1
|
Petersen OH. Watching Living Cells in Action in the Exocrine Pancreas: The Palade Prize Lecture. FUNCTION 2022; 4:zqac061. [PMID: 36606242 PMCID: PMC9809903 DOI: 10.1093/function/zqac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
George Palade's pioneering electron microscopical studies of the pancreatic acinar cell revealed the intracellular secretory pathway from the rough endoplasmic reticulum at the base of the cell to the zymogen granules in the apical region. Palade also described for the first time the final stage of exocytotic enzyme secretion into the acinar lumen. The contemporary studies of the mechanism by which secretion is acutely controlled, and how the pancreas is destroyed in the disease acute pancreatitis, rely on monitoring molecular events in the various identified pancreatic cell types in the living pancreas. These studies have been carried out with the help of high-resolution fluorescence recordings, often in conjunction with patch clamp current measurements. In such studies we have gained much detailed information about the regulatory events in the exocrine pancreas in health as well as disease, and new therapeutic opportunities have been revealed.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Wales, CF10 3AX, UK
| |
Collapse
|
2
|
Petersen OH, Gerasimenko JV, Gerasimenko OV, Gryshchenko O, Peng S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol Rev 2021; 101:1691-1744. [PMID: 33949875 DOI: 10.1152/physrev.00003.2021] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This review deals with the roles of calcium ions and ATP in the control of the normal functions of the different cell types in the exocrine pancreas as well as the roles of these molecules in the pathophysiology of acute pancreatitis. Repetitive rises in the local cytosolic calcium ion concentration in the apical part of the acinar cells not only activate exocytosis but also, via an increase in the intramitochondrial calcium ion concentration, stimulate the ATP formation that is needed to fuel the energy-requiring secretion process. However, intracellular calcium overload, resulting in a global sustained elevation of the cytosolic calcium ion concentration, has the opposite effect of decreasing mitochondrial ATP production, and this initiates processes that lead to necrosis. In the last few years it has become possible to image calcium signaling events simultaneously in acinar, stellate, and immune cells in intact lobules of the exocrine pancreas. This has disclosed processes by which these cells interact with each other, particularly in relation to the initiation and development of acute pancreatitis. By unraveling the molecular mechanisms underlying this disease, several promising therapeutic intervention sites have been identified. This provides hope that we may soon be able to effectively treat this often fatal disease.
Collapse
Affiliation(s)
- Ole H Petersen
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | - Shuang Peng
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
4
|
Swain SM, Romac JMJ, Shahid RA, Pandol SJ, Liedtke W, Vigna SR, Liddle RA. TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation. J Clin Invest 2020; 130:2527-2541. [PMID: 31999644 PMCID: PMC7190979 DOI: 10.1172/jci134111] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography, and gallstones. In the pancreas, excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis, ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel Piezo1 in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force was insufficient to activate these pathological changes, whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium, leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered transient receptor potential vanilloid subfamily 4 (TRPV4) channel opening, which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene-KO mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which a Piezo1-induced TRPV4 channel opening causes pancreatitis.
