1
|
Vahid-Ansari F, Newman-Tancredi A, Fuentes-Alvarenga AF, Daigle M, Albert PR. Rapid reorganization of serotonin projections and antidepressant response to 5-HT1A-biased agonist NLX-101 in fluoxetine-resistant cF1ko mice. Neuropharmacology 2024; 261:110132. [PMID: 39208980 DOI: 10.1016/j.neuropharm.2024.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Selective serotonin (5-HT) reuptake inhibitors (SSRIs) like fluoxetine remain a first-line treatment for major depression, but are effective in less than half of patients and can take 4-8 weeks to show results. In this study, we examined cF1ko mice with genetically induced upregulation of 5-HT1A autoreceptors that reduces 5-HT neuronal activity. These mice display anxiety- and depression-related behaviors that did not respond to chronic fluoxetine treatment. We examined treatment with NLX-101, a biased agonist that preferentially targets 5-HT1A heteroreceptors. By testing different doses of NLX-101, we found that a dose of 0.2 mg/kg was effective in reducing depression-related behavior in cF1ko mice without causing hypothermia, a 5-HT1A autoreceptor-mediated response. After 1 h, this dose activated dorsal raphe 5-HT neurons and cells in the medial prefrontal cortex (mPFC), increasing nuclear c-fos labelling in cF1ko mice. In cF1ko mice but not wild-type littermates, 0.2 mg/kg NLX-101 administered 1 h prior to each behavioral test for two weeks reduced depressive behavior in the forced swim test, but increased anxiety-related behaviors in the open field, elevated plus maze, and novelty suppressed feeding tests. During this treatment, NLX-101 induced widespread increases in the density of 5-HT axons, varicosities, and especially synaptic and triadic structures, particularly in depression-related brain regions including mPFC, hippocampal CA1 and CA2/3, amygdala and nucleus accumbens of cF1ko mice. Overall, NLX-101 was rapid and effective in reducing depressive behavior in SSRI-resistant mice, but also induced anxiety-related behaviors. The increase in serotonin innervation induced by intermittent NLX-101 may contribute to its behavioral actions.
Collapse
Affiliation(s)
- Faranak Vahid-Ansari
- OHRI Neuroscience, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, Ontario, K1H-8M5, Canada
| | | | | | - Mireille Daigle
- OHRI Neuroscience, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, Ontario, K1H-8M5, Canada
| | - Paul R Albert
- OHRI Neuroscience, University of Ottawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, Ontario, K1H-8M5, Canada.
| |
Collapse
|
2
|
Ye Q, Nunez J, Zhang X. Multiple cholinergic receptor subtypes coordinate dual modulation of acetylcholine on anterior and posterior paraventricular thalamic neurons. J Neurochem 2024; 168:995-1018. [PMID: 38664195 PMCID: PMC11136594 DOI: 10.1111/jnc.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/31/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024]
Abstract
Paraventricular thalamus (PVT) plays important roles in the regulation of emotion and motivation through connecting many brain structures including the midbrain and the limbic system. Although acetylcholine (ACh) neurons of the midbrain were reported to send projections to PVT, little is known about how cholinergic signaling regulates PVT neurons. Here, we used both RNAscope and slice patch-clamp recordings to characterize cholinergic receptor expression and ACh modulation of PVT neurons in mice. We found ACh excited a majority of anterior PVT (aPVT) neurons but predominantly inhibited posterior PVT (pPVT) neurons. Compared to pPVT with more inhibitory M2 receptors, aPVT expressed higher levels of all excitatory receptor subtypes including nicotinic α4, α7, and muscarinic M1 and M3. The ACh-induced excitation was mimicked by nicotine and antagonized by selective blockers for α4β2 and α7 nicotinic ACh receptor (nAChR) subtypes as well as selective antagonists for M1 and M3 muscarinic ACh receptors (mAChR). The ACh-induced inhibition was attenuated by selective M2 and M4 mAChR receptor antagonists. Furthermore, we found ACh increased the frequency of excitatory postsynaptic currents (EPSCs) on a majority of aPVT neurons but decreased EPSC frequency on a larger number of pPVT neurons. In addition, ACh caused an acute increase followed by a lasting reduction in inhibitory postsynaptic currents (IPSCs) on PVT neurons of both subregions. Together, these data suggest that multiple AChR subtypes coordinate a differential modulation of ACh on aPVT and pPVT neurons.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Jeremiah Nunez
