1
|
Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field. Proc Natl Acad Sci U S A 2019; 116:3827-3836. [PMID: 30737290 PMCID: PMC6397585 DOI: 10.1073/pnas.1817076116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The integration of visual information over space is critical to human pattern vision. For either luminance detection or object recognition, the position of the target in the visual field governs the size of a window within which visual information is integrated. Here we analyze the relationship between the topographic distribution of ganglion cell density and the nonuniform spatial integration across the visual field. We find that the variation in the retinal ganglion cell (RGC) density across the human retina is closely matched to the variation in the extent of spatial integration. Our study suggests that a fixed number of RGCs subserves spatial integration of visual input, independent of the visual-field location. The ability to integrate visual information over space is a fundamental component of human pattern vision. Regardless of whether it is for detecting luminance contrast or for recognizing objects in a cluttered scene, the position of the target in the visual field governs the size of a window within which visual information is integrated. Here we analyze the relationship between the topographic distribution of ganglion cell density and the nonuniform spatial integration across the visual field. The extent of spatial integration for luminance detection (Ricco’s area) and object recognition (crowding zone) are measured at various target locations. The number of retinal ganglion cells (RGCs) underlying Ricco’s area or crowding zone is estimated by computing the product of Ricco’s area (or crowding zone) and RGC density for a given target location. We find a quantitative agreement between the behavioral data and the RGC density: The variation in the sampling density of RGCs across the human retina is closely matched to the variation in the extent of spatial integration required for either luminance detection or object recognition. Our empirical data combined with the simulation results of computational models suggest that a fixed number of RGCs subserves spatial integration of visual input, independent of the visual-field location.
Collapse
|
2
|
Yu WQ, El-Danaf RN, Okawa H, Pacholec JM, Matti U, Schwarz K, Odermatt B, Dunn FA, Lagnado L, Schmitz F, Huberman AD, Wong ROL. Synaptic Convergence Patterns onto Retinal Ganglion Cells Are Preserved despite Topographic Variation in Pre- and Postsynaptic Territories. Cell Rep 2018; 25:2017-2026.e3. [PMID: 30463000 PMCID: PMC6317877 DOI: 10.1016/j.celrep.2018.10.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/13/2018] [Accepted: 10/24/2018] [Indexed: 11/25/2022] Open
Abstract
Sensory processing can be tuned by a neuron's integration area, the types of inputs, and the proportion and number of connections with those inputs. Integration areas often vary topographically to sample space differentially across regions. Here, we highlight two visual circuits in which topographic changes in the postsynaptic retinal ganglion cell (RGC) dendritic territories and their presynaptic bipolar cell (BC) axonal territories are either matched or unmatched. Despite this difference, in both circuits, the proportion of inputs from each BC type, i.e., synaptic convergence between specific BCs and RGCs, remained constant across varying dendritic territory sizes. Furthermore, synapse density between BCs and RGCs was invariant across topography. Our results demonstrate a wiring design, likely engaging homotypic axonal tiling of BCs, that ensures consistency in synaptic convergence between specific BC types onto their target RGCs while enabling independent regulation of pre- and postsynaptic territory sizes and synapse number between cell pairs.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Rana N El-Danaf
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Justin M Pacholec
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ulf Matti
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | | | - Felice A Dunn
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Leon Lagnado
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Frank Schmitz
- Department of Neuroanatomy, Medical School Homburg/Saar, Institute for Anatomy and Cell Biology, Saarland University, 66421 Homburg/Saar, Germany
| | - Andrew D Huberman
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Departments of Neurobiology and Ophthalmology, Stanford Neurosciences Institute, and BioX, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
3
|
Wienbar S, Schwartz GW. The dynamic receptive fields of retinal ganglion cells. Prog Retin Eye Res 2018; 67:102-117. [PMID: 29944919 PMCID: PMC6235744 DOI: 10.1016/j.preteyeres.2018.06.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 11/30/2022]
Abstract
Retinal ganglion cells (RGCs) were one of the first classes of sensory neurons to be described in terms of a receptive field (RF). Over the last six decades, our understanding of the diversity of RGC types and the nuances of their response properties has grown exponentially. We will review the current understanding of RGC RFs mostly from studies in mammals, but including work from other vertebrates as well. We will argue for a new paradigm that embraces the fluidity of RGC RFs with an eye toward the neuroethology of vision. Specifically, we will focus on (1) different methods for measuring RGC RFs, (2) RF models, (3) feature selectivity and the distinction between fluid and stable RF properties, and (4) ideas about the future of understanding RGC RFs.
Collapse
Affiliation(s)
- Sophia Wienbar
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| | - Gregory W Schwartz
- Departments of Ophthalmology and Physiology, Feinberg School of Medicine, Northwestern University, United States.
| |
Collapse
|
4
|
Antinucci P, Hindges R. Orientation-Selective Retinal Circuits in Vertebrates. Front Neural Circuits 2018; 12:11. [PMID: 29467629 PMCID: PMC5808299 DOI: 10.3389/fncir.2018.00011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/23/2018] [Indexed: 11/24/2022] Open
Abstract
Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.
Collapse
Affiliation(s)
- Paride Antinucci
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Abstract
The mechanisms underlying the emergence of orientation selectivity in the visual cortex have been, and continue to be, the subjects of intense scrutiny. Orientation selectivity reflects a dramatic change in the representation of the visual world: Whereas afferent thalamic neurons are generally orientation insensitive, neurons in the primary visual cortex (V1) are extremely sensitive to stimulus orientation. This profound change in the receptive field structure along the visual pathway has positioned V1 as a model system for studying the circuitry that underlies neural computations across the neocortex. The neocortex is characterized anatomically by the relative uniformity of its circuitry despite its role in processing distinct signals from region to region. A combination of physiological, anatomical, and theoretical studies has shed some light on the circuitry components necessary for generating orientation selectivity in V1. This targeted effort has led to critical insights, as well as controversies, concerning how neural circuits in the neocortex perform computations.
Collapse
Affiliation(s)
- Nicholas J Priebe
- Center for Learning and Memory, Center for Perceptual Systems, Department of Neuroscience, College of Natural Sciences, University of Texas, Austin, Texas 78712;
| |
Collapse
|
6
|
Yu WQ, Grzywacz NM, Lee EJ, Field GD. Cell type-specific changes in retinal ganglion cell function induced by rod death and cone reorganization in rats. J Neurophysiol 2017; 118:434-454. [PMID: 28424296 PMCID: PMC5506261 DOI: 10.1152/jn.00826.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 02/02/2023] Open
Abstract
We have determined the impact of rod death and cone reorganization on the spatiotemporal receptive fields (RFs) and spontaneous activity of distinct retinal ganglion cell (RGC) types. We compared RGC function between healthy and retinitis pigmentosa (RP) model rats (S334ter-3) at a time when nearly all rods were lost but cones remained. This allowed us to determine the impact of rod death on cone-mediated visual signaling, a relevant time point because the diagnosis of RP frequently occurs when patients are nightblind but daytime vision persists. Following rod death, functionally distinct RGC types persisted; this indicates that parallel processing of visual input remained largely intact. However, some properties of cone-mediated responses were altered ubiquitously across RGC types, such as prolonged temporal integration and reduced spatial RF area. Other properties changed in a cell type-specific manner, such as temporal RF shape (dynamics), spontaneous activity, and direction selectivity. These observations identify the extent of functional remodeling in the retina following rod death but before cone loss. They also indicate new potential challenges to restoring normal vision by replacing lost rod photoreceptors.NEW & NOTEWORTHY This study provides novel and therapeutically relevant insights to retinal function following rod death but before cone death. To determine changes in retinal output, we used a large-scale multielectrode array to simultaneously record from hundreds of retinal ganglion cells (RGCs). These recordings of large-scale neural activity revealed that following the death of all rods, functionally distinct RGCs remain. However, the receptive field properties and spontaneous activity of these RGCs are altered in a cell type-specific manner.