Collapse
Affiliation(s)
- Sandip M. Swain
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Rafiq A. Shahid
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | | | - Steven R. Vigna
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Cell Biology, Duke University, Durham, North Carolina, USA
| | - Rodger A. Liddle
- Department of Medicine, Duke University, Durham, North Carolina, USA
- Department of Veterans Affairs Health Care System, Durham, North Carolina, USA
| |
Collapse
|
5
|
Petersen OH, Courjaret R, Machaca K. Ca 2+ tunnelling through the ER lumen as a mechanism for delivering Ca 2+ entering via store-operated Ca 2+ channels to specific target sites. J Physiol 2017; 595:2999-3014. [PMID: 28181236 PMCID: PMC5430212 DOI: 10.1113/jp272772] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023] Open
Abstract
Ca2+ signalling is perhaps the most universal and versatile mechanism regulating a wide range of cellular processes. Because of the many different calcium‐binding proteins distributed throughout cells, signalling precision requires localized rises in the cytosolic Ca2+ concentration. In electrically non‐excitable cells, for example epithelial cells, this is achieved by primary release of Ca2+ from the endoplasmic reticulum via Ca2+ release channels placed close to the physiological target. Because any rise in the cytosolic Ca2+ concentration activates Ca2+ extrusion, and in order for cells not to run out of Ca2+, there is a need for compensatory Ca2+ uptake from the extracellular fluid. This Ca2+ uptake occurs through a process known as store‐operated Ca2+ entry. Ideally Ca2+ entering the cell should not diffuse to the target site through the cytosol, as this would potentially activate undesirable processes. Ca2+ tunnelling through the lumen of the endoplasmic reticulum is a mechanism for delivering Ca2+ entering via store‐operated Ca2+ channels to specific target sites, and this process has been described in considerable detail in pancreatic acinar cells and oocytes. Here we review the most important evidence and present a generalized concept.
![]()
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, School of Biosciences and Systems Immunity Research Institute, Cardiff University, Cardiff, CF10 3AX, UK
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, PO Box 24144, Doha, Qatar
| |
Collapse
|
6
|
Ferdek PE, Jakubowska MA, Gerasimenko JV, Gerasimenko OV, Petersen OH. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake. J Physiol 2016; 594:6147-6164. [PMID: 27406326 PMCID: PMC5088250 DOI: 10.1113/jp272774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/04/2016] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+ ; and Na+ -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. ABSTRACT Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na+ -dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+ , showing that bile-dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC-S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC-S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK. ,
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Julia V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Ole H Petersen
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, Wales, UK
| |
Collapse
|
7
|
Calcium signalling in pancreatic stellate cells: Mechanisms and potential roles. Cell Calcium 2016; 59:140-4. [DOI: 10.1016/j.ceca.2016.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 11/22/2022]
|
8
|
Gryshchenko O, Gerasimenko JV, Gerasimenko OV, Petersen OH. Ca(2+) signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca(2+) channel blockade. J Physiol 2015; 594:281-93. [PMID: 26442817 PMCID: PMC4713750 DOI: 10.1113/jp271468] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/30/2015] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS Bradykinin may play a role in the autodigestive disease acute pancreatitis, but little is known about its pancreatic actions. In this study, we have investigated bradykinin-elicited Ca(2+) signal generation in normal mouse pancreatic lobules. We found complete separation of Ca(2+) signalling between pancreatic acinar (PACs) and stellate cells (PSCs). Pathophysiologically relevant bradykinin concentrations consistently evoked Ca(2+) signals, via B2 receptors, in PSCs but never in neighbouring PACs, whereas cholecystokinin, consistently evoking Ca(2+) signals in PACs, never elicited Ca(2+) signals in PSCs. The bradykinin-elicited Ca(2+) signals were due to initial Ca(2+) release from inositol trisphosphate-sensitive stores followed by Ca(2+) entry through Ca(2+) release-activated channels (CRACs). The Ca(2+) entry phase was effectively inhibited by a CRAC blocker. B2 receptor blockade reduced the extent of PAC necrosis evoked by pancreatitis-promoting agents and we therefore conclude that bradykinin plays a role in acute pancreatitis via specific actions on PSCs. ABSTRACT Normal pancreatic stellate cells (PSCs) are regarded as quiescent, only to become activated in chronic pancreatitis and pancreatic cancer. However, we now report that these cells in their normal microenvironment are far from quiescent, but are capable of generating substantial Ca(2+) signals. We have compared Ca(2+) signalling in PSCs and their better studied neighbouring acinar cells (PACs) and found complete separation of Ca(2+) signalling in even closely neighbouring PACs and PSCs. Bradykinin (BK), at concentrations corresponding to the slightly elevated plasma BK levels that have been shown to occur in the auto-digestive disease acute pancreatitis in vivo, consistently elicited substantial Ca(2+) signals in PSCs, but never in neighbouring PACs, whereas the physiological PAC stimulant cholecystokinin failed to evoke Ca(2+) signals in PSCs. The BK-induced Ca(2+) signals were mediated by B2 receptors and B2 receptor blockade protected against PAC necrosis evoked by agents causing acute pancreatitis. The initial Ca(2+) rise in PSCs was due to inositol trisphosphate receptor-mediated release from internal stores, whereas the sustained phase depended on external Ca(2+) entry through Ca(2+) release-activated Ca(2+) (CRAC) channels. CRAC channel inhibitors, which have been shown to protect PACs against damage caused by agents inducing pancreatitis, therefore also inhibit Ca(2+) signal generation in PSCs and this may be helpful in treating acute pancreatitis.
