1
|
Erickson LN, Owen MK, Casadonte KR, Janatova T, Lucas K, Spencer K, Brightwell BD, Graham MC, White M, Thomas NT, Latham CM, Jacobs C, Conley C, Thompson KL, Johnson DL, Hardy P, Fry CS, Noehren B. The Efficacy of Blood Flow Restriction Training to Improve Quadriceps Muscle Function after Anterior Cruciate Ligament Reconstruction. Med Sci Sports Exerc 2025; 57:227-237. [PMID: 39350350 PMCID: PMC11729412 DOI: 10.1249/mss.0000000000003573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
BACKGROUND Blood flow restriction training (BFRT) is a popular rehabilitation intervention after anterior cruciate ligament reconstruction (ACLR). However, there are a lack of clinical trials establishing the efficacy of using BFRT during rehabilitation to improve quadriceps muscle function. PURPOSE The purpose of this study is to evaluate the efficacy of blood flow restriction training to improve quadriceps muscle strength, morphology, and physiology, and knee biomechanics in individuals after ACLR in a double-blind, randomized, placebo-controlled clinical trial (NCT03364647). METHODS Forty-eight athletes (20 females/28 males) were randomly assigned to low-load strength training with active BFRT or standard of care strength training with a sham unit. Treatment occurred for 1-month pre-surgery and 4 to 5 months post-surgery with both groups following the same standard rehabilitation protocol. Outcome variables were measured at baseline and 4 to 5 months post-surgery. Quadriceps muscle strength (isometric and isokinetic peak torque and rate of torque development) was measured on an isokinetic dynamometer. Quadriceps muscle morphology (physiological cross-sectional area, fibrosis) was determined using magnetic resonance imaging. Quadriceps muscle physiology (fiber type, fiber cross-sectional area, satellite cell abundance, collagen content, fibrogenic/adipogenic progenitor cells) was evaluated with muscle biopsies of the vastus lateralis. Knee extensor moment and knee flexion angle were measured via three-dimensional gait analysis. Change scores were calculated as: post-intervention - baseline. Two-sample t -tests were then used to assess between-group differences for each outcome variable. RESULTS No significant between-group differences were found for any outcome variable. CONCLUSIONS The addition of BFRT to a rehabilitation program for athletes pre- and post-ACLR was no more effective than standard rehabilitation for improving quadriceps muscle function. Clinicians should consider the value of BFRT relative to the cost, time, and discomfort for patients in light of these results.
Collapse
|
2
|
Hooijmans MT, Schlaffke L, Bolsterlee B, Schlaeger S, Marty B, Mazzoli V. Compositional and Functional MRI of Skeletal Muscle: A Review. J Magn Reson Imaging 2024; 60:860-877. [PMID: 37929681 PMCID: PMC11070452 DOI: 10.1002/jmri.29091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its exceptional sensitivity to soft tissues, MRI has been extensively utilized to assess anatomical muscle parameters such as muscle volume and cross-sectional area. Quantitative Magnetic Resonance Imaging (qMRI) adds to the capabilities of MRI, by providing information on muscle composition such as fat content, water content, microstructure, hypertrophy, atrophy, as well as muscle architecture. In addition to compositional changes, qMRI can also be used to assess function for example by measuring muscle quality or through characterization of muscle deformation during passive lengthening/shortening and active contractions. The overall aim of this review is to provide an updated overview of qMRI techniques that can quantitatively evaluate muscle structure and composition, provide insights into the underlying biological basis of the qMRI signal, and illustrate how qMRI biomarkers of muscle health relate to function in healthy and diseased/injured muscles. While some applications still require systematic clinical validation, qMRI is now established as a comprehensive technique, that can be used to characterize a wide variety of structural and compositional changes in healthy and diseased skeletal muscle. Taken together, multiparametric muscle MRI holds great potential in the diagnosis and monitoring of muscle conditions in research and clinical applications. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Lara Schlaffke