Collapse
Affiliation(s)
- Wan-Qing Yu
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | - Norberto M Grzywacz
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California.,Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Department of Electrical Engineering, University of Southern California, Los Angeles, California.,Department of Neuroscience, Department of Physics, and Graduate School of Arts and Sciences, Georgetown University, Washington, District of Columbia
| | - Eun-Jin Lee
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California.,Mary D. Allen Laboratory for Vision Research, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, California; and
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
7
|
Schottdorf M, Keil W, Coppola D, White LE, Wolf F. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex. PLoS Comput Biol 2015; 11:e1004602. [PMID: 26575467 PMCID: PMC4648540 DOI: 10.1371/journal.pcbi.1004602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 10/14/2015] [Indexed: 12/11/2022] Open
Abstract
The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models.
Collapse
Affiliation(s)
- Manuel Schottdorf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Institute for Theoretical Physics, University of Würzburg, Würzburg, Germany
| | - Wolfgang Keil
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Center for Studies in Physics and Biology, The Rockefeller University, New York, New York, United States of America
| | - David Coppola
- Department of Biology, Randolph-Macon College, Ashland, Virginia, United States of America
| | - Leonard E. White
- Department of Orthopaedic Surgery, Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Bernstein Focus for Neurotechnology, Göttingen, Germany
- Faculty of Physics, University of Göttingen, Göttingen, Germany
- Kavli Institute for Theoretical Physics, Santa Barbara, California, United States of America
| |
Collapse
|
8
|
Yakimova EG, Chizhov AV. Experimental and Modeling Studies of Orientational Sensitivity of Neurons in the Lateral Geniculate Nucleus. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s11055-015-0097-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Suematsu N, Naito T, Miyoshi T, Sawai H, Sato H. Spatiotemporal receptive field structures in retinogeniculate connections of cat. Front Syst Neurosci 2013; 7:103. [PMID: 24367299 PMCID: PMC3856685 DOI: 10.3389/fnsys.2013.00103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/18/2013] [Indexed: 11/15/2022] Open
Abstract
The spatial structure of the receptive field (RF) of cat lateral geniculate nucleus (LGN) neurons is significantly elliptical, which may provide a basis for the orientation tuning of LGN neurons, especially at high spatial frequency stimuli. However, the input mechanisms generating this elliptical RF structure are poorly defined. We therefore compared the spatiotemporal RF structures of pairs of retinal ganglion cells (RGCs) and LGN neurons that form monosynaptic connections based on the cross-correlation analysis of their firing activities. We found that the spatial RF structure of both RGCs and LGN neurons were comparably elliptical and oriented in a direction toward the area centralis. Additionally, the spatial RF structures of pairs with the same response sign were often overlapped and similarly oriented. We also found there was a small population of pairs with RF structures that had the opposite response sign and were spatially displaced and independently oriented. Finally, the temporal RF structure of an RGC was tightly correlated with that of its target LGN neuron, though the response duration of the LGN neuron was significantly longer. Our results suggest that the elliptical RF structure of an LGN neuron is mainly inherited from the primary projecting RGC and is affected by convergent inputs from multiple RGCs. We discuss how the convergent inputs may enhance the stimulus feature sensitivity of LGN neurons.
Collapse
Affiliation(s)
- Naofumi Suematsu
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan
| | - Tomoyuki Naito
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Tomomitsu Miyoshi
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Hajime Sawai
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University Osaka, Japan
| | - Hiromichi Sato
- Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Frontier Biosciences, Osaka University Osaka, Japan ; Laboratory of Cognitive and Behavioral Neuroscience, Department of Health and Sportsscience, Graduate School of Medicine, Osaka University Osaka, Japan
| |
Collapse
|
10
|
Retinal visual processing constrains human ocular following response. Vision Res 2013; 93:29-42. [PMID: 24125703 DOI: 10.1016/j.visres.2013.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/30/2013] [Accepted: 10/03/2013] [Indexed: 11/24/2022]
Abstract
Ocular following responses (OFRs) are the initial tracking eye movements elicited at ultra-short latency by sudden motion of a textured pattern. We wished to evaluate quantitatively the impact that subcortical stages of visual processing might have on the OFRs. In three experiments we recorded the OFRs of human subjects to brief horizontal motion of 1D vertical sine-wave gratings restricted to an elongated horizontal aperture. Gratings were composed of a variable number of abutting horizontal strips where alternate strips were in counterphase. In one of the experiments we also utilized gratings occupying a variable number of horizontal strips separated vertically by mean-luminance gaps. We modeled retinal center/surround receptive fields as a difference of two 2-D Gaussian functions. When the characteristics of such local filters were selected in accord with the known properties of primate retinal ganglion cells, a single-layer model was capable to quantitatively account for the observed changes in the OFR amplitude for stimuli composed of counterphase strips of different heights (Experiment 1), for a wide range of stimulus contrasts (Experiment 2) and spatial frequencies (Experiment 3). A similar model using oriented filters that resemble cortical simple cells was also able to account for these data. Since similar filters can be constructed from the linear summation of retinal filters, and these filters alone can explain the data, we conclude that retinal processing determines the response to these stimuli. Thus, with appropriately chosen stimuli, OFRs can be used to study visual spatial integration processes as early as in the retina.
Collapse
|
11
|
Effects of stimulus spatial frequency, size, and luminance contrast on orientation tuning of neurons in the dorsal lateral geniculate nucleus of cat. Neurosci Res 2013; 77:143-54. [PMID: 24055599 DOI: 10.1016/j.neures.2013.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 11/22/2022]
Abstract
It is generally thought that orientation selectivity first appears in the primary visual cortex (V1), whereas neurons in the lateral geniculate nucleus (LGN), an input source for V1, are thought to be insensitive to stimulus orientation. Here we show that increasing both the spatial frequency and size of the grating stimuli beyond their respective optimal values strongly enhance the orientation tuning of LGN neurons. The resulting orientation tuning was clearly contrast-invariant. Furthermore, blocking intrathalamic inhibition by iontophoretically administering γ-aminobutyric acid (GABA)A receptor antagonists, such as bicuculline and GABAzine, slightly but significantly weakened the contrast invariance. Our results suggest that orientation tuning in the LGN is caused by an elliptical classical receptive field and orientation-tuned surround suppression, and that its contrast invariance is ensured by local GABAA inhibition. This contrast-invariant orientation tuning in LGN neurons may contribute to the contrast-invariant orientation tuning seen in V1 neurons.
Collapse
|
12
|
Abstract
Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different.
Collapse
|
13
|
Gruters KG, Groh JM. Sounds and beyond: multisensory and other non-auditory signals in the inferior colliculus. Front Neural Circuits 2012; 6:96. [PMID: 23248584 PMCID: PMC3518932 DOI: 10.3389/fncir.2012.00096] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 11/15/2012] [Indexed: 11/20/2022] Open
Abstract
The inferior colliculus (IC) is a major processing center situated mid-way along both the ascending and descending auditory pathways of the brain stem. Although it is fundamentally an auditory area, the IC also receives anatomical input from non-auditory sources. Neurophysiological studies corroborate that non-auditory stimuli can modulate auditory processing in the IC and even elicit responses independent of coincident auditory stimulation. In this article, we review anatomical and physiological evidence for multisensory and other non-auditory processing in the IC. Specifically, the contributions of signals related to vision, eye movements and position, somatosensation, and behavioral context to neural activity in the IC will be described. These signals are potentially important for localizing sound sources, attending to salient stimuli, distinguishing environmental from self-generated sounds, and perceiving and generating communication sounds. They suggest that the IC should be thought of as a node in a highly interconnected sensory, motor, and cognitive network dedicated to synthesizing a higher-order auditory percept rather than simply reporting patterns of air pressure detected by the cochlea. We highlight some of the potential pitfalls that can arise from experimental manipulations that may disrupt the normal function of this network, such as the use of anesthesia or the severing of connections from cortical structures that project to the IC. Finally, we note that the presence of these signals in the IC has implications for our understanding not just of the IC but also of the multitude of other regions within and beyond the auditory system that are dependent on signals that pass through the IC. Whatever the IC “hears” would seem to be passed both “upward” to thalamus and thence to auditory cortex and beyond, as well as “downward” via centrifugal connections to earlier areas of the auditory pathway such as the cochlear nucleus.