Collapse
Affiliation(s)
- Oleksiy Gryshchenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK.,Bogomoletz Institute of Physiology, Kiev, 01024, Ukraine
| | - Julia V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Ole H Petersen
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
9
|
Meyer A, Stolz K, Dreher W, Bergemann J, Holebasavanahalli Thimmashetty V, Lueschen N, Azizi Z, Khobragade V, Maedler K, Kuestermann E. Manganese-mediated MRI signals correlate with functional β-cell mass during diabetes progression. Diabetes 2015; 64:2138-47. [PMID: 25804940 DOI: 10.2337/db14-0864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/13/2015] [Indexed: 11/13/2022]
Abstract
Diabetes diagnostic therapy and research would strongly benefit from noninvasive accurate imaging of the functional β-cells in the pancreas. Here, we developed an analysis of functional β-cell mass (BCM) by measuring manganese (Mn(2+)) uptake kinetics into glucose-stimulated β-cells by T1-weighted in vivo Mn(2+)-mediated MRI (MnMRI) in C57Bl/6J mice. Weekly MRI analysis during the diabetes progression in mice fed a high-fat/high-sucrose diet (HFD) showed increased Mn(2+)-signals in the pancreas of the HFD-fed mice during the compensation phase, when glucose tolerance and glucose-stimulated insulin secretion (GSIS) were improved and BCM was increased compared with normal diet-fed mice. The increased signal was only transient; from the 4th week on, MRI signals decreased significantly in the HFD group, and the reduced MRI signal in HFD mice persisted over the whole 12-week experimental period, which again correlated with both impaired glucose tolerance and GSIS, although BCM remained unchanged. Rapid and significantly decreased MRI signals were confirmed in diabetic mice after streptozotocin (STZ) injection. No long-term effects of Mn(2+) on glucose tolerance were observed. Our optimized MnMRI protocol fulfills the requirements of noninvasive MRI analysis and detects already small changes in the functional BCM.
Collapse
Affiliation(s)
- Anke Meyer
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Katharina Stolz
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Jennifer Bergemann
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | | - Navina Lueschen
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Zahra Azizi
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Vrushali Khobragade
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | | |
Collapse
|
10
|
Lewarchik CM, Orabi AI, Jin S, Wang D, Muili KA, Shah AU, Eisses JF, Malik A, Bottino R, Jayaraman T, Husain SZ. The ryanodine receptor is expressed in human pancreatic acinar cells and contributes to acinar cell injury. Am J Physiol Gastrointest Liver Physiol 2014; 307:G574-81. [PMID: 25012845 PMCID: PMC4154117 DOI: 10.1152/ajpgi.00143.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Physiological calcium (Ca(2+)) signals within the pancreatic acinar cell regulate enzyme secretion, whereas aberrant Ca(2+) signals are associated with acinar cell injury. We have previously identified the ryanodine receptor (RyR), a Ca(2+) release channel on the endoplasmic reticulum, as a modulator of these pathological signals. In the present study, we establish that the RyR is expressed in human acinar cells and mediates acinar cell injury. We obtained pancreatic tissue from cadaveric donors and identified isoforms of RyR1 and RyR2 by qPCR. Immunofluorescence staining of the pancreas showed that the RyR is localized to the basal region of the acinar cell. Furthermore, the presence of RyR was confirmed from isolated human acinar cells by tritiated ryanodine binding. To determine whether the RyR is functionally active, mouse or human acinar cells were loaded with the high-affinity Ca(2+) dye (Fluo-4 AM) and stimulated with taurolithocholic acid 3-sulfate (TLCS) (500 μM) or carbachol (1 mM). Ryanodine (100 μM) pretreatment reduced the magnitude of the Ca(2+) signal and the area under the curve. To determine the effect of RyR blockade on injury, human acinar cells were stimulated with pathological stimuli, the bile acid TLCS (500 μM) or the muscarinic agonist carbachol (1 mM) in the presence or absence of the RyR inhibitor ryanodine. Ryanodine (100 μM) caused an 81% and 47% reduction in acinar cell injury, respectively, as measured by lactate dehydrogenase leakage (P < 0.05). Taken together, these data establish that the RyR is expressed in human acinar cells and that it modulates acinar Ca(2+) signals and cell injury.
