1
|
Norup M, Nielsen AL, Bjørndal JR, Wiegel P, Spedden ME, Lundbye-Jensen J. Effects of dynamic and isometric motor practice on position control, force control and corticomuscular coherence in preadolescent children. Hum Mov Sci 2023; 90:103114. [PMID: 37354890 DOI: 10.1016/j.humov.2023.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/11/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Abstract
In this study, we investigated the effects of motor practice with an emphasis on either position or force control on motor performance, motor accuracy and variability in preadolescent children. Furthermore, we investigated corticomuscular coherence and potential changes following motor practice. We designed a setup allowing discrete wrist flexions of the non-dominant hand and tested motor accuracy and variability when the task was to generate specific movement endpoints (15-75 deg) or force levels (5-25% MVC). All participants were tested in both tasks at baseline and post motor practice without augmented feedback on performance. Following baseline assessment, participants (44 children aged 9-11 years) were randomly assigned to either position (PC) or force control (FC) motor practice or a resting control group (CON). The PC and FC groups performed four blocks of 40 trials motor practice with augmented feedback on performance. Following practice, improvements in movement accuracy were significantly greater in the PC group compared to the FC and CON groups (p < 0.001). None of the groups displayed changes in force task performance indicating no benefits of force control motor practice and low transfer between tasks (p-values:0.08-0.45). Corticomuscular coherence (C4-FCR) was demonstrated during the hold phase in both tasks with no difference between tasks. Corticomuscular coherence did not change from baseline to post practice in any group. Our findings demonstrate that preadolescent children improve position control following dynamic accuracy motor practice. Contrary to previous findings in adults, preadolescent children displayed smaller or no improvements in force control following isometric motor practice, low transfer between tasks and no changes in corticomuscular coherence.
Collapse
Affiliation(s)
- Malene Norup
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Department of Midwifery, Physiotherapy, Occupational Therapy and Psychomotor Therapy, Faculty of Health, University College Copenhagen, Denmark.
| | - August Lomholt Nielsen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jonas Rud Bjørndal
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Wiegel
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Meaghan Elizabeth Spedden
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark; Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, United Kingdom
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Norup M, Bjørndal JR, Nielsen AL, Wiegel P, Lundbye-Jensen J. Dynamic motor practice improves movement accuracy, force control and leads to increased corticospinal excitability compared to isometric motor practice. Front Hum Neurosci 2023; 16:1019729. [PMID: 36684837 PMCID: PMC9849878 DOI: 10.3389/fnhum.2022.1019729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
The central nervous system has a remarkable ability to plan motor actions, to predict and monitor the sensory consequences during and following motor actions and integrate these into future actions. Numerous studies investigating human motor learning have employed tasks involving either force control during isometric contractions or position control during dynamic tasks. To our knowledge, it remains to be elucidated how motor practice with an emphasis on position control influences force control and vice versa. Furthermore, it remains unexplored whether these distinct types of motor practice are accompanied by differential effects on corticospinal excitability. In this study, we tested motor accuracy and effects of motor practice in a force or position control task allowing wrist flexions of the non-dominant hand in the absence of online visual feedback. For each trial, motor performance was quantified as errors (pixels) between the displayed target and the movement endpoint. In the main experiment, 46 young adults were randomized into three groups: position control motor practice (PC), force control motor practice (FC), and a resting control group (CON). Following assessment of baseline motor performance in the position and force control tasks, intervention groups performed motor practice with, augmented visual feedback on performance. Motor performance in both tasks was assessed following motor practice. In a supplementary experiment, measures of corticospinal excitability were obtained in twenty additional participants by application of transcranial magnetic stimulation to the primary motor cortex hot spot of the flexor carpi radialis muscle before and following either position or force control motor practice. Following motor practice, accuracy in the position task improved significantly more for PC compared to FC and CON. For the force control task, both the PC and FC group improved more compared to CON. The two types of motor practice thus led to distinct effects including positive between-task transfer accompanying dynamic motor practice The results of the supplementary study demonstrated an increase in corticospinal excitability following dynamic motor practice compared to isometric motor practice. In conclusion, dynamic motor practice improves movement accuracy, and force control and leads to increased corticospinal excitability compared to isometric motor practice.