Collapse
Affiliation(s)
- Kurtis G Gruters
- Department of Psychology and Neuroscience, Duke University Durham, NC, USA
| | | |
Collapse
|
14
|
Abstract
The rat is a popular animal model for vision research, yet there is little quantitative information about the physiological properties of the cells that provide its brain with visual input, the retinal ganglion cells. It is not clear whether rats even possess the full complement of ganglion cell types found in other mammals. Since such information is important for evaluating rodent models of visual disease and elucidating the function of homologous and heterologous cells in different animals, we recorded from rat ganglion cells in vivo and systematically measured their spatial receptive field (RF) properties using spot, annulus, and grating patterns. Most of the recorded cells bore likeness to cat X and Y cells, exhibiting brisk responses, center-surround RFs, and linear or nonlinear spatial summation. The others resembled various types of mammalian W cell, including local-edge-detector cells, suppressed-by-contrast cells, and an unusual type with an ON-OFF surround. They generally exhibited sluggish responses, larger RFs, and lower responsiveness. The peak responsivity of brisk-nonlinear (Y-type) cells was around twice that of brisk-linear (X-type) cells and several fold that of sluggish cells. The RF size of brisk-linear and brisk-nonlinear cells was indistinguishable, with average center and surround diameters of 5.6 ± 1.3 and 26.4 ± 11.3 deg, respectively. In contrast, the center diameter of recorded sluggish cells averaged 12.8 ± 7.9 deg. The homogeneous RF size of rat brisk cells is unlike that of cat X and Y cells, and its implication regarding the putative roles of these two ganglion cell types in visual signaling is discussed.
Collapse
|
15
|
Smith SL, Häusser M. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat Neurosci 2010; 13:1144-9. [PMID: 20711183 PMCID: PMC2999824 DOI: 10.1038/nn.2620] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/21/2010] [Indexed: 11/30/2022]
Abstract
Visual cortex shows smooth retinotopic organization on the macroscopic scale, but it is unknown how receptive fields are organized at the level of neighboring neurons. This information is crucial for discriminating among models of visual cortex. We used in vivo two-photon calcium imaging to independently map ON and OFF receptive field subregions of local populations of layer 2/3 neurons in mouse visual cortex. Receptive field subregions were often precisely shared among neighboring neurons. Furthermore, large subregions seem to be assembled from multiple smaller, non-overlapping subregions of other neurons in the same local population. These experiments provide, to our knowledge, the first characterization of the diversity of receptive fields in a dense local network of visual cortex and reveal elementary units of receptive field organization. Our results suggest that a limited pool of afferent receptive fields is available to a local population of neurons and reveal new organizational principles for the neural circuitry of the mouse visual cortex.
Collapse
Affiliation(s)
- Spencer L Smith
- Wolfson Institute for Biomedical Research and Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | | |
Collapse
|
16
|
Sagdullaev BT, McCall MA. Stimulus size and intensity alter fundamental receptive-field properties of mouse retinal ganglion cellsin vivo. Vis Neurosci 2005; 22:649-59. [PMID: 16332276 DOI: 10.1017/s0952523805225142] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Accepted: 04/28/2005] [Indexed: 11/07/2022]
Abstract
The receptive field (RF) of most retinal ganglion cells (RGCs) is comprised of an excitatory center and an antagonistic surround. Interactions between these RF elements shape most of the visual responses of RGCs. To begin to investigate center-surround interactions of mouse RGCs quantitatively, we characterized their responses in anin vivopreparation to a variety of spot and full-field stimuli. When RGCs were stimulated with a spot that matched the cell's RF center diameter (optimal spot), all RGCs could be categorized as either ON- or OFF-center. In all RGCs, full-field stimulation significantly reduced both the peak and the mean firing rates evoked with an optimal spot stimulus. Full-field stimulation revealed differences in other response properties between ON- and OFF-center RGCs. With a full-field stimulus, the duration of the OFF-center RGCs response was reduced making them more transient, while the duration of the ON-center RGCs increased making them more sustained. Of most interest, full-field stimulation altered the RF center response sign in approximately half of the OFF-center RGCs, which became either OFF/ON or ON only. In contrast, all ON-center and the other OFF-center cells conserved their RF response sign in the presence of the full-field stimulus. We propose that sign-altering OFF-center RGCs possess an additional RF surround mechanism that underlies this alteration in their response. Of general interest these results suggest that the sole use of full-field stimulation to categorize visual response properties of RGCs does not adequately reflect their RF organization and, therefore, is not an optimal strategy for their classification.
Collapse
Affiliation(s)
- Botir T Sagdullaev
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY 40292, USA
| | | |
Collapse
|
17
|
Wilms M, Eckhorn R. Spatiotemporal receptive field properties of epiretinally recorded spikes and local electroretinograms in cats. BMC Neurosci 2005; 6:50. [PMID: 16102171 PMCID: PMC1192803 DOI: 10.1186/1471-2202-6-50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 08/15/2005] [Indexed: 12/02/2022] Open
Abstract
Background Receptive fields of retinal neural signals of different origin can be determined from extracellular microelectrode recordings at the inner retinal surface. However, locations and types of neural processes generating the different signal components are difficult to separate and identify. We here report epiretinal receptive fields (RFs) from simultaneously recorded spikes and local electroretinograms (LERGs) using a semi-chronic multi-electrode in vivo recording technique in cats. Broadband recordings were filtered to yield LERG and multi unit as well as single unit spike signals. RFs were calculated from responses to multifocal pseudo-random spatiotemporal visual stimuli registered at the retinal surface by a 7-electrode array. Results LERGs exhibit spatially unimodal RFs always centered at the location of the electrode tip. Spike-RFs are either congruent with LERG-RFs (N = 26/61) or shifted distally (N = 35/61) but never proximally with respect to the optic disk. LERG-RFs appear at shorter latencies (11.9 ms ± 0.5 ms, N = 18) than those of spikes (18.6 ms ± 0.4 ms, N = 53). Furthermore, OFF-center spike-RFs precede and have shorter response rise times than ON-center spike-RFs. Our results indicate that displaced spike-RFs result from action potentials of ganglion cell axons passing the recording electrode en route to the optic disk while LERG-RFs are related to superimposed postsynaptic potentials of cells near the electrode tip. Conclusion Besides contributing to the understanding of retinal function we demonstrate the caveats that come with recordings from the retinal surface, i.e., the likelihood of recordings from mixed sets of retinal neurons. Implications for the design of an epiretinal visual implant are discussed.
