1
|
Schottdorf M, Rich PD, Diamanti EM, Lin A, Tafazoli S, Nieh EH, Thiberge SY. TWINKLE: An open-source two-photon microscope for teaching and research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.612766. [PMID: 39386506 PMCID: PMC11463478 DOI: 10.1101/2024.09.23.612766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Many laboratories use two-photon microscopy through commercial suppliers, or homemade designs of considerable complexity. The integrated nature of these systems complicates customization, troubleshooting as well as grasping the principles of two-photon microscopy. Here, we present "Twinkle": a microscope for Two-photon Imaging in Neuroscience, and Kit for Learning and Education. It is a fully open, high-performance and cost-effective research and teaching microscope without any custom parts beyond what can be fabricated in a university machine shop. The instrument features a large field of view, using a modern objective with a long working distance and large back aperture to maximize the fluorescence signal. We document our experiences using this system as a teaching tool in several two week long workshops, exemplify scientific use cases, and conclude with a broader note on the place of our work in the growing space of open-source scientific instrumentation.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - P. Dylan Rich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - E. Mika Diamanti
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Albert Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, USA
| | - Sina Tafazoli
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Edward H. Nieh
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Stephan Y. Thiberge
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Bezos Center for Neural Circuit Dynamics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2
|
Pang R, Baker C, Murthy M, Pillow J. Inferring neural dynamics of memory during naturalistic social communication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577404. [PMID: 38328156 PMCID: PMC10849655 DOI: 10.1101/2024.01.26.577404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Memory processes in complex behaviors like social communication require forming representations of the past that grow with time. The neural mechanisms that support such continually growing memory remain unknown. We address this gap in the context of fly courtship, a natural social behavior involving the production and perception of long, complex song sequences. To study female memory for male song history in unrestrained courtship, we present 'Natural Continuation' (NC)-a general, simulation-based model comparison procedure to evaluate candidate neural codes for complex stimuli using naturalistic behavioral data. Applying NC to fly courtship revealed strong evidence for an adaptive population mechanism for how female auditory neural dynamics could convert long song histories into a rich mnemonic format. Song temporal patterning is continually transformed by heterogeneous nonlinear adaptation dynamics, then integrated into persistent activity, enabling common neural mechanisms to retain continuously unfolding information over long periods and yielding state-of-the-art predictions of female courtship behavior. At a population level this coding model produces multi-dimensional advection-diffusion-like responses that separate songs over a continuum of timescales and can be linearly transformed into flexible output signals, illustrating its potential to create a generic, scalable mnemonic format for extended input signals poised to drive complex behavioral responses. This work thus shows how naturalistic behavior can directly inform neural population coding models, revealing here a novel process for memory formation.
Collapse
Affiliation(s)
- Rich Pang
- Princeton Neuroscience Institute, Princeton, NJ, USA
- Center for the Physics of Biological Function, Princeton, NJ and New York, NY, USA
| | - Christa Baker
- Princeton Neuroscience Institute, Princeton, NJ, USA
- Present address: Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton, NJ, USA
| | | |
Collapse
|
3
|
Krüppel S, Khani MH, Karamanlis D, Erol YC, Zapp SJ, Mietsch M, Protti DA, Rozenblit F, Gollisch T. Diversity of Ganglion Cell Responses to Saccade-Like Image Shifts in the Primate Retina. J Neurosci 2023; 43:5319-5339. [PMID: 37339877 PMCID: PMC10359029 DOI: 10.1523/jneurosci.1561-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/12/2023] [Accepted: 05/08/2023] [Indexed: 06/22/2023] Open
Abstract