Collapse
Affiliation(s)
| | | | | | | | - Kamaldeen A. Muili
- 3Department of Neurological Surgery, Comprehensive Cancer Center, Wexner Medical Center, Ohio State University, Columbus, Ohio;
| | | | | | | | - Rita Bottino
- 4Institute of Cellular Therapeutics, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Thottala Jayaraman
- 2Dental Medicine, Children's Hospital of Pittsburgh of UPMC and the University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania;
| | | |
Collapse
|
11
|
Somogyi R, Kolb HA. Modulation of Gap Junctional Coupling in Pairs of Pancreatic Acinar Cells by cAMP, OAG and Protein Kinase C. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/bbpc.198800248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Petersen OH. Calcium signalling and secretory epithelia. Cell Calcium 2014; 55:282-9. [PMID: 24508392 DOI: 10.1016/j.ceca.2014.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/10/2014] [Indexed: 12/15/2022]
Abstract
Ca(2+) is now firmly established as the most important intracellular regulator of physiological and pathological events in a vast number of different cell types, including secretory epithelia. In these tissues, Ca(2+) signalling is crucially important for the control of both fluid secretion and electrolyte secretion as well as the regulation of macromolecule secretion. In this overview article, I shall attempt to give some general background to the concepts underlying our current thinking about Ca(2+) signalling in epithelia and its roles in regulating secretion. It is outside the scope of this review to provide a comprehensive account of Ca(2+) signalling and the many different processes in the many different secretory epithelia that are controlled by Ca(2+) signals. It is my aim to draw attention to some general features of Ca(2+) signalling processes in secretory epithelia, which are rather different from those in, for example, endocrine glands. The principal examples will be taken from studies of exocrine cells and, in particular, pancreatic acinar cells, as they are the pioneer cells with regard to investigations of Ca(2+) signalling due to primary intracellular Ca(2+) release. They also represent the cell type which has been characterized in most detail with regard to Ca(2+) transport events and mechanisms.
Collapse
Affiliation(s)
- O H Petersen
- MRC Secretory Control Research Group, Cardiff School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
13
|
Abstract
Acute pancreatitis is a human disease in which the pancreatic pro-enzymes, packaged into the zymogen granules of acinar cells, become activated and cause autodigestion. The main causes of pancreatitis are alcohol abuse and biliary disease. A considerable body of evidence indicates that the primary event initiating the disease process is the excessive release of Ca(2+) from intracellular stores, followed by excessive entry of Ca(2+) from the interstitial fluid. However, Ca(2+) release and subsequent entry are also precisely the processes that control the physiological secretion of digestive enzymes in response to stimulation via the vagal nerve or the hormone cholecystokinin. The spatial and temporal Ca(2+) signal patterns in physiology and pathology, as well as the contributions from different organelles in the different situations, are therefore critical issues. There has recently been significant progress in our understanding of both physiological stimulus-secretion coupling and the pathophysiology of acute pancreatitis. Very recently, a promising potential therapeutic development has occurred with the demonstration that the blockade of Ca(2+) release-activated Ca(2+) currents in pancreatic acinar cells offers remarkable protection against Ca(2+) overload, intracellular protease activation and necrosis evoked by a combination of alcohol and fatty acids, which is a major trigger of acute pancreatitis.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- MRC Group, School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK.