Collapse
Affiliation(s)
- Marcus Wilms
- Institute of Neurophysics, Philipps-University Marburg, Renthof 7, 35032 Marburg, Germany
- Institute of Medicine, Research Centre Jülich, 52425 Jülich, Germany
| | - Reinhard Eckhorn
- Institute of Neurophysics, Philipps-University Marburg, Renthof 7, 35032 Marburg, Germany
| |
Collapse
|
18
|
Hammoudi DS, Lee SSF, Madison A, Mirabella G, Buncic JR, Logan WJ, Snead OC, Westall CA. Reduced visual function associated with infantile spasms in children on vigabatrin therapy. Invest Ophthalmol Vis Sci 2005; 46:514-20. [PMID: 15671276 PMCID: PMC3880353 DOI: 10.1167/iovs.04-0559] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To use visual evoked potential (VEP) testing to determine whether visual deficits are present in children with a history of vigabatrin use. METHODS Contrast sensitivity and visual acuity were assessed by visual evoked potential testing and compared between 28 children (mean age, 4.90 +/- 4.92 years) with seizure disorders who had taken vigabatrin and 14 typically developing children (mean age, 3.14 +/- 1.70 years). Exclusion criteria were heritable eye disease, suspected cortical visual impairment, nystagmus, and prematurity >2 weeks. The effects of the following factors on contrast sensitivity and visual acuity were examined: type of seizure (infantile spasms versus other), ERG result, duration of vigabatrin therapy, cumulative dosage of vigabatrin, and other seizure medications (other versus no other medication). RESULTS Contrast sensitivity and visual acuity were reduced in vigabatrin-treated children with infantile spasms compared with vigabatrin-treated children with other seizure disorders and typically developing control subjects. The other factors examined had no significant effect on contrast sensitivity or visual acuity, with adjustment for seizure type. CONCLUSIONS Children with infantile spasms on vigabatrin may have compromised visual function, even in the absence of suspected cortical visual impairment. The children tested in the present study have reduced vision, probably associated with infantile spasms rather than vigabatrin.
Collapse
Affiliation(s)
- Dena S. Hammoudi
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Sophia S. F. Lee
- Department of Public Health Sciences, University of Toronto, Toronto, Canada
| | - Adena Madison
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Giuseppe Mirabella
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Brain and Behavior Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - J. Raymond Buncic
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
- Brain and Behavior Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - William J. Logan
- Brain and Behavior Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
- Division of Neurology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - O. Carter Snead
- Brain and Behavior Program, The Hospital for Sick Children Research Institute, Toronto, Canada
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
- Division of Neurology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Carol A. Westall
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
- Brain and Behavior Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| |
Collapse
|
19
|
Ringach DL. Haphazard Wiring of Simple Receptive Fields and Orientation Columns in Visual Cortex. J Neurophysiol 2004; 92:468-76. [PMID: 14999045 DOI: 10.1152/jn.01202.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The receptive fields of simple cells in visual cortex are composed of elongated on and off subregions. This spatial arrangement is widely thought to be responsible for the generation of orientation selectivity. Neurons with similar orientation preferences cluster in “columns” that tile the cortical surface and form a map of orientation selectivity. It has been proposed that simple cell receptive fields are constructed by the selective pooling of geniculate receptive fields aligned in space. A recent analysis of monosynaptic connections between geniculate and cortical neurons appears to reveal the existence of “wiring rules” that are in accordance with the classical model. The precise origin of the orientation map is unknown, but both genetic and activity-dependent processes are thought to contribute. Here, we put forward the hypothesis that statistical sampling from the retinal ganglion cell mosaic may contribute to the generation of simple cells and provide a blueprint for orientation columns. Results from computer simulations show that the “haphazard wiring” model is consistent with data on the probability of monosynaptic connections and generates orientation columns and maps resembling those found in the cortex. The haphazard wiring hypothesis could be tested by measuring the correlation between the orientation map and the structure of the retinal ganglion cell mosaic of the contralateral eye.
Collapse
Affiliation(s)
- Dario L Ringach
- Department of Psychology, Jules Stein Eye Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1563, USA.
| |
Collapse
|
20
|
Kilavik BE, Silveira LCL, Kremers J. Centre and surround responses of marmoset lateral geniculate neurones at different temporal frequencies. J Physiol 2003; 546:903-19. [PMID: 12563014 PMCID: PMC2342578 DOI: 10.1113/jphysiol.2002.027748] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The responses of marmoset lateral geniculate neurones to stimuli that were composed of a sinusoidally modulating centre stimulus and a surround that was modulated in counterphase were measured. The size of the stimulus centre was varied. These measurements were repeated at different temporal frequencies between 1 and 30 Hz. The response amplitudes and phases depended in a characteristic manner on the stimulus centre size. The response behaviour could be modelled by assuming Gaussian responsivity profiles of the cells' receptive field (RF) centres and surrounds and a phase delay in the RF surround responses, relative to the centre, enabling the description of RF centre and surround response characteristics. We found that the RF centre-to-surround phase difference increased linearly with increasing temporal frequency, indicating a constant delay difference of about 4.5 to 6 ms. A linear model, including low-pass filters, a lead lag stage and a delay, was used to describe the mean RF centre and surround responses. The separate RF centre and surround responses were less band pass than the full receptive field responses of the cells. The linear model provided less satisfactory fits to M-cell responses than to those of P-cells, indicating additional nonlinearities.
Collapse
Affiliation(s)
- Bjørg Elisabeth Kilavik
- Department of Experimental Ophthalmology, University of Tübingen Eye Hospital, Röntgenweg 11, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
21
|
Troy JB, Shou T. The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research. Prog Retin Eye Res 2002; 21:263-302. [PMID: 12052385 DOI: 10.1016/s1350-9462(02)00002-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies on the receptive field properties of cat retinal ganglion cells over the past half-century are reviewed within the context of the role played by the receptive field in visual information processing. Emphasis is placed on the work conducted within the past 20 years, but a summary of key contributions from the 1950s to 1970s is provided. We have sought to review aspects of the ganglion cell receptive field that have not been featured prominently in previous review articles. Our review of the receptive field properties of X- and Y-cells focuses on quantitative studies and includes consideration of the function of the receptive field in visual signal processing. We discuss the non-classical as well as the classical receptive field. Attention is also given to the receptive field properties of the less well-studied cat ganglion cells-the W-cells-and the effect of pathology on cat ganglion cell properties. Although work from our laboratories is highlighted, we hope that we have given a reasonably balanced view of the current state of the field.
Collapse
Affiliation(s)
- J B Troy
- Department of Biomedical Engineering & Neuroscience Institute, Northwestern University, Evanston, IL, USA
| | | |
Collapse
|
22
|
Abstract
Functional asymmetries in the ON and OFF pathways of the primate visual system were examined using simultaneous multi-electrode recordings from dozens of retinal ganglion cells (RGCs) in vitro. Light responses of RGCs were characterized using white noise stimulation. Two distinct functional types of cells frequently encountered, one ON and one OFF, had non-opponent spectral sensitivity, relatively high response gain, transient light responses, and large receptive fields (RFs) that tiled the region of retina recorded, suggesting that they belonged to the same morphological cell class, most likely parasol. Three principal functional asymmetries were observed. (1) Receptive fields of ON cells were 20% larger in diameter than those of OFF cells, resulting in higher full-field sensitivity. (2) ON cells had faster response kinetics than OFF cells, with a 10-20% shorter time to peak, trough and zero crossing in the biphasic temporal impulse response. (3) ON cells had more nearly linear light responses and were capable of signaling decrements, whereas OFF cells had more strongly rectifying responses that provided little information about increments. These findings suggest specific mechanistic asymmetries in retinal ON and OFF circuits and differences in visual performance on the basis of the activity of ON and OFF parasol cells.
Collapse
|
23
|
Abstract
The two-dimensional shape of the receptive field center of macaque retinal ganglion cells was determined by measuring responses to drifting sinusoidal gratings of different spatial frequency and orientation. The responses of most cells to high spatial frequencies depended on grating orientation, indicating that their centers were not circularly symmetric. In general, center shape was well described by an ellipse. The major axis of the ellipse tended to point towards the fovea or perpendicular to this. Parvocellular pathway cells had greater center ellipticity than magnocellular pathway cells; the median ratio of the major-to-minor axis was 1.72 and 1.38, respectively. Parvocellular pathway cells also had centers that were often bimodal in shape, suggesting that they received patchy cone/bipolar cell input. We conclude that most ganglion cells in primate retina have elongated receptive field centers and thus show orientation sensitivity.