Saccades are a fundamental part of natural vision. They interrupt fixations of the visual gaze and rapidly shift the image that falls onto the retina. These stimulus dynamics can cause activation or suppression of different retinal ganglion cells, but how they affect the encoding of visual information in different types of ganglion cells is largely unknown. Here, we recorded spiking responses to saccade-like shifts of luminance gratings from ganglion cells in isolated marmoset retinas and investigated how the activity depended on the combination of presaccadic and postsaccadic images. All identified cell types, On and Off parasol and midget cells, as well as a type of Large Off cells, displayed distinct response patterns, including particular sensitivity to either the presaccadic or the postsaccadic image or combinations thereof. In addition, Off parasol and Large Off cells, but not On cells, showed pronounced sensitivity to whether the image changed across the transition. Stimulus sensitivity of On cells could be explained based on their responses to step changes in light intensity, whereas Off cells, in particular, parasol and the Large Off cells, seem to be affected by additional interactions that are not triggered during simple light-intensity flashes. Together, our data show that ganglion cells in the primate retina are sensitive to different combinations of presaccadic and postsaccadic visual stimuli. This contributes to the functional diversity of the output signals of the retina and to asymmetries between On and Off pathways and provides evidence of signal processing beyond what is triggered by isolated steps in light intensity.SIGNIFICANCE STATEMENT Sudden eye movements (saccades) shift our direction of gaze, bringing new images in focus on our retinas. To study how retinal neurons deal with these rapid image transitions, we recorded spiking activity from ganglion cells, the output neurons of the retina, in isolated retinas of marmoset monkeys while shifting a projected image in a saccade-like fashion across the retina. We found that the cells do not just respond to the newly fixated image, but that different types of ganglion cells display different sensitivities to the presaccadic and postsaccadic stimulus patterns. Certain Off cells, for example, are sensitive to changes in the image across transitions, which contributes to differences between On and Off information channels and extends the range of encoded stimulus features.
Collapse
Affiliation(s)
- Steffen Krüppel
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Mohammad H Khani
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Dimokratis Karamanlis
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Yunus C Erol
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- International Max Planck Research School for Neurosciences, 37077 Göttingen, Germany
| | - Sören J Zapp
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
| | - Matthias Mietsch
- Laboratory Animal Science Unit, German Primate Center, 37077 Göttingen, Germany
- German Center for Cardiovascular Research, 37075 Göttingen, Germany
| | - Dario A Protti
- School of Medical Sciences (Neuroscience), The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Fernando Rozenblit
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
| | - Tim Gollisch
- Department of Ophthalmology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
4
|
Sihn D, Kwon OS, Kim SP. Robust and efficient representations of dynamic stimuli in hierarchical neural networks via temporal smoothing. Front Comput Neurosci 2023; 17:1164595. [PMID: 37398935 PMCID: PMC10307978 DOI: 10.3389/fncom.2023.1164595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Efficient coding that minimizes informational redundancy of neural representations is a widely accepted neural coding principle. Despite the benefit, maximizing efficiency in neural coding can make neural representation vulnerable to random noise. One way to achieve robustness against random noise is smoothening neural responses. However, it is not clear whether the smoothness of neural responses can hold robust neural representations when dynamic stimuli are processed through a hierarchical brain structure, in which not only random noise but also systematic error due to temporal lag can be induced. Methods In the present study, we showed that smoothness via spatio-temporally efficient coding can achieve both efficiency and robustness by effectively dealing with noise and neural delay in the visual hierarchy when processing dynamic visual stimuli. Results The simulation results demonstrated that a hierarchical neural network whose bidirectional synaptic connections were learned through spatio-temporally efficient coding with natural scenes could elicit neural responses to visual moving bars similar to those to static bars with the identical position and orientation, indicating robust neural responses against erroneous neural information. It implies that spatio-temporally efficient coding preserves the structure of visual environments locally in the neural responses of hierarchical structures. Discussion The present results suggest the importance of a balance between efficiency and robustness in neural coding for visual processing of dynamic stimuli across hierarchical brain structures.