Collapse
Affiliation(s)
- Malene Norup
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark,Department of Midwifery, Physiotherapy, Occupational Therapy and Psychomotor Therapy, Faculty of Health, University College Copenhagen, Copenhagen, Denmark,*Correspondence: Malene Norup,
| | - Jonas Rud Bjørndal
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - August Lomholt Nielsen
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Wiegel
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Lundbye-Jensen
- Department of Nutrition, Exercise & Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Shraim MA, Massé-Alarie H, Salomoni SE, Hodges PW. Can training of a skilled pelvic movement change corticomotor control of back muscles? Comparison of single and paired-pulse transcranial magnetic stimulation. Eur J Neurosci 2022; 56:3705-3719. [PMID: 35501123 PMCID: PMC9540878 DOI: 10.1111/ejn.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Evidence suggests excitability of the motor cortex (M1) changes in response to motor skill learning of the upper limb. Few studies have examined immediate changes in corticospinal excitability and intra‐cortical mechanisms following motor learning in the lower back. Further, it is unknown which transcranial magnetic stimulation (TMS) paradigms are likely to reveal changes in cortical function in this region. This study aimed to (1) compare corticospinal excitability and intra‐cortical mechanisms in the lower back region of M1 before and after a single session of lumbopelvic tilt motor learning task in healthy people and (2) compare these measures between two TMS coils and two methods of recruitment curve (RC) acquisition. Twenty‐eight young participants (23.6 ± 4.6 years) completed a lumbopelvic tilting task involving three 5‐min blocks. Single‐pulse (RC from 70% to 150% of active motor threshold) and paired‐pulse TMS measures (ICF, SICF and SICI) were undertaken before (using 2 coils: figure‐of‐8 and double cone) and after (using double cone coil only) training. RCs were also acquired using a traditional and rapid method. A significant increase in corticospinal excitability was found after training as measured by RC intensities, but this was not related to the RC slope. No significant differences were found for paired‐pulse measures after training. Finally, there was good agreement between RC parameters when measured with the two different TMS coils or different acquisition methods (traditional vs. rapid). Changes in corticospinal excitability after a single session of lumbopelvic motor learning task are seen, but these changes are not explained by changes in intra‐cortical mechanisms.
Collapse
Affiliation(s)
- Muath A Shraim
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Hugo Massé-Alarie
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia.,Centre interdisciplinaire de recherche en réadaptation et integration sociale (CIRRIS), Université Laval, Québec, QC, Canada
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| | - Paul W Hodges
- The University of Queensland, NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury & Health, School of Health & Rehabilitation Sciences, QLD, Australia
| |
Collapse
|
4
|
Khatibi A, Vahdat S, Lungu O, Finsterbusch J, Büchel C, Cohen-Adad J, Marchand-Pauvert V, Doyon J. Brain-spinal cord interaction in long-term motor sequence learning in human: An fMRI study. Neuroimage 2022; 253:119111. [PMID: 35331873 DOI: 10.1016/j.neuroimage.2022.119111] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022] Open
Abstract
The spinal cord is important for sensory guidance and execution of skilled movements. Yet its role in human motor learning is not well understood. Despite evidence revealing an active involvement of spinal circuits in the early phase of motor learning, whether long-term learning engages similar changes in spinal cord activation and functional connectivity remains unknown. Here, we investigated spinal-cerebral functional plasticity associated with learning of a specific sequence of visually-guided joystick movements (sequence task) over six days of training. On the first and last training days, we acquired high-resolution functional images of the brain and cervical cord simultaneously, while participants practiced the sequence or a random task while electromyography was recorded from wrist muscles. After six days of training, the subjects' motor performance improved in the sequence compared to the control condition. These behavioral changes were associated with decreased co-contractions and increased reciprocal activations between antagonist wrist muscles. Importantly, early learning was characterized by activation in the C8 level, whereas a more rostral activation in the C6-C7 was found during the later learning phase. Motor sequence learning was also supported by increased spinal cord functional connectivity with distinct brain networks, including the motor cortex, superior parietal lobule, and the cerebellum at the early stage, and the angular gyrus and cerebellum at a later stage of learning. Our results suggest that the early vs. late shift in spinal activation from caudal to rostral cervical segments synchronized with distinct brain networks, including parietal and cerebellar regions, is related to progressive changes reflecting the increasing fine control of wrist muscles during motor sequence learning.