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Xiaobing Zhang
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
3
|
Arena G, Londei F, Ceccarelli F, Ferrucci L, Borra E, Genovesio A. Disentangling the identity of the zona incerta: a review of the known connections and latest implications. Ageing Res Rev 2024; 93:102140. [PMID: 38008404 DOI: 10.1016/j.arr.2023.102140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The zona incerta (ZI) is a subthalamic region composed by loosely packed neurochemically mixed neurons, juxtaposed to the main ascending and descending bundles. The extreme neurochemical diversity that characterizes this area, together with the diffuseness of its connections with the entire neuraxis and its hard-to-reach positioning in the brain caused the ZI to keep its halo of mystery for over a century. However, in the last decades, a rich albeit fragmentary body of knowledge regarding both the incertal anatomical connections and functional implications has been built mostly based on rodent studies and its lack of cohesion makes difficult to depict an integrated, exhaustive picture regarding the ZI and its roles. This review aims to provide a unified resource that summarizes the current knowledge regarding the anatomical profile of interactions of the ZI in rodents and non-human primates and the functional significance of its connections, highlighting the aspects still unbeknown to research.
Collapse
Affiliation(s)
- Giulia Arena
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Londei
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Francesco Ceccarelli
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Ferrucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Elena Borra
- University of Parma, Department of Medicine and Surgery, Neuroscience Unit, Italy
| | - Aldo Genovesio
- Department of Physiology and Pharmacology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
González-Arias C, Sánchez-Ruiz A, Esparza J, Sánchez-Puelles C, Arancibia L, Ramírez-Franco J, Gobbo D, Kirchhoff F, Perea G. Dysfunctional serotonergic neuron-astrocyte signaling in depressive-like states. Mol Psychiatry 2023; 28:3856-3873. [PMID: 37773446 PMCID: PMC10730416 DOI: 10.1038/s41380-023-02269-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Astrocytes play crucial roles in brain homeostasis and are regulatory elements of neuronal and synaptic physiology. Astrocytic alterations have been found in Major Depressive Disorder (MDD) patients; however, the consequences of astrocyte Ca2+ signaling in MDD are poorly understood. Here, we found that corticosterone-treated juvenile mice (Cort-mice) showed altered astrocytic Ca2+ dynamics in mPFC both in resting conditions and during social interactions, in line with altered mice behavior. Additionally, Cort-mice displayed reduced serotonin (5-HT)-mediated Ca2+ signaling in mPFC astrocytes, and aberrant 5-HT-driven synaptic plasticity in layer 2/3 mPFC neurons. Downregulation of astrocyte Ca2+ signaling in naïve animals mimicked the synaptic deficits found in Cort-mice. Remarkably, boosting astrocyte Ca2+ signaling with Gq-DREADDS restored to the control levels mood and cognitive abilities in Cort-mice. This study highlights the important role of astrocyte Ca2+ signaling for homeostatic control of brain circuits and behavior, but also reveals its potential therapeutic value for depressive-like states.