- Department of Neurology BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Bart Bolsterlee
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Marty
- Institute of Myology, Neuromuscular Investigation Center, NMR Laboratory, Paris, France
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
3
|
Ai QYH, King AD, Tsang YM, Yu Z, Mao K, Mo FKF, Wong LM, Leung HS, So TY, Hui EP, Ma BBY, Chen W. Predictive markers for head and neck cancer treatment response: T1rho imaging in nasopharyngeal carcinoma. Eur Radiol 2024:10.1007/s00330-024-10948-5. [PMID: 39191996 DOI: 10.1007/s00330-024-10948-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVES To investigate the potential of T1rho, a new quantitative imaging sequence for cancer, for pre and early intra-treatment prediction of treatment response in nasopharyngeal carcinoma (NPC) and compare the results with those of diffusion-weighted imaging (DWI). MATERIALS AND METHODS T1rho and DWI imaging of primary NPCs were performed pre- and early intra-treatment in 41 prospectively recruited patients. The mean preT1rho, preADC, intraT1rho, intraADC, and % changes in T1rho (ΔT1rho%) and ADC (ΔADC%) were compared between residual and non-residual groups based on biopsy in all patients after chemoradiotherapy (CRT) with (n = 29) or without (n = 12) induction chemotherapy (IC), and between responders and non-responders to IC in the subgroup who received IC, using Mann-Whitney U-test. A p-value of < 0.05 indicated statistical significance. RESULTS Significant early intra-treatment changes in mean T1rho (p = 0.049) and mean ADC (p < 0.01) were detected (using paired t-test), most showing a decrease in T1rho (63.4%) and an increase in ADC (95.1%). Responders to IC (n = 17), compared to non-responders (n = 12), showed higher preT1rho (64.0 ms vs 66.5 ms) and a greater decrease in ΔT1rho% (- 7.5% vs 1.3%) (p < 0.05). The non-residual group after CRT (n = 35), compared to the residual group (n = 6), showed higher intraADC (0.96 vs 1.09 × 10-3 mm2/s) and greater increase in ΔADC% (11.7% vs 27.0%) (p = 0.02). CONCLUSION Early intra-treatment changes are detectable on T1rho and show potential to predict tumour shrinkage after IC. T1rho may be complementary to DWI, which, unlike T1rho, did not predict response to IC but did predict non-residual disease after CRT. CLINICAL RELEVANCE STATEMENT T1rho has the potential to complement DWI in the prediction of treatment response. Unlike DWI, it predicted shrinkage of the primary NPC after IC but not residual disease after CRT. KEY POINTS Changes in T1rho were detected early during cancer treatment for NPC. Pre-treatment and early intra-treatment change in T1rho predicted response to IC, but not residual disease after CRT. T1rho can be used to complement DWI with DWI predicting residual disease after CRT.
Collapse
Affiliation(s)
- Qi Yong H Ai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong S.A.R., P.R. China
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ann D King
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China.
| | - Yip Man Tsang
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ziqiang Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Kaijing Mao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong S.A.R., P.R. China
| | - Frankie K F Mo
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
| | - Lun M Wong
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Ho Sang Leung
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Tiffany Y So
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Edwin P Hui
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Brigette B Y Ma
- Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong S.A.R., P.R. China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| | - Weitian Chen
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong S.A.R., P.R. China
| |
Collapse
|
4
|