Collapse
Affiliation(s)
- Christopher L Passaglia
- Department of Biomedical Engineering and Neuroscience Institute, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | |
Collapse
|
24
|
Logi F, Pellegrinetti A, Bonfiglio L, Baglini O, Siciliano G, Ludice A, Sartucci F. Effects of grating spatial orientation on visual evoked potentials and contrast sensitivity in multiple sclerosis. Acta Neurol Scand 2001; 103:97-104. [PMID: 11227139 DOI: 10.1034/j.1600-0404.2001.103002097.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies suggest a delay of pattern visual evoked potentials (PVEPs) in multiple sclerosis (MS) depending on grating orientation. We examined a group of 14 patients with definite MS recording PVEPs to vertical and horizontal grating and analysing latency and amplitude of P60, N70 and P100 waves. We evaluated contrast sensitivity (CS) to dark and bright bars of several spatial frequencies (SF). The aim was to evaluate the diagnostic value of evoked responses and CS in revealing involvement of cortical structures. PVEPs to 1 degrees cycle/degree (c/d) vertical bars were abnormal in 25% for P60, in 32% for N70 and in 36%, for P100; in 25%, 36% and 42% respectively at 4 c/d; as regards horizontal bars at 1 c/d we found alterations of P60, N70 and P100 in 11%, 19% and 27% respectively; at 4 c/d in 19%, 27%) and 35%. CS resulted more abnormal for vertical grating, with a maximum impairment for 3.7 c/d SF. We may conclude that the use of vertical grating in clinical routine is more reliable both for PVEPs and CS testing; in addition CS can be abnormal even with normal PVEPs: this could mean an early impairment of CS and provide useful indications about a subclinical involvement of visual cortex.
Collapse
Affiliation(s)
- F Logi
- Department of Neurosciences, Institute of Neurology, University of Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Tavazoie SF, Reid RC. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nat Neurosci 2000; 3:608-16. [PMID: 10816318 DOI: 10.1038/75786] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Most models of thalamocortical development in the visual system assume a homogeneous population of thalamic inputs to the cortex, each with concentric on- or off-center receptive fields. To test this, we made high-resolution spatial maps of receptive fields in the developing ferret lateral geniculate nucleus (LGN). Developing receptive fields (RFs), had a variety of shapes: some concentric, others elongated (like adult cortical receptive fields) and some with 'hot spots' of sensitivity. These receptive fields seemed to arise from convergence of multiple retinal afferents onto LGN neurons. We present a Hebbian model whereby imprecise retinogeniculate connections help refine geniculocortical connections, sharpening both thalamocortical topography and perhaps orientation selectivity.
Collapse
Affiliation(s)
- S F Tavazoie
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
26
|
Kremers J, Weiss S. Receptive field dimensions of lateral geniculate cells in the common marmoset (Callithrix jacchus). Vision Res 1997; 37:2171-81. [PMID: 9578900 DOI: 10.1016/s0042-6989(97)00041-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We measured the spatial receptive field dimensions of cells in the lateral geniculate nucleus (LGN) of the common marmoset (Callithrix jacchus) using a bipartite field stimulus in which the two halves of the field were modulated identically but in counterphase. Horizontal and vertical edges between the two fields were positioned at different locations in the receptive field. By assuming that centers and surrounds have gaussian profiles, we were able to obtain a satisfactory mathematical description of the data. Receptive field centers were about a factor 1.6 larger than those of macaque LGN cells, in accordance with the smaller marmoset eye. There was a limited correspondence with dendritic tree dimensions of marmoset retinal ganglion cells. We further found that center and surround gaussians were not always concentric, and that the centers of some cells were elongated. This might allow some direction or orientation biases in LGN cells.
Collapse
Affiliation(s)
- J Kremers
- Department of Experimental Ophthalmology, University of Tübingen Eye Hospital, Germany.
| | | |
Collapse
|
27
|
Arutyunyan-Kozak BA, �kimyan AA, Kazaryan AL, Dec K, Grigoryan GG, Kozak AY. ?Regular? visual receptive fields of neurons of the cat lateral geniculate body. NEUROPHYSIOLOGY+ 1997. [DOI: 10.1007/bf01081912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Arutyunyan-Kozak BA, Ékimyan AA, Kazaryan AL, Dec K, Kozak A, Grigoryan GG. “Irregular” visual receptive fields of neurons of the cat lateral geniculate body. NEUROPHYSIOLOGY+ 1996. [DOI: 10.1007/bf02252557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Levick W. Receptive fields of cat retinal ganglion cells with special reference to the Alpha cells. Prog Retin Eye Res 1996. [DOI: 10.1016/1350-9462(96)00011-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Funke K, Wörgötter F. Temporal structure in the light response of relay cells in the dorsal lateral geniculate nucleus of the cat. J Physiol 1995; 485 ( Pt 3):715-37. [PMID: 7562612 PMCID: PMC1158039 DOI: 10.1113/jphysiol.1995.sp020764] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The spike interval pattern during the light responses of 155 on- and 81 off-centre cells of the dorsal lateral geniculate nucleus (LGN) was studied in anaesthetized and paralysed cats by the use of a novel analysis. Temporally localized interval distributions were computed from a 100 ms time window, which was shifted along the time axis in 10 ms steps, resulting in a 90% overlap between two adjacent windows. For each step the interval distribution was computed inside the time window with 1 ms resolution, and plotted as a greyscale-coded pixel line orthogonal to the time axis. For visual stimulation, light or dark spots of different size and contrast were presented with different background illumination levels. 2. Two characteristic interval patterns were observed during the sustained response component of the cells. Mainly on-cells (77%) responded with multimodal interval distributions, resulting in elongated 'bands' in the 2-dimensional time window plots. In similar situations, the interval distributions for most (71%) off-cells were rather wide and featureless. In those cases where interval bands (i.e. multimodal interval distributions) were observed for off-cells (14%), they were always much wider than for the on-cells. This difference between the on- and off-cell population was independent of the background illumination and the contrast of the stimulus. Y on-cells also tended to produce wider interval bands than X on-cells. 3. For most stimulation situations the first interval band was centred around 6-9 ms, which has been called the fundamental interval; higher order bands are multiples thereof. The fundamental interval shifted towards larger sizes with decreasing stimulus contrast. Increasing stimulus size, on the other hand, resulted in a redistribution of the intervals into higher order bands, while at the same time the location of the fundamental interval remained largely unaffected. This was interpreted as an effect of the increasing surround inhibition at the geniculate level, by which individual retinal EPSPs were cancelled. A changing level of adaptation can result in a mixed shift/redistribution effect because of the changing stimulus contrast and changing level of tonic inhibition. 4. The occurrence of interval bands is not directly related to the shape of the autocorrelation function, which can be flat, weakly oscillatory or strongly oscillatory, regardless of the interval band pattern. 5. A simple computer model was devised to account for the observed cell behaviour. The model is highly robust against parameter variations.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K Funke
- Department of Neurophysiology, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
31
|
Troy JB, Schweitzer-Tong DE, Enroth-Cugell C. Receptive-field properties of Q retinal ganglion cells of the cat. Vis Neurosci 1995; 12:285-300. [PMID: 7786850 DOI: 10.1017/s0952523800007975] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The goal of this work was to provide a detailed quantitative description of the receptive-field properties of one of the types of rarely encountered retinal ganglion cells of cat; the cell named the Q-cell by Enroth-Cugell et al. (1983). Quantitative comparisons are made between the discharge statistics and between the spatial receptive properties of Q-cells and the most common of cat retinal ganglion cells, the X-cells. The center-surround receptive field of the Q-cell is modeled here quantitatively and the typical Q-cell is described. The temporal properties of the Q-cell receptive field were also investigated and the dynamics of the center mechanism of the Q-cell modeled quantitatively. In addition, the response vs. contrast relationship for a Q-cell at optimal spatial and temporal frequencies is shown, and Q-cells are also demonstrated to have nonlinear spatial summation somewhat like that exhibited by Y-cells, although much higher contrasts are required to reveal this nonlinear behavior. Finally, the relationship between Q-cells and Barlow and Levick's (1969) luminance units was investigated and it was found that most Q-cells could not be luminance units.
