1
|
Gupta N, Baker SA, Sanders KM, Griffin CS, Sergeant GP, Hollywood MA, Thornbury KD, Drumm BT. Interstitial cell of Cajal-like cells (ICC-LC) exhibit dynamic spontaneous activity but are not functionally innervated in mouse urethra. Cell Calcium 2024; 123:102931. [PMID: 39068674 DOI: 10.1016/j.ceca.2024.102931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Urethral smooth muscle cells (USMC) contract to occlude the internal urethral sphincter during bladder filling. Interstitial cells also exist in urethral smooth muscles and are hypothesized to influence USMC behaviours and neural responses. These cells are similar to Kit+ interstitial cells of Cajal (ICC), which are gastrointestinal pacemakers and neuroeffectors. Isolated urethral ICC-like cells (ICC-LC) exhibit spontaneous intracellular Ca2+ signalling behaviours that suggest these cells may serve as pacemakers or neuromodulators similar to ICC in the gut, although observation and direct stimulation of ICC-LC within intact urethral tissues is lacking. We used mice with cell-specific expression of the Ca2+ indicator, GCaMP6f, driven off the endogenous promoter for Kit (Kit-GCaMP6f mice) to identify ICC-LC in situ within urethra muscles and to characterize spontaneous and nerve-evoked Ca2+ signalling. ICC-LC generated Ca2+ waves spontaneously that propagated on average 40.1 ± 0.7 μm, with varying amplitudes, durations, and spatial spread. These events originated from multiple firing sites in cells and the activity between sites was not coordinated. ICC-LC in urethra formed clusters but not interconnected networks. No evidence for entrainment of Ca2+ signalling between ICC-LC was obtained. Ca2+ events in ICC-LC were unaffected by nifedipine but were abolished by cyclopiazonic acid and decreased by an antagonist of Orai Ca2+ channels (GSK-7975A). Phenylephrine increased Ca2+ event frequency but a nitric oxide donor (DEA-NONOate) had no effect. Electrical field stimulation (EFS, 10 Hz) of intrinsic nerves, which evoked contractions of urethral rings and increased Ca2+ event firing in USMC, failed to evoke responses in ICC-LC. Our data suggest that urethral ICC-LC are spontaneously active but are not regulated by autonomic neurons.
Collapse
Affiliation(s)
- Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Salah A Baker
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland; Department of Physiology & Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
2
|
Wang J, Xiao J. Insights Into Gastrointestinal Motility Through the Use of Optogenetic Sensors. J Neurogastroenterol Motil 2024; 30:512-514. [PMID: 39397627 PMCID: PMC11474550 DOI: 10.5056/jnm24038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Affiliation(s)
- Jing Wang
- Department of Gastroenterology and Hubei Provincial Center and Key Laboratory for the Intestinal and Colorectal Disease, Wuhan University Zhongnan Hospital, Wuhan, China
| | - Jun Xiao
- Department of Gastroenterology and Hubei Provincial Center and Key Laboratory for the Intestinal and Colorectal Disease, Wuhan University Zhongnan Hospital, Wuhan, China
| |
Collapse
|
3
|
Inaba M. Optogenetic techniques for understanding the gut peristalsis during chicken embryonic development. Biochem Soc Trans 2024; 52:1727-1735. [PMID: 39051133 DOI: 10.1042/bst20231337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Gut peristaltic movements transport ingested materials along the gut axis, which is critical for food digestion and nutrient absorption. While a large amount of studies have been devoted to analyzing the physiological functions of peristalsis in adults, little is known about how the peristaltic system is established during embryogenesis. In recent years, the chicken developing gut has emerged as an excellent model, in which specific sites along the gut axis can be genetically labeled enabling live imaging and optogenetic analyses. This review provides an overview of recent progress in optogenetic studies of gut peristalsis. Analyses with an improved channelrhodopsin-2 variant demonstrated that the peristalsis can artificially be generated in the developing gut. These studies unveiled novel functional coordination between different regions along the gut axis. In addition, imaging with GCaMP6s, a genetically encoded calcium indicator, enabled a fine mapping of developmental changes in the peristaltic patterns as Ca2+ signals. These advanced techniques will broaden our knowledge of how embryonic peristalsis is established at the cellular and molecular level, leading to the understanding of physiological and pathological processes in adult peristalsis.