Wen Y, Latham CM, Moore AN, Thomas NT, Lancaster BD, Reeves KA, Keeble AR, Fry CS, Johnson DL, Thompson KL, Noehren B, Fry JL. Vitamin D status associates with skeletal muscle loss after anterior cruciate ligament reconstruction. JCI Insight 2023; 8:e170518. [PMID: 37856482 PMCID: PMC10795826 DOI: 10.1172/jci.insight.170518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUNDAlthough 25-hydroxyvitamin D [25(OH)D] concentrations of 30 ng/mL or higher are known to reduce injury risk and boost strength, the influence on anterior cruciate ligament reconstruction (ACLR) outcomes remains unexamined. This study aimed to define the vitamin D signaling response to ACLR, assess the relationship between vitamin D status and muscle fiber cross-sectional area (CSA) and bone density outcomes, and discover vitamin D receptor (VDR) targets after ACLR.METHODSTwenty-one young, healthy, physically active participants with recent ACL tears were enrolled (17.8 ± 3.2 years, BMI 26.0 ± 3.5 kg/m2). Data were collected through blood samples, vastus lateralis biopsies, dual energy x-ray bone density measurements, and isokinetic dynamometer measures at baseline, 1 week, 4 months, and 6 months after ACLR. The biopsies facilitated CSA, Western blotting, RNA-seq, and VDR ChIP-seq analyses.RESULTSACLR surgery led to decreased circulating bioactive vitamin D and increased VDR and activating enzyme expression in skeletal muscle 1 week after ACLR. Participants with less than 30 ng/mL 25(OH)D levels (n = 13) displayed more significant quadriceps fiber CSA loss 1 week and 4 months after ACLR than those with 30 ng/mL or higher (n = 8; P < 0.01 for post hoc comparisons; P = 0.041 for time × vitamin D status interaction). RNA-seq and ChIP-seq data integration revealed genes associated with energy metabolism and skeletal muscle recovery, potentially mediating the impact of vitamin D status on ACLR recovery. No difference in bone mineral density losses between groups was observed.CONCLUSIONCorrecting vitamin D status prior to ACLR may aid in preserving skeletal muscle during recovery.FUNDINGNIH grants R01AR072061, R01AR071398-04S1, and K99AR081367.
Collapse
Affiliation(s)
- Yuan Wen
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine
| | | | | | | | | | | | - Alexander R. Keeble
- Center for Muscle Biology, College of Health Sciences
- Department of Physiology, College of Medicine
| | | | | | - Katherine L. Thompson
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, Kentucky, USA
| | - Brian Noehren
- Center for Muscle Biology, College of Health Sciences
- Department of Orthopaedic Surgery & Sports Medicine, and
| | - Jean L. Fry
- Center for Muscle Biology, College of Health Sciences
| |
Collapse
|
5
|
Brightwell CR, Latham CM, Keeble AR, Thomas NT, Owen AM, Reeves KA, Long DE, Patrick M, Gonzalez-Velez S, Abed V, Annamalai RT, Jacobs C, Conley CE, Hawk GS, Stone AV, Fry JL, Thompson KL, Johnson DL, Noehren B, Fry CS. GDF8 inhibition enhances musculoskeletal recovery and mitigates posttraumatic osteoarthritis following joint injury. SCIENCE ADVANCES 2023; 9:eadi9134. [PMID: 38019905 PMCID: PMC10686569 DOI: 10.1126/sciadv.adi9134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Musculoskeletal disorders contribute substantially to worldwide disability. Anterior cruciate ligament (ACL) tears result in unresolved muscle weakness and posttraumatic osteoarthritis (PTOA). Growth differentiation factor 8 (GDF8) has been implicated in the pathogenesis of musculoskeletal degeneration following ACL injury. We investigated GDF8 levels in ACL-injured human skeletal muscle and serum and tested a humanized monoclonal GDF8 antibody against a placebo in a mouse model of PTOA (surgically induced ACL tear). In patients, muscle GDF8 was predictive of atrophy, weakness, and periarticular bone loss 6 months following surgical ACL reconstruction. In mice, GDF8 antibody administration substantially mitigated muscle atrophy, weakness, and fibrosis. GDF8 antibody treatment rescued the skeletal muscle and articular cartilage transcriptomic response to ACL injury and attenuated PTOA severity and deficits in periarticular bone microarchitecture. Furthermore, GDF8 genetic deletion neutralized musculoskeletal deficits in response to ACL injury. Our findings support an opportunity for rapid targeting of GDF8 to enhance functional musculoskeletal recovery and mitigate the severity of PTOA after injury.