| | | | | |
Collapse
|
14
|
Ca2+ release-activated Ca2+ channel blockade as a potential tool in antipancreatitis therapy. Proc Natl Acad Sci U S A 2013; 110:13186-91. [PMID: 23878235 DOI: 10.1073/pnas.1300910110] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alcohol-related acute pancreatitis can be mediated by a combination of alcohol and fatty acids (fatty acid ethyl esters) and is initiated by a sustained elevation of the Ca(2+) concentration inside pancreatic acinar cells ([Ca(2+)]i), due to excessive release of Ca(2+) stored inside the cells followed by Ca(2+) entry from the interstitial fluid. The sustained [Ca(2+)]i elevation activates intracellular digestive proenzymes resulting in necrosis and inflammation. We tested the hypothesis that pharmacological blockade of store-operated or Ca(2+) release-activated Ca(2+) channels (CRAC) would prevent sustained elevation of [Ca(2+)]i and therefore protease activation and necrosis. In isolated mouse pancreatic acinar cells, CRAC channels were activated by blocking Ca(2+) ATPase pumps in the endoplasmic reticulum with thapsigargin in the absence of external Ca(2+). Ca(2+) entry then occurred upon admission of Ca(2+) to the extracellular solution. The CRAC channel blocker developed by GlaxoSmithKline, GSK-7975A, inhibited store-operated Ca(2+) entry in a concentration-dependent manner within the range of 1 to 50 μM (IC50 = 3.4 μM), but had little or no effect on the physiological Ca(2+) spiking evoked by acetylcholine or cholecystokinin. Palmitoleic acid ethyl ester (100 μM), an important mediator of alcohol-related pancreatitis, evoked a sustained elevation of [Ca(2+)]i, which was markedly reduced by CRAC blockade. Importantly, the palmitoleic acid ethyl ester-induced trypsin and protease activity as well as necrosis were almost abolished by blocking CRAC channels. There is currently no specific treatment of pancreatitis, but our data show that pharmacological CRAC blockade is highly effective against toxic [Ca(2+)]i elevation, necrosis, and trypsin/protease activity and therefore has potential to effectively treat pancreatitis.
Collapse
|
15
|
|
16
|
|
17
|
Petersen O. Ca2+ signaling in pancreatic acinar cells: physiology and pathophysiology. Braz J Med Biol Res 2009; 42:9-16. [DOI: 10.1590/s0100-879x2009000100003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 12/16/2008] [Indexed: 11/22/2022] Open
|
18
|
Petersen OH. Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 2008; 38:171-200. [PMID: 16107275 DOI: 10.1016/j.ceca.2005.06.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 01/11/2023]
Abstract
The development of the calcium signalling field, from its early beginnings some 40 years ago to the present, is described. Calcium signalling in exocrine gland acinar cells and the effects of neurotransmitter- or hormone-elicited rises in the cytosolic calcium ion concentration on ion channel gating are reviewed. The highly polarized arrangement of the organelle systems in living acinar cells is described as well as its importance for the physiologically relevant local and polarized calcium signalling events.
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, The Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| |
Collapse
|
19
|
Abstract
Cytosolic Ca2+ signals are crucial for the control of fluid and enzyme secretion from exocrine glands. The highly polarized exocrine acinar cells have evolved sophisticated and complex Ca2+ signaling mechanisms that exercise precise control of the secretory events occurring across the apical plasma membrane bordering the gland lumen. Ca2+ stores in the endoplasmic reticulum, the secretory granules, the lysosomes, and the endosomes all play important roles in the generation of the local apical Ca2+ spikes that switch on Cl(-) channels in the apical plasma membrane as well as exocytotic export of enzymes. The mitochondria are crucial not only for ATP generation but also for the physiologically important subcellular compartmentalization of the cytosolic Ca2+ signals.