Collapse
Affiliation(s)
- J B Troy
- Biomedical Engineering Department, Robert R. McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, USA
| | | | | |
Collapse
|
32
|
Thompson KG, Zhou Y, Leventhal AG. Direction-sensitive X and Y cells within the A laminae of the cat's LGNd. Vis Neurosci 1994; 11:927-38. [PMID: 7947406 DOI: 10.1017/s0952523800003886] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Drifting sinusoidal gratings, moving bars, and moving spots were employed to study the direction sensitivity of 425 neurons in the A laminae of the cat's LGNd. Thirty-two percent of X- and Y-type LGNd relay cells exhibit significant direction sensitivity when tested with drifting sinusoidal gratings. X and Y cells exhibit the same degree of direction sensitivity. Moving spots and bars elicit direction specific responses from LGNd cells that are consistent with those elicited when drifting sinusoidal gratings are employed. For cells that are both orientation and direction sensitive, the preferred direction tends to be orthogonal to the preferred orientation. In general, direction sensitivity is strongest at relatively low spatial frequencies, well below the spatial-frequency cutoff for the cell. The presence of significant numbers of direction-sensitive LGNd cells raises the possibility that subcortical direction specificity is important for the generation of this property in the visual cortex.
Collapse
Affiliation(s)
- K G Thompson
- Department of Anatomy, University of Utah, School of Medicine, Salt Lake City 84132
| | | | | |
Collapse
|
33
|
Blin O, Mestre D, Paut O, Vercher JL, Audebert C. GABA-ergic control of visual perception in healthy volunteers: effects of midazolam, a benzodiazepine, on spatio-temporal contrast sensitivity. Br J Clin Pharmacol 1993; 36:117-24. [PMID: 8398579 PMCID: PMC1364574 DOI: 10.1111/j.1365-2125.1993.tb04206.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
1. We studied the effects of midazolam (MDZ), a benzodiazepine, on spatio-temporal contrast sensitivity, choice reaction time, and mood visual analogue scales in healthy volunteers. 2. Eight extensively trained, healthy volunteers were included in a placebo-controlled cross-over double-blind trial of MDZ (0.15 mg kg-1). Treatments were injected intramuscularly and evaluations were performed before and 0.5, 1, 2, 3 and 4 h after drug administration. Spatio-temporal contrast sensitivity was measured using a micro-computer with appropriate software. Stimuli were vertical gratings with adjustable contrast, with spatial frequencies of 0.25, 1 and 4 cpd. Four conditions of temporal modulation were used: the grating was either static or drifting laterally with temporal frequencies of 1, 3 and 9 Hz. 3. An analysis of variance was performed on the data. As compared with placebo, MDZ induced an increase in choice reaction time and sedation (as assessed on visual analogue scales). From 0.5-4 h after the injection, MDZ produced an overall decrease in visual sensitivity, as compared with placebo. More specifically, MDZ preferentially affected medium to high spatial frequencies and low temporal frequencies. Several non-exclusive hypotheses may account for the results: 1) an increase in the size of the receptive fields, 2) a preferential effect on the visual parvocellular pathways which mediate the sensitivity to high spatial and low temporal frequencies.
Collapse
Affiliation(s)
- O Blin
- Pharmacologie Médicale et Clinique and CPCET, CHU Timone, Marseille, France
| | | | | | | | | |
Collapse
|
34
|
Sillito AM, Cudeiro J, Murphy PC. Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res 1993; 93:6-16. [PMID: 8467892 DOI: 10.1007/bf00227775] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In a previous study, we have shown that the corticofugal projection to the dLGN enhances inhibitory mechanisms underlying length tuning. This suggests that the inhibitory influences deriving from the corticofugal feedback should exhibit characteristics that reflect the response properties of orientation-tuned layer VI cells. Here we report data obtained from experiments using a bipartite visual stimulus, with an inner section over the dLGN cell receptive field centre and an outer section extending beyond it. For both X and Y cells there was a modulation of the strength of the surround antagonism of centre responses that was dependent on the orientation alignment of contours in the two components of the stimulus. Layer VI cells showed maximal responses when the two components were aligned to the same orientation; dLGN cells showed a minimal response. Varying the orientation alignment of the inner and outer components of the stimulus in a randomised, interleaved fashion showed that bringing the stimulus into alignment resulted in a 24.28% increase in the surround antagonism of the centre response. Blocking cortical activity showed this effect of alignment to be strongly dependent on corticofugal feedback. This effect of orientation alignment appears to apply for any absolute orientation of the alignment condition and supports the view that an entire subset of cortical orientation columns generate the feedback influencing any given dLGN cell. This mechanism makes dLGN cells sensitive to the orientation domain discontinuities in elongated contours moving across their receptive field.
Collapse
Affiliation(s)
- A M Sillito
- Department of Visual Science, Institute of Ophthalmology, London, UK
| | | | | |
Collapse
|
35
|
Sillito AM. GABA mediated inhibitory processes in the function of the geniculo-striate system. PROGRESS IN BRAIN RESEARCH 1992; 90:349-84. [PMID: 1631305 DOI: 10.1016/s0079-6123(08)63622-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A M Sillito
- Department of Visual Science, Institute of Ophthalmology, London, England, UK
| |
Collapse
|
36
|
Soodak RE, Shapley RM, Kaplan E. Fine structure of receptive-field centers of X and Y cells of the cat. Vis Neurosci 1991; 6:621-8. [PMID: 1883766 DOI: 10.1017/s0952523800002613] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigated the fine structure of receptive field centers of X and Y cells of the retina and lateral geniculate nucleus of the cat using sinusoidal grating stimuli of high spatial frequency. By measuring orientation tuning and spatial-frequency tuning at multiple orientations, the two-dimensional sensitivity distribution was examined. We found that receptive-field centers typically have multiple sensitivity peaks that can be modeled as several spatially offset subunits. A subunit structure was found in both X and Y cells, with an average number of subunits per receptive-field center of approximately 2.9 in X cells and approximately 4.6 in Y cells. In X cells these subunits may correspond to individual cone bipolar inputs. In Y cells, the subunits may reflect the structure of the dendritic tree. The observation of the subunit structure of the receptive-field center, in conjunction with manipulation of the retinal wiring through pharmacological intervention, may provide a new tool for probing the circuitry of the retina.