Collapse
Affiliation(s)
- Camille R. Brightwell
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Christine M. Latham
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Alexander R. Keeble
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Nicholas T. Thomas
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Allison M. Owen
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Kelsey A. Reeves
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Douglas E. Long
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
| | - Matthew Patrick
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | | | - Varag Abed
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ramkumar T. Annamalai
- Department of Biomedical Engineering, College of Engineering, University of Kentucky, Lexington, KY, USA
| | - Cale Jacobs
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Caitlin E. Conley
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory S. Hawk
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Austin V. Stone
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jean L. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Katherine L. Thompson
- Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Darren L. Johnson
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY, USA
- Department of Orthopaedic Surgery and Sports Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky, Lexington, KY, USA
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
6
|
Keeble AR, Brightwell CR, Latham CM, Thomas NT, Mobley CB, Murach KA, Johnson DL, Noehren B, Fry CS. Depressed Protein Synthesis and Anabolic Signaling Potentiate ACL Tear-Resultant Quadriceps Atrophy. Am J Sports Med 2023; 51:81-96. [PMID: 36475881 PMCID: PMC9813974 DOI: 10.1177/03635465221135769] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Anterior cruciate ligament (ACL) tear (ACLT) leads to protracted quadriceps muscle atrophy. Protein turnover largely dictates muscle size and is highly responsive to injury and loading. Regulation of quadriceps molecular protein synthetic machinery after ACLT has largely been unexplored, limiting development of targeted therapies. PURPOSE To define the effect of ACLT on (1) the activation of protein synthetic and catabolic signaling within quadriceps biopsy specimens from human participants and (2) the time course of alterations to protein synthesis and its molecular regulation in a mouse ACL injury model. STUDY DESIGN Descriptive laboratory study. METHODS Muscle biopsy specimens were obtained from the ACL-injured and noninjured vastus lateralis of young adult humans after an overnight fast (N = 21; mean ± SD, 19 ± 5 years). Mice had their limbs assigned to ACLT or control, and whole quadriceps were collected 6 hours or 1, 3, or 7 days after injury with puromycin injected before tissue collection for assessment of relative protein synthesis. Muscle fiber size and expression and phosphorylation of protein anabolic and catabolic signaling proteins were assessed at the protein and transcript levels (RNA sequencing). RESULTS Human quadriceps showed reduced phosphorylation of ribosomal protein S6 (-41%) in the ACL-injured limb (P = .008), in addition to elevated phosphorylation of eukaryotic initiation factor 2α (+98%; P = .006), indicative of depressed protein anabolic signaling in the injured limb. No differences in E3 ubiquitin ligase expression were noted. Protein synthesis was lower at 1 day (P = .01 vs control limb) and 3 days (P = .002 vs control limb) after ACLT in mice. Pathway analyses revealed shared molecular alterations between human and mouse quadriceps after ACLT. CONCLUSION (1) Global protein synthesis and anabolic signaling deficits occur in the quadriceps in response to ACL injury, without notable changes in measured markers of muscle protein catabolism. (2) Importantly, these deficits occur before the onset of significant atrophy, underscoring the need for early intervention. CLINICAL RELEVANCE These findings suggest that blunted protein anabolism as opposed to increased catabolism likely mediates quadriceps atrophy after ACL injury. Thus, future interventions should aim to restore muscle protein anabolism rapidly after ACLT.
Collapse
Affiliation(s)
- Alexander R. Keeble
- Department of Physiology, College of Medicine, University of Kentucky
- Center for Muscle Biology, University of Kentucky
| | - Camille R. Brightwell
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - Christine M. Latham
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - Nicholas T. Thomas
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| | - C. Brooks Mobley
- Department of Physiology, College of Medicine, University of Kentucky
- Center for Muscle Biology, University of Kentucky
| | - Kevin A. Murach
- Center for Muscle Biology, University of Kentucky
- Department of Physical Therapy, University of Kentucky
| | - Darren L. Johnson
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky
| | - Brian Noehren
- Center for Muscle Biology, University of Kentucky
- Department of Physical Therapy, University of Kentucky
- Department of Orthopaedic Surgery & Sports Medicine, University of Kentucky
| | - Christopher S. Fry
- Center for Muscle Biology, University of Kentucky
- Department of Athletic Training and Clinical Nutrition, University of Kentucky
| |
Collapse
|