Collapse
Affiliation(s)
- Ole H Petersen
- MRC Group, The Physiological Laboratory, School of Biomedical Science, University of Liverpool, Liverpool L69 3BX, United Kingdom.
| | | |
Collapse
|
20
|
Knot HJ, Laher I, Sobie EA, Guatimosim S, Gomez-Viquez L, Hartmann H, Song LS, Lederer WJ, Graier WF, Malli R, Frieden M, Petersen OH. Twenty years of calcium imaging: cell physiology to dye for. Mol Interv 2007; 5:112-27. [PMID: 15821159 PMCID: PMC4861218 DOI: 10.1124/mi.5.2.8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The use of fluorescent dyes over the past two decades has led to a revolution in our understanding of calcium signaling. Given the ubiquitous role of Ca(2+) in signal transduction at the most fundamental levels of molecular, cellular, and organismal biology, it has been challenging to understand how the specificity and versatility of Ca(2+) signaling is accomplished. In excitable cells, the coordination of changing Ca(2+) concentrations at global (cellular) and well-defined subcellular spaces through the course of membrane depolarization can now be conceptualized in the context of disease processes such as cardiac arrhythmogenesis. The spatial and temporal dimensions of Ca(2+) signaling are similarly important in non-excitable cells, such as endothelial and epithelial cells, to regulate multiple signaling pathways that participate in organ homeostasis as well as cellular organization and essential secretory processes.
Collapse
Affiliation(s)
- Harm J Knot
- Department of Pharmacology & Therapeutics and Division of Cardiology College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kolb HA, Somogyi R. Biochemical and biophysical analysis of cell-to-cell channels and regulation of gap junctional permeability. Rev Physiol Biochem Pharmacol 2005; 118:1-47. [PMID: 1721723 DOI: 10.1007/bfb0031480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H A Kolb
- University of Konstanz, Faculty of Biology, FRG
| | | |
Collapse
|
22
|
Chanson M, Fanjul M, Bosco D, Nelles E, Suter S, Willecke K, Meda P. Enhanced secretion of amylase from exocrine pancreas of connexin32-deficient mice. J Cell Biol 1998; 141:1267-75. [PMID: 9606217 PMCID: PMC2137182 DOI: 10.1083/jcb.141.5.1267] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Revised: 04/29/1998] [Indexed: 02/07/2023] Open
Abstract
To determine whether junctional communication between pancreatic acinar cells contributes to their secretory function in vivo, we have compared wild-type mice, which express the gap junctional proteins connexin32 (Cx32) and connexin26, to mice deficient for the Cx32 gene. Pancreatic acinar cells from Cx32 (-/-) mice failed to express Cx32 as evidenced by reverse transcription-PCR and immunolabeling and showed a marked reduction (4.8- and 25-fold, respectively) in the number and size of gap junctions. Dye transfer studies showed that the extent of intercellular communication was inhibited in Cx32 (-/-) acini. However, electrical coupling was detected by dual patch clamp recording in Cx32 (-/-) acinar cell pairs. Although wild-type and Cx32 (-/-) acini were similarly stimulated to release amylase by carbamylcholine, Cx32 (-/-) acini showed a twofold increase of their basal secretion. This effect was caused by an increase in the proportion of secreting acini, as detected with a reverse hemolytic plaque assay. Blood measurements further revealed that Cx32 (-/-) mice had elevated basal levels of circulating amylase. The results, which demonstrate an inverse relationship between the extent of acinar cell coupling and basal amylase secretion in vivo, support the view that the physiological recruitment of secretory acinar cells is regulated by gap junction mediated intercellular communication.