Collapse
Affiliation(s)
- R E Soodak
- Rockefeller University, New York, NY 10021
| | | | | |
Collapse
|
37
|
Ahmed B, Hammond P. Orientation bias of cat dorsal lateral geniculate cells: directional analysis of the major axis of the receptive field centre. Exp Brain Res 1991; 84:676-9. [PMID: 1864339 DOI: 10.1007/bf00230982] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The receptive field centre of cells in the dorsal lateral geniculate nucleus were mapped as iso-sensitivity contours. 94% of the cells were found to have elliptical centres, and analysis of the major axis orientation showed that 29% and 59% of units had their major axis oriented within +/- 20 degrees of the radial and horizontal directions, respectively. The data for Y-cells showed a greater dispersion in their orientation biases (R = 0.57) compared with X-cells (R = 0.79). Nevertheless, a horizontal orientation bias was found in both classes of cells: 47% of Y-cells and 73% of X-cells. In addition, an examination of the major axis orientations was undertaken for cells with receptive field centres located along the radial direction of 35 degrees below the horizontal meridian. In this 35 degree Radial Group a horizontal bias was also confirmed. Analysis of the dispersion of major axis orientations with eccentricity from the area centralis showed a statistically significant decrease in scatter and, hence, indicated an increase in the horizontal bias with eccentricity.
Collapse
Affiliation(s)
- B Ahmed
- Department of Communication and Neuroscience, University of Keele, Staffordshire, U.K
| | | |
Collapse
|
38
|
Bauer R, Leferink J, Eckhorn R, Jordan W. Complementary global maps for orientation coding in upper and lower layers of the cat striate cortex and their possible functions. J Comp Neurol 1991; 305:282-8. [PMID: 2026789 DOI: 10.1002/cne.903050209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Preferred stimulus orientations of striate cortical cells in the cat were analyzed for possible isotropic or anisotropic distributions. We separated the data twice, into central (0-5 degrees) vs. peripheral subgroups and into upper vs. lower layer cells. In the central group, absolute orientations were counted; in the periphery, a radial test was adopted by normalizing the preferred stimulus orientation of a cell to the line connecting the receptive field center to the retinal center. We found that in the center, vertical and horizontal orientations are overrepresented. In the periphery, the histograms show complementary anisotropies for upper and lower layers, favoring a map for radial orientation detection in upper layers and a more concentric map for orientation detection in lower layers. These results are possibly related to the probabilities of different optic flow fields on the retina under natural conditions of stimulation. They are discussed as possible neuronal structures supporting figure-ground discrimination, the distinction of self motion from object motion, and the location of objects in three-dimensional space.
Collapse
Affiliation(s)
- R Bauer
- Department of Applied Physics and Biophysics, Philipps-University, Marburg, Germany
| | | | | | | |
Collapse
|
39
|
Vidyasagar TR, Henry GH. Relationship between preferred orientation and ordinal position in neurones of cat striate cortex. Vis Neurosci 1990; 5:565-9. [PMID: 2085472 DOI: 10.1017/s0952523800000729] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Striate cortical cells were classified according to whether or not their preferred orientation was close to one of the "primary" orientations (horizontal, vertical or radial, i.e. directed to the area centralis) and according to their ordinal position on the afferent pathway from the dorsal lateral geniculate nucleus (dLGN). Among the neurones that could be driven monosynaptically from the dLGN, there was a high representation of those with a preference for the primary orientations. This was particularly evident in the case of C (complex) cells. There was no such preponderance of primary orientations among the polysynaptically activated cells. It is proposed that the asymmetry of distribution seen among the first-order cells reflects the asymmetry seen subcortically in neurones that show orientation biases. It may be that the cortex elaborates a more uniform representation of orientations only at the higher ordinal levels.
Collapse
Affiliation(s)
- T R Vidyasagar
- John Curtin School of Medical Research, Australian National University, Canberra
| | | |
Collapse
|
40
|
Smith EL, Chino YM, Ridder WH, Kitagawa K, Langston A. Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys. Vis Neurosci 1990; 5:525-45. [PMID: 2085469 DOI: 10.1017/s0952523800000699] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The purpose of this investigation was to analyze the influence of stimulus orientation on the responses of individual neurons in the monkey's lateral geniculate nucleus (LGN). Our specific goals were to assess the prevalence and the degree of orientation tuning in the monkey LGN and to determine if the preferred stimulus orientations of LGN neurons varied as a function of receptive-field position. The primary motivation for this research was to gain insight into the receptive-field configuration of LGN neurons and consequently into the neural mechanisms which determine the spatial organization of LGN receptive fields in primates. In both the parvocellular and magnocellular layers, the responses of the majority of individual neurons to sine-wave gratings varied as a function of stimulus orientation. The influence of stimulus orientation was, however, highly dependent on the spatial characteristics of the stimulus; the greatest degree of orientation bias was observed for spatial frequencies higher than the cell's optimal spatial frequency. On a population basis, the degree of orientation bias was similar for all major classes of LGN neurons (e.g. ON vs. OFF center; parvocellular vs. magnocellular) and did not vary systematically with receptive-field eccentricity. At a given receptive-field location, LGN neurons, particularly cells in the parvocellular laminae, tended to prefer either radially oriented stimuli or stimuli oriented more horizontally than their polar axis. Our analyses of the orientation-dependent changes in spatial-frequency response functions, which was based on the Soodak et al., (1987; Soodak, 1986) two-dimensional, difference-of-Gaussian receptive-field model, suggested that the orientation bias in LGN neurons was due to an elongation of the receptive-field center mechanism which in some cases appeared to consist of multiple subunits. Direct comparisons of the orientation-tuning characteristics of LGN cells and their retinal inputs (S potentials) indicated that the orientation bias in the monkey LGN reflects primarily the functional properties of individual retinal ganglion cells. We conclude that orientation sensitivity is a significant property of subcortical neurons in the primate's geniculo-cortical pathway.
Collapse
Affiliation(s)
- E L Smith
- College of Optometry, University of Houston, TX 77204-6052
| | | | | | | | | |
Collapse
|
41
|
Abstract
We studied the separability and/or interaction of the On and Off pathways in their role as inputs to visual motion perception. Using the long-range motion perception system, we asked if the motion system can use brightness polarity information, by testing whether correspondence is preferred between elements for which brightness polarity is preserved. We found such a preference, suggesting that brightness polarity information is indeed available to the motion system. However, under certain conditions motion is perceived even though the brightness polarity of apparent motion stimulus elements is reversed, indicating that the apparent motion system does integrate information from these two pathways. The source of the preference for maintaining polarity seems not to be the different brightnesses of the dark and bright stimulus elements, but the very fact that information must be integrated from different pathways. We relate the characteristics of the dependence of the motion perception on element contrast and contrast sign to those of previously reported visual evoked potential responses to brightness increments and decrements.
Collapse
Affiliation(s)
- S Shechter
- Department of Neurobiology, Hebrew University, Jerusalem, Israel
| | | |
Collapse
|
42
|
Abstract
For cat retinal ganglion cells whose receptive field centres were distributed in specified sections of the left visual field, the deviations of the major axis from the radial, horizontal, and circumferential directions were determined. The percentage of cells with deviations within +/- 20 degrees from the radial, horizontal, and circumferential directions were, respectively, 33%, 68%, 16%. In addition, comparison between values of deviation from the horizontal direction for cells located at eccentricities of 10 degrees and 20 degrees from the area centralis showed a statistically significant trend; the bias for the horizontal increased with eccentricity.
Collapse
Affiliation(s)
- B Ahmed
- Department of Communication and Neuroscience, University of Keele, Staffordshire, UK
| |
Collapse
|
43
|
Bauer R, Hoffmann KP, Huber HP, Mayr M. Different anisotropies of movement direction in upper and lower layers of the cat's area 18 and their implications for global optic flow processing. Exp Brain Res 1989; 74:395-401. [PMID: 2924859 DOI: 10.1007/bf00248873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cells in Area 18 of awake and behaving cats were tested for directional preference with a large visual noise pattern. Upper and lower layer cells were found to exhibit different anisotropies for movement direction, offset by 90 degrees. These findings could reflect different functions for the global mapping and processing of optic flow field in upper and lower layers.
