1
|
Bingham MA, Neijman K, Yang CR, Aponte A, Mak A, Kikuchi H, Jung HJ, Poll BG, Raghuram V, Park E, Chou CL, Chen L, Leipziger J, Knepper MA, Dona M. Circadian gene expression in mouse renal proximal tubule. Am J Physiol Renal Physiol 2023; 324:F301-F314. [PMID: 36727945 PMCID: PMC9988533 DOI: 10.1152/ajprenal.00231.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Circadian variability in kidney function is well recognized but is often ignored as a potential confounding variable in physiological experiments. Here, we have created a data resource consisting of expression levels for mRNA transcripts in microdissected proximal tubule segments from mice as a function of the time of day. Small-sample RNA sequencing was applied to microdissected S1 proximal convoluted tubules and S2 proximal straight tubules. After stringent filtering, the data were analyzed using JTK-Cycle to detect periodicity. The data set is provided as a user-friendly webpage at https://esbl.nhlbi.nih.gov/Databases/Circadian-Prox2/. In proximal convoluted tubules, 234 transcripts varied in a circadian manner (4.0% of the total). In proximal straight tubules, 334 transcripts varied in a circadian manner (5.3%). Transcripts previously known to be associated with corticosteroid action and with increased flow were found to be overrepresented among circadian transcripts peaking during the "dark" portion of the day [zeitgeber time (ZT)14-22], corresponding to peak levels of corticosterone and glomerular filtration rate in mice. To ask whether there is a time-of-day dependence of protein abundances in the kidney, we carried out LC-MS/MS-based proteomics in whole mouse kidneys at ZT12 and ZT0. The full data set (n = 6,546 proteins) is available at https://esbl.nhlbi.nih.gov/Databases/Circadian-Proteome/. Overall, 293 proteins were differentially expressed between ZT12 and ZT0 (197 proteins greater at ZT12 and 96 proteins greater at ZT0). Among the regulated proteins, only nine proteins were found to be periodic in the RNA-sequencing analysis, suggesting a high level of posttranscriptional regulation of protein abundances.NEW & NOTEWORTHY Circadian variation in gene expression can be an important determinant in the regulation of kidney function. The authors used RNA-sequencing transcriptomics and LC-MS/MS-based proteomics to identify gene products expressed in a periodic manner. The data were used to construct user-friendly web resources.
Collapse
Affiliation(s)
- Molly A Bingham
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kim Neijman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chin-Rang Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angel Aponte
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angela Mak
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hiroaki Kikuchi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Brian G Poll
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Euijung Park
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lihe Chen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mark A Knepper
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Margo Dona
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Epstein M, Lifschitz MD. The Unappreciated Role of Extrarenal and Gut Sensors in Modulating Renal Potassium Handling: Implications for Diagnosis of Dyskalemias and Interpreting Clinical Trials. Kidney Int Rep 2016; 1:43-56. [PMID: 29142913 PMCID: PMC5678840 DOI: 10.1016/j.ekir.2016.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the classic and well-established "feedback control" of potassium balance, increasing investigative attention has focused on a novel and not widely recognized complementary regulatory paradigm for maintaining potassium homeostasis-the "feed-forward control" of potassium balance. This regulatory mechanism, initially defined in rumen, has recently been validated in normal human subjects. Studies are being conducted to determine the location for this putative potassium sensor and to evaluate potential signals, which might increase renal potassium excretion. Awareness of this more updated integrative control mechanism for potassium homeostasis is ever more relevant today, when the medical community is increasingly focused on the challenges of managing the hyperkalemia provoked by renin-angiotensin-aldosterone system inhibitors (RAASis). Recent studies have demonstrated a wide gap between RAASi prescribing guidelines and real-world experience and have highlighted that this gap is thought to be attributable in great part to hyperkalemia. Consequently we require a greater knowledge of the complexities of the regulatory mechanisms subserving potassium homeostasis. Sodium polystyrene sulfonate has long been the mainstay for treating hyperkalemia, but its administration is fraught with challenges related to patient discomfort and colonic necrosis. The current and imminent availability of newer potassium binders with better tolerability and more predictive dose-response potassium removal should enhance the management of hyperkalemia. Consequently it is essential to better understand the intricacies of mammalian colonic K+ handling. We discuss colonic transport of K+ and review evidence for potassium (BK) channels being responsible for increased stool K+ in patients with diseases such as ulcerative colitis.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami, Miller School of Medicine, South Florida Veterans Affairs Foundation for Research and Education (SFVAFRE), Miami, Florida, USA
| | - Meyer D. Lifschitz
- Adult Nephrology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
3
|
Epstein M, Lifschitz MD. Potassium homeostasis and dyskalemias: the respective roles of renal, extrarenal, and gut sensors in potassium handling. Kidney Int Suppl (2011) 2016; 6:7-15. [PMID: 30675414 PMCID: PMC6340905 DOI: 10.1016/j.kisu.2016.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/08/2016] [Accepted: 01/08/2016] [Indexed: 12/11/2022] Open
Abstract
Integrated mechanisms controlling the maintenance of potassium homeostasis are well established and are defined by the classic "feedback control" of potassium balance. Recently, increasing investigative attention has focused on novel physiological paradigms that increase the complexity and precision of homeostasis. This review briefly considers the classic and well-established feedback control of potassium and then considers subsequent investigations that inform on an intriguing and not widely recognized complementary paradigm: the "feed-forward control of potassium balance." Feed-forward control refers to a pathway in a homeostatic system that responds to a signal in the environment in a predetermined manner, without responding to how the system subsequently reacts (i.e., without responding to feedback). Studies in several animal species, and recently in humans, have confirmed the presence of a feed-forward control mechanism that is capable of mediating potassium excretion independent of changes in serum potassium concentration and aldosterone. Knowledge imparted by this update of potassium homeostasis hopefully will facilitate the clinical management of hyperkalemia in patients with chronic and recurrent hyperkalemia. Awareness of this updated integrative control mechanism for potassium homeostasis is more relevant today when the medical community is increasingly focused on leveraging and expanding established renin-angiotensin-aldosterone system inhibitor treatment regimens and on successfully coping with the challenges of managing hyperkalemia provoked by renin-angiotensin-aldosterone system inhibitors. These new insights are relevant to the future design of clinical trials delineating renal potassium handling.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Meyer D. Lifschitz
- Adult Nephrology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|