Collapse
Affiliation(s)
- Candela González-Arias
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | - Andrea Sánchez-Ruiz
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | | | | | | | - Jorge Ramírez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, 13005, Marseille, France
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | | |
Collapse
|
5
|
Wu FL, Chen SH, Li JN, Zhao LJ, Wu XM, Hong J, Zhu KH, Sun HX, Shi SJ, Mao E, Zang WD, Cao J, Kou ZZ, Li YQ. Projections from the Rostral Zona Incerta to the Thalamic Paraventricular Nucleus Mediate Nociceptive Neurotransmission in Mice. Metabolites 2023; 13:metabo13020226. [PMID: 36837844 PMCID: PMC9966812 DOI: 10.3390/metabo13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Zona incerta (ZI) is an integrative subthalamic region in nociceptive neurotransmission. Previous studies demonstrated that the rostral ZI (ZIR) is an important gamma-aminobutyric acid-ergic (GABAergic) source to the thalamic paraventricular nucleus (PVT), but whether the ZIR-PVT pathway participates in nociceptive modulation is still unclear. Therefore, our investigation utilized anatomical tracing, fiber photometry, chemogenetic, optogenetic and local pharmacological approaches to investigate the roles of the ZIRGABA+-PVT pathway in nociceptive neurotransmission in mice. We found that projections from the GABAergic neurons in ZIR to PVT were involved in nociceptive neurotransmission. Furthermore, chemogenetic and optogenetic activation of the ZIRGABA+-PVT pathway alleviates pain, whereas inhibiting the activities of the ZIRGABA+-PVT circuit induces mechanical hypersensitivity and partial heat hyperalgesia. Importantly, in vivo pharmacology combined with optogenetics revealed that the GABA-A receptor (GABAAR) is crucial for GABAergic inhibition from ZIR to PVT. Our data suggest that the ZIRGABA+-PVT pathway acts through GABAAR-expressing glutamatergic neurons in PVT mediates nociceptive neurotransmission.
Collapse
Affiliation(s)
- Feng-Ling Wu
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Si-Hai Chen
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Liu-Jie Zhao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Xue-Mei Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jie Hong
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Ke-Hua Zhu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Su-Juan Shi
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - E Mao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Wei-Dong Zang
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| | - Yun-Qing Li
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of Anatomy, College of Basic Medicine, Dali University, Dali 671000, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| |
Collapse
|
6
|
Raphe serotonin projections dynamically regulate feeding behavior through targeting inhibitory circuits from rostral zona incerta to paraventricular thalamus. Mol Metab 2022; 66:101634. [PMID: 36351530 PMCID: PMC9672487 DOI: 10.1016/j.molmet.2022.101634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Rostral zona incerta (ZIR) evokes feeding by sending GABA transmission to paraventricular thalamus (PVT). Although central serotonin (5-HT) signaling is known to play critical roles in the regulation of food intake and eating disorders, it remains unknown whether raphe 5-HT neurons functionally innervate ZIR-PVT neural pathway for feeding control. Here, we sought to reveal how raphe 5-HT signaling regulates both ZIR and PVT for feeding control. METHODS We used retrograde neural tracers to map 5-HT projections in Sert-Cre mice and slice electrophysiology to examine the mechanism by which 5-HT modulates ZIR GABA neurons. We also used optogenetics to test the effects of raphe-ZIR and raphe-PVT 5-HT projections on feeding motivation and food intake in mice regularly fed, 24 h fasted, and with intermittent high-fat high-sugar (HFHS) diet. In addition, we applied RNAscope in situ hybridization to identify 5-HT receptor subtype mRNA in ZIR. RESULTS We show raphe 5-HT neurons sent projections to both ZIR and PVT with partial collateral axons. Photostimulation of 5-HT projections inhibited ZIR but excited PVT neurons to decrease motivated food consumption. However, both acute food deprivation and intermittent HFHS diet downregulated 5-HT inhibition on ZIR GABA neurons, abolishing the inhibitory regulation of raphe-ZIR 5-HT projections on feeding motivation and food intake. Furthermore, we found high-level 5-HT1a and 5-HT2c as well as low-level 5-HT7 mRNA expression in ZIR. Intermittent HFHS diet increased 5-HT7 but not 5-HT1a or 5-HT2c mRNA levels in the ZIR. CONCLUSIONS Our results reveal that raphe-ZIR 5-HT projections dynamically regulate ZIR GABA neurons for feeding control, supporting that a dynamic fluctuation of ZIR 5-HT inhibition authorizes daily food intake but a sustained change of ZIR 5-HT signaling leads to overeating induced by HFHS diet.