Collapse
Affiliation(s)
- M Chanson
- Department of Pediatrics, University of Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
23
|
Petersen OH. Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol 1992; 448:1-51. [PMID: 1375633 PMCID: PMC1176186 DOI: 10.1113/jphysiol.1992.sp019028] [Citation(s) in RCA: 343] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- O H Petersen
- Physiological Laboratory, University of Liverpool
| |
Collapse
|
24
|
Tepikin A, Voronina S, Gallacher D, Petersen O. Acetylcholine-evoked increase in the cytoplasmic Ca2+ concentration and Ca2+ extrusion measured simultaneously in single mouse pancreatic acinar cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50560-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
25
|
Somogyi R, Kolb HA. A G-protein mediates secretagogue-induced gap junctional channel closure in pancreatic acinar cells. FEBS Lett 1989; 258:216-8. [PMID: 2480914 DOI: 10.1016/0014-5793(89)81656-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Using the double whole-cell patch-clamp technique, we determined that dialysis of cell pairs by GTP[S] potentiated electrical uncoupling induced by extracellular addition of carbamylcholine (CCh). An inhibitor of diglyceride lipase, RHC 80267, further potentiated CCh/GTP[S]-induced junctional channel closure, probably by accumulation of diacylglycerol. Moreover, the protein kinase C inhibitor polymyxin B completely blocked uncoupling elicited by CCh/GTP[S]. These results provide the first evidence suggesting that gap junction channel closure by cholinergic stimulation is mediated by a G-protein, which acts by increasing phosphatidylinositol biphosphate breakdown and protein kinase C activity.
Collapse
Affiliation(s)
- R Somogyi
- University of Konstanz, Faculty of Biology, Konstanz, FRG
| | | |
Collapse
|
26
|
Petersen OH. Does inositol tetrakisphosphate play a role in the receptor-mediated control of calcium mobilization? Cell Calcium 1989; 10:375-83. [PMID: 2670241 DOI: 10.1016/0143-4160(89)90063-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The evidence for and against an important role for inositol 1,3,4,5 tetrakisphosphate (Ins 1,3,4,5 P4) in receptor-mediated Ca2+ mobilization is reviewed. Data obtained from patch-clamp whole-cell current recording studies on internally perfused exocrine acinar cells show that the acetylcholine (ACh)-evoked sustained increase in Ca2+-dependent K+ current caused by an increase in [Ca2+]i cannot be mimicked by internal application of inositol 1,4,5-trisphosphate (Ins 1,4,5 P3), but only by a combination of Ins 1,4,5 P3 and Ins 1,3,4,5 P4. The sustained response evoked by Ins 1,4,5 P3 + Ins 1,3,4,5 P4 is dependent on the presence of external Ca2+ as is the effect of ACh. Only those inositol trisphosphates able to evoke Ca2+ release from internal stores can support the action of Ins 1,3,4,5 P4 in evoking responses that are acutely dependent on extracellular Ca2+ (Ca2+ influx). The various arguments presented against an involvement of Ins 1,3,4,5 P4 are discussed. The main point emerging is that most studies are inadequately controlled and it is concluded that there is a strong need for whole-cell current recording studies combined with pipette fluid exchange to be carried out in many more systems. The major problem in this field is that the precise site and mechanism of action of Ins 1,3,4,5 P4 are unknown and that the pathway for Ca2+ uptake during receptor activation is inadequately defined.
