temperature on wet perception was limited to the stimulus temperature of <30 °C at which cold sensation was induced. However, no clear relationship between stimulus temperature and wet perception was observed when the stimulus temperature was ≥30 ˚C at which warm/hot sensation was induced.
Collapse
Affiliation(s)
- Issei Kato
- Graduate School of Human Sciences, Waseda University; Mikajima 2-579-15, 359-1192, Tokorozawa, Saitama, Japan; Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University; Mikajima 2-579-15, 359-1192, Tokorozawa, Saitama, Japan
| | - Yuta Masuda
- Graduate School of Human Sciences, Waseda University; Mikajima 2-579-15, 359-1192, Tokorozawa, Saitama, Japan; Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University; Mikajima 2-579-15, 359-1192, Tokorozawa, Saitama, Japan
| | - Kei Nagashima
- Body Temperature and Fluid Laboratory, Faculty of Human Sciences, Waseda University; Mikajima 2-579-15, 359-1192, Tokorozawa, Saitama, Japan.
| |
Collapse
|
12
|
Guzman-Echavarria G, Middel A, Vanos J. Beyond heat exposure - new methods to quantify and link personal heat exposure, stress, and strain in diverse populations and climates: The journal Temperature toolbox. Temperature (Austin) 2022; 10:358-378. [PMID: 37554380 PMCID: PMC10405775 DOI: 10.1080/23328940.2022.2149024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022] Open
Abstract
Fine-scale personal heat exposure (PHE) information can help prevent or minimize weather-related deaths, illnesses, and reduced work productivity. Common methods to estimate heat risk do not simultaneously account for the intensity, frequency, and duration of thermal exposures, nor do they include inter-individual factors that modify physiological response. This study demonstrates new whole-body net thermal load estimations to link PHE to heat stress and strain over time. We apply a human-environment heat exchange model to examine how time-varying net thermal loads differ across climate contexts, personal attributes, and spatiotemporal scales. First, we investigate summertime climatic PHE impacts for three US cities: Phoenix, Miami, and New York. Second, we model body morphology and acclimatization for three profiles (middle-aged male/female; female >65 years). Finally, we quantify model sensitivity using representative data at synoptic and micro-scales. For all cases, we compare required and potential evaporative heat losses that can lead to dangerous thermal exposures based on (un)compensable heat stress. Results reveal misclassifications in heat stress or strain due to incomplete environmental data and assumed equivalent physiology and activities between people. Heat strain is most poorly represented by PHE alone for the elderly, non-acclimatized, those engaged in strenuous activities, and when negating solar radiation. Moreover, humid versus dry heat across climates elicits distinct thermal responses from the body. We outline criteria for inclusive PHE evaluations connecting heat exposure, stress, and strain while using physiological-based methods to avoid misclassifications. This work underlines the value of moving from "one-size-fits-all" thermal indices to "fit-for-purpose" approaches using personalized information.
Collapse
Affiliation(s)
- Gisel Guzman-Echavarria
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | - Ariane Middel
- School of Arts, Media and Engineering, Arizona State University, Tempe, AZ, USA
- School of Computing and Augmented Intelligence, Arizona State University,Tempe, AZ, USA
| | - Jennifer Vanos
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
13
|
Campbell HA, Akerman AP, Kissling LS, Prout JR, Gibbons TD, Thomas KN, Cotter JD. Acute physiological and psychophysical responses to different modes of heat stress. Exp Physiol 2022; 107:429-440. [PMID: 35193165 PMCID: PMC9314810 DOI: 10.1113/ep089992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/14/2022] [Indexed: 11/16/2022]
Abstract
New Findings What is the central question of this study? What are the profiles of acute physiological and psychophysical strain during and in recovery from different modes of heating, and to what extent do these diminish after repeated exposure? What is the main finding and its importance? Mode of heating affects the strain profiles during heat stress and recovery. Exercise in the heat incurred the greatest cardiovascular strain during heating and recovery. Humid heat was poorly tolerated despite heat strain being no greater than in other heating modes, and tolerance did not improve with multiple exposures.
Abstract Heat stress is common and arises endogenously and exogenously. It can be acutely hazardous while also increasingly advocated to drive health and performance‐related adaptations. Yet, the nature of strain (deviation in regulated variables) imposed by different heating modes is not well established, despite the potential for important differences. We, therefore, compared three modes of heat stress for thermal, cardiovascular and perceptual strain profiles during exposure and recovery when experienced as a novel stimulus and an accustomed stimulus. In a crossover design, 13 physically active participants (five females) underwent 5 days of 60‐min exposures to hot water immersion (40°C), sauna (55°C, 54% relative humidity) and exercise in the heat (40°C, 52% relative humidity), and a thermoneutral water immersion control (36.5°C), each separated by ≥4 weeks. Physiological (thermal, cardiovascular, haemodynamic) and psychophysical strain responses were assessed on days 1 and 5. Sauna evoked the warmest skin (40°C; P < 0.001) but exercise in the heat caused the largest increase in core temperature, sweat rate, heart rate (post hoc comparisons all P < 0.001) and systolic blood pressure (P ≤ 0.002), and possibly decrease in diastolic blood pressures (P ≤ 0.130), regardless of day. Thermal sensation and feeling state were more favourable on day 5 than on day 1 (P ≤ 0.021), with all modes of heat being equivalently uncomfortable (P ≥ 0.215). Plasma volume expanded the largest extent during immersions (P < 0.001). The current data highlight that exercising in the heat generates a more complex strain profile, while passive heat stress in humid heat has lower tolerance and more cardiovascular strain than hot water immersion.