Collapse
|
7
|
The caudal prethalamus: Inhibitory switchboard for behavioral control? Neuron 2022; 110:2728-2742. [PMID: 36076337 DOI: 10.1016/j.neuron.2022.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
Abstract
Prethalamic nuclei in the mammalian brain include the zona incerta, the ventral lateral geniculate nucleus, and the intergeniculate leaflet, which provide long-range inhibition to many targets in the midbrain, hindbrain, and thalamus. These nuclei in the caudal prethalamus can integrate sensory and non-sensory information, and together they exert powerful inhibitory control over a wide range of brain functions and behaviors that encompass most aspects of the behavioral repertoire of mammals, including sleep, circadian rhythms, feeding, drinking, predator avoidance, and exploration. In this perspective, we highlight the evidence for this wide-ranging control and lay out the hypothesis that one role of caudal prethalamic nuclei may be that of a behavioral switchboard that-depending on the sensory input, the behavioral context, and the state of the animal-can promote a behavioral strategy and suppress alternative, competing behaviors by modulating inhibitory drive onto diverse target areas.
Collapse
|
8
|
Ye Q, Nunez J, Zhang X. Oxytocin Receptor-Expressing Neurons in the Paraventricular Thalamus Regulate Feeding Motivation through Excitatory Projections to the Nucleus Accumbens Core. J Neurosci 2022; 42:3949-3964. [PMID: 35387870 PMCID: PMC9097779 DOI: 10.1523/jneurosci.2042-21.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Oxytocin receptors (OTR) have been found in the paraventricular thalamus (PVT) for the regulation of feeding and maternal behaviors. However, the functional projections of OTR-expressing PVT neurons remain largely unknown. Here, we used chemogenetic and optogenetic tools to test the role of OTR-expressing PVT neurons and their projections in the regulation of food intake in both male and female OTR-Cre mice. We found chemogenetic activation of OTR-expressing PVT neurons promoted food seeking under trials with a progressive ratio schedule of reinforcement. Using Feeding Experimentation Devices for real-time meal measurements, we found chemogenetic activation of OTR-expressing PVT neurons increased meal frequency but not cumulative food intake because of a compensatory decrease in meal sizes. In combination with anterograde neural tracing and slice patch-clamp recordings, we found optogenetic stimulation of PVT OTR terminals excited neurons in the posterior basolateral amygdala (pBLA) and nucleus accumbens core (NAcC) as well as local PVT neurons through monosynaptic glutamatergic transmissions. Photostimulation of OTR-expressing PVT-NAcC projections promoted food-seeking, whereas selective activation of PVT-pBLA projections produced little effect on feeding. In contrast to selective activation of OTR terminals, photostimulation of a broader population of glutamatergic PVT terminals exerted direct excitation followed by indirect lateral inhibition on neurons in both NAcC and anterior basolateral amygdala. Together, these results suggest that OTR-expressing PVT neurons are a distinct population of PVT glutamate neurons that regulate feeding motivation through projections to NAcC.SIGNIFICANCE STATEMENT The paraventricular thalamus plays an important role in the regulation of feeding motivation. However, because of the diversity of paraventricular thalamic neurons, the specific neuron types promoting food motivation remain elusive. In this study, we provide evidence that oxytocin receptor-expressing neurons are a specific group of glutamate neurons that primarily project to the nucleus accumbens core and posterior amygdala. We found that activation of these neurons promotes the motivation for food reward and increases meal frequency through projections to the nucleus accumbens core but not the posterior amygdala. As a result, we postulate that oxytocin receptor-expressing neurons in the paraventricular thalamus and their projections to the nucleus accumbens core mainly regulate feeding motivation but not food consumption.
Collapse
Affiliation(s)
- Qiying Ye
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Jeremiah Nunez
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| | - Xiaobing Zhang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|