Collapse
Affiliation(s)
- Masafumi Inaba
- Department of Zoology, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
4
|
McKay DM, Defaye M, Rajeev S, MacNaughton WK, Nasser Y, Sharkey KA. Neuroimmunophysiology of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2024; 326:G712-G725. [PMID: 38626403 PMCID: PMC11376980 DOI: 10.1152/ajpgi.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.
Collapse
Affiliation(s)
- Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Wu R, Zhang Z, Xu Q, Liu F, Zhan Y, Wang Q, Du L, Tang X. Integration of network pharmacology and experimental verifications reveals the Bian-Se-Tong mixture can alleviate constipation in STC rats by reducing apoptosis of Cajal cells via activating PI3K-Akt signaling pathway. Heliyon 2024; 10:e28022. [PMID: 38586320 PMCID: PMC10998068 DOI: 10.1016/j.heliyon.2024.e28022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Bian-Se-Tong mixture (BSTM) is an optimized formulation based on the classical prescription "Zhizhu pill", which is widely used in the clinical treatment of slow-transit constipation (STC). The potential molecular mechanism of BSTM therapy for STC was investigated by network pharmacology prediction combined with animal experiments. The active components of BSTM were screened via the TCMSP platform. The GeneCards, OMIM and DrugBank databases were used to search for STC targets. With the help of the Biogenet tool, a protein interaction network between drugs and disease targets was constructed, and the intersection network of the two was extracted to obtain the key targets of BSTM in the treatment of STC. GO and KEGG enrichment analyses of key targets were carried out with Metascape. Loperamide hydrochloride was used to establish an STC rat model, and the key targets and related pathways were preliminarily verified. The important signaling pathways included the PI3K-Akt, MAPK, IL-17, cAMP, and cell cycle signaling pathways. The experimental results showed that BSTM treatment increased the body weight of STC rats and increased the fecal particle number, fecal water content and intestinal carbon ink promotion rate within 24 h. Further pathological changes in the colon of the rats were also observed. In-depth mechanistic studies have shown that BSTM can significantly reduce the apoptosis of intestinal Cajal cells, downregulate the expression of Bax and c-Caspase 3, upregulate the expression of Bcl-2 and c-kit, and promote the phosphorylation of AKT. The results showed that BSTM can significantly relieve constipation in STC rats via a mechanism related to activating the PI3K-Akt signaling pathway and improving Cajal cell apoptosis.
Collapse
Affiliation(s)
- Rong Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Zhibin Zhang
- North Sichuan Medical College, Nanchong 637000, China
| | - Qingxia Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Fang Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
- North Sichuan Medical College, Nanchong 637000, China
| | - Yu Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Qiuxiao Wang
- North Sichuan Medical College, Nanchong 637000, China
| | - Lijuan Du
- Department of Anorectal, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610000, China
- Department of Anorectal, Chengdu Thrid People's Hospital, Chengdu 610000, China
| | - Xuegui Tang
- North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
6
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
7
|
Zogg H, Singh R, Ha SE, Wang Z, Jin B, Ha M, Dafinone M, Batalon T, Hoberg N, Poudrier S, Nguyen L, Yan W, Layden BT, Dugas LR, Sanders KM, Ro S. miR-10b-5p rescues leaky gut linked with gastrointestinal dysmotility and diabetes. United European Gastroenterol J 2023; 11:750-766. [PMID: 37723933 PMCID: PMC10576606 DOI: 10.1002/ueg2.12463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND/AIM Diabetes has substantive co-occurrence with disorders of gut-brain interactions (DGBIs). The pathophysiological and molecular mechanisms linking diabetes and DGBIs are unclear. MicroRNAs (miRNAs) are key regulators of diabetes and gut dysmotility. We investigated whether impaired gut barrier function is regulated by a key miRNA, miR-10b-5p, linking diabetes and gut dysmotility. METHODS We created a new mouse line using the Mb3Cas12a/Mb3Cpf1 endonuclease to delete mir-10b globally. Loss of function studies in the mir-10b knockout (KO) mice were conducted to characterize diabetes, gut dysmotility, and gut barrier dysfunction phenotypes in these mice. Gain of function studies were conducted by injecting these mir-10b KO mice with a miR-10b-5p mimic. Further, we performed miRNA-sequencing analysis from colonic mucosa from mir-10b KO, wild type, and miR-10b-5p mimic injected mice to confirm (1) deficiency of miR-10b-5p in KO mice, and (2) restoration of miR-10b-5p after the mimic injection. RESULTS Congenital loss of mir-10b in mice led to the development of hyperglycemia, gut dysmotility, and gut barrier dysfunction. Gut permeability was increased, but expression of the tight junction protein Zonula occludens-1 was reduced in the colon of mir-10b KO mice. Patients with diabetes or constipation- predominant irritable bowel syndrome, a known DGBI that is linked to leaky gut, had significantly reduced miR-10b-5p expression. Injection of a miR-10b-5p mimic in mir-10b KO mice rescued these molecular alterations and phenotypes. CONCLUSIONS Our study uncovered a potential pathophysiologic mechanism of gut barrier dysfunction that links both the diabetes and gut dysmotility phenotypes in mice lacking miR-10b-5p. Treatment with a miR-10b-5p mimic reversed the leaky gut, diabetic, and gut dysmotility phenotypes, highlighting the translational potential of the miR-10b-5p mimic.