Collapse
Affiliation(s)
- Holly A Campbell
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Department of Surgical Sciences, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Ashley P Akerman
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Department of Surgical Sciences, Otago Medical School, University of Otago, Dunedin, New Zealand.,Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ontario, Canada
| | - Lorenz S Kissling
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Jamie R Prout
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Travis D Gibbons
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand.,Department of Surgical Sciences, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Kate N Thomas
- Department of Surgical Sciences, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - James D Cotter
- School of Physical Education, Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Lei TH, Wang F. Looking ahead of 2021 Tokyo Summer Olympic Games: How Does Humid Heat Affect Endurance Performance? Insight into physiological mechanism and heat-related illness prevention strategies. J Therm Biol 2021; 99:102975. [PMID: 34420619 DOI: 10.1016/j.jtherbio.2021.102975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/25/2022]
Abstract
The combination of high humidity and ambient temperature of the 2021 Tokyo Summer Olympic Game will undoubtfully result in greater physiological strains and thereby downregulates the endurance performance of athletes. Although many research studies have highlighted that the thermoregulatory strain is greater when the environment is hot and humid, no review articles have addressed the thermoregulatory and performance differences between dry and humid heat and such lack of consensuses in this area will lead to increase the risk of heat-related injuries as well as suboptimal preparation. Furthermore, specific strategies to counteract this stressful environment has not been outlined in the current literature. Therefore, the purposes of this review are: 1) to provide a clear evidence that humid heat is more stressful than dry heat for both male and female athletes and therefore the preparation for the Tokyo Summer Olympic should be environmental specific instead of a one size fits all approach; 2) to highlight why female athletes may be facing a disadvantage when performing a prolonged endurance event under high humidity environment and 3) to highlight the potential interventional strategies to reduce thermal strain in hot-humid environment. The summaries of this review are: both male and female should be aware of the environmental condition in Tokyo as humid heat is more stressful than dry heat; Short-term heat acclimation may not elicit proper thermoregulatory adaptations in hot-humid environment; cold water immersion with proper hydration and some potential per-cooling modalities may be beneficial for both male and female athletes in hot-humid environment.
Collapse
Affiliation(s)
- Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Faming Wang
- School of Architecture and Art, Central South University, Changsha, China.
| |
Collapse
|
15
|
Snopkowski RL, Vargas NT, Chapman CL, Johnson BD, Mietlicki-Baase EG, Temple JL, Schlader ZJ. The requirement for physical effort reduces voluntary cooling behavior during heat exposure in humans. Physiol Behav 2021; 232:113350. [PMID: 33548222 DOI: 10.1016/j.physbeh.2021.113350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/30/2022]
Abstract
We tested the hypothesis that cool-seeking behavior during heat exposure is attenuated when physical effort is required. Twelve healthy adults (mean(SD), 24(4) years, four women) underwent three experimental trials during two hours of exposure to 41(1) °C, 20(0)% relative humidity in which subjects undertook intermittent exercise alternating between seated rest and cycling exercise at ~4 metabolic equivalents every 15 min. In all trials, subjects wore a water perfused suit top. In the control trial (Control), no water perfused the suit. In the other trials, subjects were freely able to perfuse 2.1(0.2) °C water through the suit. In one cooling trial, subjects received two minutes of cooling by pressing a button (Button). The other cooling trial permitted cooling by engaging in isometric handgrip exercise at 15% of maximal grip strength (Handgrip), with cooling maintained throughout the duration the required force was produced or until two minutes elapsed. In both Button and Handgrip, a one-minute washout proceeded cooling. Core temperature increased over time in all trials (P<0.01) and there were no differences between trials (P = 0.32). Mean skin temperature at the end of heat exposure was lowest in Button [34.2(1.5) °C] compared to Handgrip [35.6(0.8) °C, P = 0.03] and Control [36.9(0.7) °C, P<0.01]. The total number of behaviors [8(3) vs. 10(5), P = 0.04] and cumulative cooling time [850(323) vs. 1230(616) seconds, P = 0.02] were lower in Handgrip compared to Button. These data indicate that when physical effort is required, the incidence and duration of cooling behavior during heat exposure is attenuated compared to when behaving requires minimal physical effort.
Collapse
Affiliation(s)
- Randi L Snopkowski
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| | - Nicole T Vargas
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States; Thermal Ergonomics Laboratory, Discipline of Exercise and Sport Science, The University of Sydney, Sydney, NSW, Australia
| | - Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States; Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States; Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN United States
| | - Elizabeth G Mietlicki-Baase
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jennifer L Temple
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States
| | - Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, United States; Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN United States.
| |
Collapse
|
16
|
Hanna N, Riad K. Mechanisms of thermal dysregulation in primary hyperhidrosis and hypohidrosis. J Physiol 2020; 598:4753-4754. [DOI: 10.1113/jp280322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Nardin Hanna
- Faculty of Medicine University of Ottawa Ottawa ON Canada
| | - Karine Riad
- Faculty of Medicine University of Ottawa Ottawa ON Canada
| |
Collapse
|