Collapse
Affiliation(s)
- Ali Khatibi
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada; Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), University of Birmingham, UK; Centre for Human Brain Health, University of Birmingham, UK.
| | - Shahabeddin Vahdat
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada; Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Ovidiu Lungu
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada; Department of psychiatry and addictology, University of Montreal, Montreal, QC, Canada
| | - Jurgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; Functional Neuroimaging Unit, CRIUGM, University of Montreal, Montreal, QC, Canada; Mila Quebec AI Institute, Montreal, QC, Canada
| | | | - Julien Doyon
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Xu J, Lopez AJ, Hoque MM, Borich MR, Kesar TM. Temporal Profile of Descending Cortical Modulation of Spinal Excitability: Group and Individual-Specific Effects. Front Integr Neurosci 2022; 15:777741. [PMID: 35197831 PMCID: PMC8859157 DOI: 10.3389/fnint.2021.777741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Sensorimotor control is modulated through complex interactions between descending corticomotor pathways and ascending sensory inputs. Pairing sub-threshold transcranial magnetic stimulation (TMS) with peripheral nerve stimulation (PNS) modulates the Hoffmann’s reflex (H-reflex), providing a neurophysiologic probe into the influence of descending cortical drive on spinal segmental circuits. However, individual variability in the timing and magnitude of H-reflex modulation is poorly understood. Here, we varied the inter-stimulus interval (ISI) between TMS and PNS to systematically manipulate the relative timing of convergence of descending TMS-induced volleys with respect to ascending PNS-induced afferent volleys in the spinal cord to: (1) characterize effective connectivity between the primary motor cortex (M1) and spinal circuits, mediated by both direct, fastest-conducting, and indirect, slower-conducting descending pathways; and (2) compare the effect of individual-specific vs. standard ISIs. Unconditioned and TMS-conditioned H-reflexes (24 different ISIs ranging from −6 to 12 ms) were recorded from the soleus muscle in 10 able-bodied individuals. The magnitude of H-reflex modulation at individualized ISIs (earliest facilitation delay or EFD and individual-specific peak facilitation) was compared with standard ISIs. Our results revealed a significant effect of ISI on H-reflex modulation. ISIs eliciting earliest-onset facilitation (EFD 0 ms) ranged from −3 to −5 ms across individuals. No difference in the magnitude of facilitation was observed at EFD 0 ms vs. a standardized short-interval ISI of −1.5 ms. Peak facilitation occurred at longer ISIs, ranging from +3 to +11 ms. The magnitude of H-reflex facilitation derived using an individual-specific peak facilitation was significantly larger than facilitation observed at a standardized longer-interval ISI of +10 ms. Our results suggest that unique insights can be provided with individual-specific measures of top-down effective connectivity mediated by direct and/or fastest-conducting pathways (indicated by the magnitude of facilitation observed at EFD 0 ms) and other descending pathways that encompass relatively slower and/or indirect connections from M1 to spinal circuits (indicated by peak facilitation and facilitation at longer ISIs). By comprehensively characterizing the temporal profile and inter-individual variability of descending modulation of spinal reflexes, our findings provide methodological guidelines and normative reference values to inform future studies on neurophysiological correlates of the complex array of descending neural connections between M1 and spinal circuits.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Alejandro J. Lopez
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, United States
| | - Maruf M. Hoque
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Michael R. Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Trisha M. Kesar
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Trisha M. Kesar
| |
Collapse
|
6
|
Leukel C, Kurz A. Determining the types of descending waves from transcranial magnetic stimulation measured with conditioned H-reflexes in humans. Eur J Neurosci 2021; 54:5038-5046. [PMID: 33966324 DOI: 10.1111/ejn.15308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/09/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
Non-invasive techniques are scarce with which human (motor) cortical mechanisms can be investigated. In a series of previous experiments, we have applied an advanced form of conditioning technique with transcranial magnetic stimulation (TMS) and peripheral nerve stimulation by which excitability changes at the laminar level in the primary motor cortex can be estimated. This method builds on the assumption that the first of subsequent corticospinal waves from TMS which is assessed with H-reflexes (called early facilitation) results from indirect excitation of corticospinal neurons in motor cortex (I-wave) and not direct excitation of corticospinal axons (D-wave). So far, we have not provided strong experimental evidence that this is actually the case. In the present study, we therefore compared temporal differences of the early facilitation between transcranial magnetic and electrical stimulation (TES). TES is known to excite the axons of corticospinal neurons. TES in our study caused a temporal shift of the early facilitation of H-reflexes in all subjects compared to TMS, which indicates that the early facilitation with TMS is indeed produced by an I-wave. Additionally, we investigated temporal shifts of the early facilitation with different TMS intensities and two TMS coils. It has long been known that TMS with higher intensities can induce a D-wave. Accordingly, we found that TMS with an intensity of 150% of resting motor threshold compared to 130%/110% results in a temporal shift of the early facilitation, indicating the presence of a D-wave. This effect was dependent on the coil type.