Collapse
Affiliation(s)
- R Bauer
- AG Biophysik, Philipps-Universität Marburg, Federal Republic of Germany
| | | | | | | |
Collapse
|
44
|
Abstract
Orientation and direction tuning were examined in goldfish ganglion cells by drifting sinusoidal gratings across the receptive field of the cell. Each ganglion cell was first classified as X-, Y-, or W-like based on its responses to a contrast-reversal grating positioned at various spatial phases of the cell's receptive field. Sinusoidal gratings were drifted at different orientations and directions across the receptive field of the cell; spatial frequency and contrast of the grating were also varied. It was found that some X-like cells responded similarly to all orientations and directions, indicating that these cells had circular and symmetrical fields. Other X-like cells showed a preference for certain orientations at high spatial frequencies suggesting that these cells possess an elliptical center mechanism (since only the center mechanism is sensitive to high spatial frequencies). In virtually all cases, X-like cells were not directionally tuned. All but one Y-like cell displayed orientation tuning but, as with X-like cells, orientation tuning appeared only at high spatial frequencies. A substantial portion of these Y-like cells also showed a direction preference. This preference was dependent on spatial frequency but in a manner different from orientation tuning, suggesting that these two phenomena result from different mechanisms. All W-like cells possessed orientation and direction tuning, both of which depended on the spatial frequency of the stimulus. These results support past work which suggests that the center and surround components of retinal ganglion cell receptive fields are not necessarily circular or concentric, and that they may actually consist of smaller subareas.
Collapse
Affiliation(s)
- J Bilotta
- Department of Psychology, Brooklyn College of CUNY
| | | |
Collapse
|
45
|
Hammond P, Mouat GS. Neural correlates of motion after-effects in cat striate cortical neurones: interocular transfer. Exp Brain Res 1988; 72:21-8. [PMID: 3169191 DOI: 10.1007/bf00248496] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Interocular transfer of motion after-effects was assessed in the lightly-anaesthetized feline striate cortex. Neurones were adapted with square-wave gratings of optimal orientation and spatial frequency, or with randomly textured fields, drifting continuously at optimal velocity in their preferred or null directions. Neural after-effects were assessed as consequent changes in directional bias, using similar test patterns swept back-and-forth in the same directions and presented to the same or opposite eyes. All results were compared with controls, embodying similar tests following a period of exposure to a uniform background or stationary textured field. The majority of binocularly-driven complex and simple cells tested evinced positive interocular transfer of after-effects. After-effects, whether elicited monocularly or interocularly, were direction-specific. With gratings, after-effects elicited interocularly were always weaker than those obtained monocularly. After-effects evoked monocularly by texture adaptation were weak in comparison to those evoked by gratings; interocular transfer in this case was negligible. In neurones strongly dominated by one eye, adaptation of the non-driving eye yielded, at best, extremely weak after-effects through the other eye. In purely monocular neurones, no transfer could be induced. These results confirm the expectation that motion after-effects arise cortically rather than precortically. The partial interocular transfer seen in binocularly-driven cortical cells suggests that these neurones represent a second-stage processing of inputs from lower-order complex (or simple) cells, themselves driven monocularly or strongly dominated by one eye.
Collapse
Affiliation(s)
- P Hammond
- Department of Communication and Neuroscience, University of Keele, Staffordshire, U.K
| | | |
Collapse
|
46
|
Abstract
A light square against a dark background besides an equisized dark square against a light background shows a difference in apparent size such that the light square seems larger than the dark one. This illusion was studied for squares of 109 x 109 min arc. Their centres were located 90 min arc out of the centre of the fovea. The apparent size appeared to be dependent on the contrast between the square and the background and not on the mean luminance in the vicinity of the contour. The addition of a small white or dark line to the luminance step that constituted the border of the square changed the illusion dramatically. It is argued that this explains the observations where an inversion of the illusion for very small contrast values was found. The results are explained on the basis of a model with receptive fields of different sizes overlapping the same retinal location and having different sensitivities.
Collapse
Affiliation(s)
- L J van Erning
- Laboratory for Medical Physics and Biophysics, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
47
|
Ferster D, Koch C. Neuronal connections underlying orientation selectivity in cat visual cortex. Trends Neurosci 1987. [DOI: 10.1016/0166-2236(87)90126-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Abstract
In the rabbit retina a distinctive morphological class of large ganglion cells was demonstrated by a combination of intracellular staining with Lucifer Yellow and the quantification of reduced silver-stained preparations. The class is called alpha because of the qualitative and quantitative resemblance to the alpha cells of the cat's retina. Rabbit alpha cells change their size with location on the retina. In the high ganglion cell density region of the visual streak, their somata are about 15 micron in diameter, and their dendritic fields have diameters as small as 180-220 micron. The largest alpha cells in the inferior periphery have soma diameters of 30 micron and dendritic field diameters of 960 micron. There is a considerable scatter of sizes at any retinal location. Alpha cell density changes from about 55/mm2 in the streak to about 3/mm2 in far periphery, and the cells make up 1-1.4% of the ganglion cell population. Dendritic trees stratify in either an inner or an outer sublamina of the inner plexiform layer, suggesting an on/off dichotomy in the response to light. Each of the inner and outer branching subtypes is distributed in a regular mosaic, and the dendritic trees cover the retina completely and economically. The possibility is discussed that the alpha cells are the brisk transient/Y cells of physiology.
Collapse
Affiliation(s)
- L Peichl
- Max-Planck-Institut für Hirnforschung, Neuroanatomische Abteilung, Frankfurt, Federal Republic of Germany
| | | | | |
Collapse
|
49
|
Soodak RE. The retinal ganglion cell mosaic defines orientation columns in striate cortex. Proc Natl Acad Sci U S A 1987; 84:3936-40. [PMID: 3108884 PMCID: PMC304991 DOI: 10.1073/pnas.84.11.3936] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A computer simulation was used to demonstrate that the tangential organization of orientation columns is a natural consequence of the orderly projection of the mosaic of retinal ganglion cells onto the visual cortex. Parameters of the simulation were taken from published anatomical and electrophysiological data, and the resulting columnar organization of the simulated visual cortex shows many similarities with observations from animals. The model is able to account for a variety of experimental observations, including the presence of orientation columns in visually inexperienced animals.
Collapse
|
50
|
Schall JD, Leventhal AG. Relationships between ganglion cell dendritic structure and retinal topography in the cat. J Comp Neurol 1987; 257:149-59. [PMID: 3571521 DOI: 10.1002/cne.902570202] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The morphology of ganglion cell dendritic trees varies across the cat retina. Evidence is presented that the variation in two attributes of ganglion cell dendritic structure can be accounted for by specific aspects of the topography of the adult and developing retina. The first attribute considered was the displacement of the center of the dendritic field from the cell body in the plane of the retina. The results of this study provide evidence that most ganglion cell dendritic fields are displaced away from neighboring cells, i.e., down the retinal ganglion cell density gradient. Because of the systematic dendritic displacement locally, the centers of the dendritic fields are arranged in a more precise mosaic than are their cell bodies. The second attribute considered was the elongation and orientation of the dendritic fields. From approximately embryonic day 50 to postnatal day 10 the cat retina undergoes a process of maturation (reviewed by Rapaport and Stone: Neuroscience 11:289-301, '84) that begins at the area centralis and spreads over the retina in a horizontally elongated wave. We found that the elongation and orientation of retinal ganglion cell dendritic fields is significantly correlated with the shape of the wave of maturation. The orientation of a dendritic field is not predicted by the direction of its displacement nor is it directly related to the distribution of neighboring retinal ganglion cells. These results indicate that the displacement of a ganglion cell's dendritic field from its cell body results from mechanisms different from those responsible for the orientation of the dendritic field. Factors that may be responsible for these two attributes of ganglion cell dendritic morphology are discussed.
Collapse
|