Collapse
|
5
|
Lee BB, Swanson WH. Detection and discrimination of achromatic contrast: A ganglion cell perspective. J Vis 2022; 22:11. [PMID: 35848903 PMCID: PMC9308016 DOI: 10.1167/jov.22.8.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022] Open
Abstract
The magnocellular (MC) pathway in the primate has much higher achromatic contrast sensitivity than the parvocellular (PC) pathway, and is implicated in luminance contrast detection. But MC pathway responses tend to saturate at lower achromatic contrast than do PC pathway responses. It has been proposed that the PC pathway plays a major role in discriminating suprathreshold achromatic contrast, because the MC pathway is in saturation. This has been termed the pulsed-pedestal protocol. To test this hypothesis, responses of MC and PC pathway ganglion cells have been examined under suprathreshold conditions with stimulus configurations similar to those in psychophysical tests. For MC cells, response saturation was much less for flashed or moving edges than for sinusoidal modulation, and MC cell thresholds predicted for these stimuli were similar to psychophysical discrimination (and detection) data. Results suggest the protocol is not effective in segregating MC and PC function.
Collapse
Affiliation(s)
- Barry B Lee
- Graduate Center for Vision Research, Department of Biological Sciences, SUNY College of Optometry, New York, NY, USA
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
6
|
LaChance J, Schottdorf M, Zajdel TJ, Saunders JL, Dvali S, Marshall C, Seirup L, Sammour I, Chatburn RL, Notterman DA, Cohen DJ. PVP1-The People's Ventilator Project: A fully open, low-cost, pressure-controlled ventilator research platform compatible with adult and pediatric uses. PLoS One 2022; 17:e0266810. [PMID: 35544461 PMCID: PMC9094548 DOI: 10.1371/journal.pone.0266810] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/28/2022] [Indexed: 12/03/2022] Open
Abstract
Mechanical ventilators are safety-critical devices that help patients breathe, commonly found in hospital intensive care units (ICUs)-yet, the high costs and proprietary nature of commercial ventilators inhibit their use as an educational and research platform. We present a fully open ventilator device-The People's Ventilator: PVP1-with complete hardware and software documentation including detailed build instructions and a DIY cost of $1,700 USD. We validate PVP1 against both key performance criteria specified in the U.S. Food and Drug Administration's Emergency Use Authorization for Ventilators, and in a pediatric context against a state-of-the-art commercial ventilator. Notably, PVP1 performs well over a wide range of test conditions and performance stability is demonstrated for a minimum of 75,000 breath cycles over three days with an adult mechanical test lung. As an open project, PVP1 can enable future educational, academic, and clinical developments in the ventilator space.
Collapse
Affiliation(s)
- Julienne LaChance
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
| | - Manuel Schottdorf
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Tom J. Zajdel
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jonny L. Saunders
- Department of Psychology and Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Sophie Dvali
- Department of Physics, Princeton University, Princeton, New Jersey, United States of America
| | - Chase Marshall
- RailPod, Inc., Boston, Massachusetts, United States of America
| | - Lorenzo Seirup
- New York ISO, Rensselaer, New York, United States of America
| | - Ibrahim Sammour
- Department of Neonatology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Robert L. Chatburn
- Department of Neonatology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Daniel J. Cohen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
7
|
Bucci-Mansilla G, Vicencio-Jimenez S, Concha-Miranda M, Loyola-Navarro R. Challenging Paradigms Through Ecological Neuroscience: Lessons From Visual Models. Front Neurosci 2021; 15:758388. [PMID: 34858130 PMCID: PMC8631428 DOI: 10.3389/fnins.2021.758388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Giuliana Bucci-Mansilla
- Neurosystems Laboratory, Department of Neuroscience and Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Ecological Cognitive Neuroscience Group, Santiago, Chile
| | - Sergio Vicencio-Jimenez
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Miguel Concha-Miranda
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rocio Loyola-Navarro
- Neuroscience, Cognition and Educational Lab, Center for Advanced Research in Education, Institute of Education, Universidad de Chile, Santiago, Chile.,Departamento de Educación Diferencial, Facultad de Filosofía y Educación, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|