Collapse
Affiliation(s)
- Christian Leukel
- Department of Sport Science, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Alexander Kurz
- Department of Sport Science, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Blazhenets G, Kurz A, Frings L, Leukel C, Meyer PT. Brain activation patterns during visuomotor adaptation in motor experts and novices: An FDG PET study with unrestricted movements. J Neurosci Methods 2020; 350:109061. [PMID: 33370559 DOI: 10.1016/j.jneumeth.2020.109061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Speed of performance improvements and the strength of memory consolidation in humans vary with movement expertise. Underlying neural mechanisms of behavioural differences between levels of movement expertise are so far unknown. NEW METHOD In this study, PET with [18F]fluorodeoxyglucose (FDG) was proposed as a powerful novel methodology to assess learning-related brain activity patterns during large non-restricted movements (ball throwing with a right hand). 24 male handball players ('Experts') and 24 male participants without handball experience ('Novices') performed visuomotor adaptations to prismatic glasses with or without strategic manoeuvres (i.e., explicit or implicit adaptation). RESULTS Regional changes in FDG uptake as a marker of neuronal activity, relative to a control condition, were assessed. Prismatic adaptation, in general, was associated with decreased occipital neuronal activity as a possible response to misleading visual information. In 'Experts', the adaptation was associated with altered neuronal activity in a network comprising the right parietal cortex and the left cerebellum. In 'Novices', implicit adaptation resulted in an activation of the middle frontal and inferior temporal gyrus. COMPARISON WITH EXISTING METHODS This study demonstrates the versatility of FDG PET for studying brain activations patterns in experimental settings with unrestricted movements that are not accessible by other techniques (e.g., fMRI or EEG). CONCLUSIONS Observed results are consistent with the involvement of different functional networks related to strategic manoeuvres and expertise levels. This strengthens the assumption of different mechanisms underlying behavioural changes associated with movement expertise. Furthermore, the present study underscores the value of FDG PET for studying brain activation patterns during unrestricted movements.
Collapse
Affiliation(s)
- Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
| | - Alexander Kurz
- Department of Sport Science, Albert-Ludwigs-University Freiburg, Freiburg, 79106, Germany
| | - Lars Frings
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| | - Christian Leukel
- Department of Sport Science, Albert-Ludwigs-University Freiburg, Freiburg, 79106, Germany; Bernstein Center Freiburg, University of Freiburg, 79106, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
| |
Collapse
|
8
|
MacLennan RJ, Harmon KK, Shields JE, Andrushko JW, Girts RM, Danielson TL. Aspects of cortical area responsibilities while learning a visually cued spatiotemporal motor task. J Physiol 2020; 599:13-14. [PMID: 32965704 DOI: 10.1113/jp280647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rob J MacLennan
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
| | - Kylie K Harmon
- Neuromuscular Plasticity Laboratory, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - JoCarol E Shields
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
| | - Justin W Andrushko
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ryan M Girts
- Neuromuscular Plasticity Laboratory, School of Kinesiology and Physical Therapy, University of Central Florida, Orlando, FL, USA
| | - Tyler L Danielson
- Applied Neuromuscular Physiology Laboratory, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|