Collapse
Affiliation(s)
- Hannah Zogg
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Rajan Singh
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Se Eun Ha
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Zhuqing Wang
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Byungchang Jin
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Mariah Ha
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Mirabel Dafinone
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Tylar Batalon
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Nicholas Hoberg
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Sandra Poudrier
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Linda Nguyen
- Division of Gastroenterology & HepatologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Wei Yan
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and MetabolismDepartment of MedicineThe University of Illinois at ChicagoChicagoIllinoisUSA
- Jesse Brown Veterans Affairs Medical CenterChicagoIllinoisUSA
| | - Lara R. Dugas
- Loyola University ChicagoPublic Health SciencesMaywoodIllinoisUSA
- Division of Epidemiology & BiostatisticsSchool of Public HealthFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Kenton M. Sanders
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Seungil Ro
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
- RosVivo TherapeuticsApplied Research FacilityRenoNevadaUSA
| |
Collapse
|
8
|
Wang Y, Jiang H, Wang L, Gan H, Xiao X, Huang L, Li W, Li Z. Arctiin alleviates functional constipation by enhancing intestinal motility in mice. Exp Ther Med 2023; 25:199. [PMID: 37090075 PMCID: PMC10119619 DOI: 10.3892/etm.2023.11898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 04/25/2023] Open
Abstract
Functional constipation (FC), a common symptom that is primarily associated with intestinal motility dysfunction, is a common problem worldwide. Arctiin (Arc) is a lignan glycoside isolated from the Chinese herbal medicine Arctium lappa L., which is a health food in China. The present study aimed to evaluate the laxative effects of Arc against FC in mice. A model of FC induced by loperamide (5 mg/kg) was established in male Institute of Cancer Research (ICR) mice. Arc was administered at a dose of 100 mg/kg as a protective agent. The faecal status, intestinal motility and histological analyses were evaluated. Furthermore, the levels of gastrointestinal motility-associated neurotransmitters, such as motilin (MTL), nitric oxide (NO), and brain-derived neurotrophic factor (BDNF) and the protective effect of Arc on interstitial cells of Cajal (ICC) were assessed. Arc treatment reversed the loperamide-induced reduction in faecal number and water content and the intestinal transit ratio in ICR mice. Histological analysis confirmed that Arc administration mitigated colonic injury. Moreover, Arc treatment increased levels of motilin and brain-derived neurotrophic factor while decreasing nitric oxide levels and ICC injury in the colon of FC mice. Arc decreased inflammation induction and aquaporin expression levels. Owing to its pro-intestinal motility property, Arc was shown to have a protective effect against FC and may thus serve as a promising therapeutic strategy for the management of FC.
Collapse
Affiliation(s)
- Yujin Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Hua Jiang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
- Correspondence to: Mrs. Hua Jiang, The First Clinical Medical College, Shaanxi University of Chinese Medicine, Qindu, Xianyang, Shaanxi 712046, P.R. China
| | - Lijun Wang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Huiping Gan
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Xinchun Xiao
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Liangwu Huang
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Wenxin Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Zongrun Li
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| |
Collapse
|
9
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|