1
|
Zabrodska E, Kvasilova A, Sedmera D, Olejnickova V. Electrical remodeling of atrioventricular junction: a study on retrogradely perfused chick embryonic heart. Am J Physiol Heart Circ Physiol 2024; 327:H555-H564. [PMID: 39028286 PMCID: PMC11427115 DOI: 10.1152/ajpheart.00115.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Atrioventricular (AV) accessory pathways (APs) provide additional electrical connections between the atria and ventricles, resulting in severe electrical disturbances. It is generally accepted that APs originate in the altered annulus fibrosus maturation in the late prenatal and perinatal period. However, current experimental methods cannot address their development in specific locations around the annulus fibrosus because of the inaccessibility of late fetal hearts for electrophysiological investigation under physiological conditions. In this study, we describe an approach for optical mapping of the retrogradely perfused chick heart in the last third of the incubation period. This system showed stability for electrophysiological measurement for several hours. This feature allowed analysis of the number and functionality of the APs separately in each clinically relevant position. Under physiological conditions, we also recorded the shortening of the AV delay with annulus fibrosus maturation and analyzed ventricular activation patterns after conduction through APs at specific locations. We observed a gradual regression of AP with an area-specific rate (left-sided APs disappeared first). The results also revealed a sudden drop in the number of active APs between embryonic days 16 and 18. Accessory myocardial AV connections were histologically documented in all positions around the annulus fibrosus even after hatching. The fact that no electrically active AP was present at this stage highlights the necessity of electrophysiological evaluation of accessory atrioventricular connections in studying AP formation.NEW & NOTEWORTHY We present the use of retrograde perfusion and optical mapping to investigate, for the first time, the regression of accessory pathways during annulus fibrosus maturation, separately examining each clinically relevant location. The system enables measurements under physiological conditions and demonstrates long-lasting stability compared with other approaches. This study offers applications of the model to investigate electrical and/or functional development in late embryonic development without concern about heart viability.
Collapse
Affiliation(s)
- Eva Zabrodska
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alena Kvasilova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Sedmera
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Olejnickova
- Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Krause BJ, Paz AA, Garrud TAC, Peñaloza E, Vega-Tapia F, Ford SG, Niu Y, Giussani DA. Epigenetic regulation by hypoxia, N-acetylcysteine and hydrogen sulphide of the fetal vasculature in growth restricted offspring: A study in humans and chicken embryos. J Physiol 2024; 602:3833-3852. [PMID: 38985827 DOI: 10.1113/jp286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Adolfo A Paz
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Tessa A C Garrud
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Fabian Vega-Tapia
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Sage G Ford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Pilsova A, Pilsova Z, Klusackova B, Zelenkova N, Chmelikova E, Postlerova P, Sedmikova M. Hydrogen sulfide and its role in female reproduction. Front Vet Sci 2024; 11:1378435. [PMID: 38933705 PMCID: PMC11202402 DOI: 10.3389/fvets.2024.1378435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.
Collapse
Affiliation(s)
- Aneta Pilsova
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | | | | | | | | |
Collapse
|
4
|
Wang Z, Bian W, Yan Y, Zhang DM. Functional Regulation of KATP Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases. Front Pharmacol 2022; 13:868401. [PMID: 35837280 PMCID: PMC9274113 DOI: 10.3389/fphar.2022.868401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) play pivotal roles in excitable cells and link cellular metabolism with membrane excitability. The action potential converts electricity into dynamics by ion channel-mediated ion exchange to generate systole, involved in every heartbeat. Activation of the KATP channel repolarizes the membrane potential and decreases early afterdepolarization (EAD)-mediated arrhythmias. KATP channels in cardiomyocytes have less function under physiological conditions but they open during severe and prolonged anoxia due to a reduced ATP/ADP ratio, lessening cellular excitability and thus preventing action potential generation and cell contraction. Small active molecules activate and enhance the opening of the KATP channel, which induces the repolarization of the membrane and decreases the occurrence of malignant arrhythmia. Accumulated evidence indicates that mutation of KATP channels deteriorates the regulatory roles in mutation-related diseases. However, patients with mutations in KATP channels still have no efficient treatment. Hence, in this study, we describe the role of KATP channels and subunits in angiocardiopathy, summarize the mutations of the KATP channels and the functional regulation of small active molecules in KATP channels, elucidate the potential mechanisms of mutant KATP channels and provide insight into clinical therapeutic strategies.
Collapse
Affiliation(s)
- Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Yan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Dai-Min Zhang,
| |
Collapse
|
5
|
Hu X, Xiao Y, Sun J, Ji B, Luo S, Wu B, Zheng C, Wang P, Xu F, Cheng K, Hua H, Li D. New possible silver lining for pancreatic cancer therapy: Hydrogen sulfide and its donors. Acta Pharm Sin B 2021; 11:1148-1157. [PMID: 34094825 PMCID: PMC8144891 DOI: 10.1016/j.apsb.2020.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
As one of the most lethal diseases, pancreatic cancer shows a dismal overall prognosis and high resistance to most treatment modalities. Furthermore, pancreatic cancer escapes early detection during the curable period because early symptoms rarely emerge and specific markers for this disease have not been found. Although combinations of new drugs, multimodal therapies, and adjuvants prolong survival, most patients still relapse after surgery and eventually die. Consequently, the search for more effective treatments for pancreatic cancer is highly relevant and justified. As a newly re-discovered mediator of gasotransmission, hydrogen sulfide (H2S) undertakes essential functions, encompassing various signaling complexes that occupy key processes in human biology. Accumulating evidence indicates that H2S exhibits bimodal modulation of cancer development. Thus, endogenous or low levels of exogenous H2S are thought to promote cancer, whereas high doses of exogenous H2S suppress tumor proliferation. Similarly, inhibition of endogenous H2S production also suppresses tumor proliferation. Accordingly, H2S biosynthesis inhibitors and H2S supplementation (H2S donors) are two distinct strategies for the treatment of cancer. Unfortunately, modulation of endogenous H2S on pancreatic cancer has not been studied so far. However, H2S donors and their derivatives have been extensively studied as potential therapeutic agents for pancreatic cancer therapy by inhibiting cell proliferation, inducing apoptosis, arresting cell cycle, and suppressing invasion and migration through exploiting multiple signaling pathways. As far as we know, there is no review of the effects of H2S donors on pancreatic cancer. Based on these concerns, the therapeutic effects of some H2S donors and NO–H2S dual donors on pancreatic cancer were summarized in this paper. Exogenous H2S donors may be promising compounds for pancreatic cancer treatment.
Collapse
Key Words
- 3-MST, 3-mercaptopyruvate sulfurtransferase
- AMPK, adenosine 5′-monophosphate-activated protein kinase
- Antitumor effect
- BCL-2, B-cell lymphoma-2
- BITC, benzyl isothiocyanate
- BRCA2, breast cancer 2
- CAT, cysteine aminotransferase
- CBS, cystathionine-β-synthase
- CDC25B, cell division cycle 25B
- CDK1, cyclin-dependent kinase 1
- CHK2, checkpoint kinase 2
- CSE, cystathionine-γ-lyase
- Cell proliferation
- DATS, diallyl trisulfide
- DR4, death receptor
- EMT, epithelial–mesenchymal transition
- ERK1/2, extracellular signal-regulated kinase
- ERU, erucin
- FOXM1, forkhead box protein M1
- GLUTs, glucose transporters
- H2S, hydrogen sulfide
- HDAC, histone deacetylase
- HEATR1, human HEAT repeat-containing protein 1
- HIF-1α, hypoxia inducible factor
- Hydrogen sulfide donor
- ITCs, isothiocyanates
- JNK, c-Jun N-terminal kinase
- KEAP1‒NRF2‒ARE, the recombinant protein 1-nuclear factor erythroid-2 related factor 2-antioxidant response element
- KRAS, kirsten rat sarcoma viral oncogene
- NF-κB, nuclear factor kappa B
- NO, nitric oxide
- OCT-4, octamer-binding transcription factor 4
- P16, multiple tumor suppressor 1
- PARP, poly(ADP-ribose)-polymerase
- PDGFRα, platelet-derived growth factor receptor
- PEITC, phenethyl isothiocyanate
- PI3K/AKT, phosphoinositide 3-kinase/v-AKT murine thymoma viral oncogene
- Pancreatic cancer
- RASAL2, RAS protein activator like 2
- ROS, reactive oxygen species
- RPL10, human ribosomal protein L10
- SFN, sulforaphane
- SHH, sonic hedgehog
- SMAD4, mothers against decapentaplegic homolog 4
- STAT-3, signal transducer and activator of transcription 3
- Signaling pathway
- Sulfur-containing compound
- TRAIL, The human tumor necrosis factor-related apoptosis-inducing ligand
- VEGF, vascular endothelial growth factor
- XIAP, X-linked inhibitor of apoptosis protein
- ZEB1, zinc finger E box-binding protein-1
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Xu Hu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Xiao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianan Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bao Ji
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shanshan Luo
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Bo Wu
- Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA
| | - Chao Zheng
- PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources; School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Corresponding authors. Tel./fax: +86 24 23986465.
| |
Collapse
|