Collapse
Affiliation(s)
- O H Petersen
- MRC Secretory Control Research Group, Physiological Laboratory, University of Liverpool, UK
| |
Collapse
|
27
|
Chanson M, Bruzzone R, Bosco D, Meda P. Effects of n-alcohols on junctional coupling and amylase secretion of pancreatic acinar cells. J Cell Physiol 1989; 139:147-56. [PMID: 2468678 DOI: 10.1002/jcp.1041390121] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have tested the effects of alcohols differing by their alkyl chain length on the membrane channels and amylase secretion of rat pancreatic acinar cells. In intact acini, alcohols with a chain of seven, eight, or nine carbons (C-7, C-8, and C-9) induced dye uncoupling and increased basal amylase release. These effects were readily reversible after alcohol removal. By contrast, an alcohol with a chain of 15 carbons (C-15) and several alcohols with chains of fewer than six carbons (C-2, C-4, and C-6) did not uncouple acinar cells and had no effects of amylase secretion. Neither did alkanes and oxidized derivatives of C-7 and C-8 alcohols did not affect dye coupling. Double patch-clamp experiments on pairs of acinar cells, under conditions of strong cytosolic Ca2+ and pH buffering, showed that C-7, C-8, and C-9 alcohols blocked completely and reversibly the electrical conductance of junctional channels. Furthermore, studies of single voltage-clamped acinar cells revealed that the uncoupling alcohols did not affect the resting nonjunctional membrane conductances. Thus the alcohols that did not affect acinar cells coupling did not affect amylase secretion, whereas the alcohols that caused uncoupling increased secretion. The latter effect was not mediated by changes in the conductance of nonjunctional membrane, cytosolic Ca2+, and pH and, as revealed by an immunological hemolytic plaque assay for amylase, had a time course consistent with the rapid (within 1 min) inhibition of coupling. These data provide new support for the view that the regulation of cell-to-cell communications is correlated with that of digestive enzyme secretion.
Collapse
Affiliation(s)
- M Chanson
- Institut d'Histologie et d'Embryologie, University of Geneva, Switzerland
| | | | | | | |
Collapse
|
28
|
Somogyi R, Kolb HA. Cell-to-cell channel conductance during loss of gap junctional coupling in pairs of pancreatic acinar and Chinese hamster ovary cells. Pflugers Arch 1988; 412:54-65. [PMID: 2845356 DOI: 10.1007/bf00583731] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Electrical coupling, mediated by gap junctional channels connecting pairs of murine pancreatic acinar cells and Chinese hamster ovary (CHO) cells, was studied using the double whole cell patch clamp technique. Two approaches were used to reduce the junctional conductance (gj) in order to study gj at the single channel level. During spontaneous uncoupling, single channel conductances of 130 pS and 27 pS could be characterized using freshly isolated acinar cells. In most experiments, stepwise conductances could not be discriminated while gj decreased gradually below 10 pS. In CHO cell pairs, discrete junctional channel conductances of 120 pS, 70 pS, 50 pS, 37 pS and 22 pS were identified. Exposure of pancreatic acinar cell pairs to 0.4 mM octanol resulted in rapid and reversible uncoupling. Discrete junctional conductance steps could not clearly be identified down to a gj of about 3 pS. The influence of the composition of the pipette solution on spontaneous uncoupling was investigated. Addition of 5 mM ATP and 0.1 mM cAMP to the pipette electrolyte was sufficient to stabilize coupling in the experimental time range of up to 1 h. Different mechanisms of uncoupling, including an increase of flickering in the channel open state, and modulation of the number of channels exhibiting different conductance or subconductance states are discussed.
Collapse
Affiliation(s)
- R Somogyi
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| | | |
Collapse
|
29
|
Abstract
The mechanism for acute hypercalcaemia increasing pancreatic enzyme secretion is unknown. To determine if raised extracellular calcium concentrations can directly stimulate pancreatic enzyme output, we measured discharges of pulse labelled protein and chymotrypsin from isolated cat pancreatic lobules in the presence of normal and raised calcium concentrations. Incubation in 5.0 mmol/l calcium increased discharges of pulse labelled protein (four fold), chymotrypsin (2.5 fold) and amylase (2.2 fold), compared with control experiments with 2.5 mmol/l calcium (p less than 0.001). This effect was similar to the maximal effect of carbachol or caerulein. Compared with 5.0 mmol/l calcium, incubation at the higher calcium concentration of 10.0 mmol/l induced similar discharges of chymotrypsin and amylase, whereas the increase in discharge of pulse labelled protein was smaller (p less than 0.01). The effects of raised calcium were not altered by atropine. Incubation in a high calcium medium did not impair pancreatic acinar response to subsequent stimulation with carbachol, but incubation in hypothermia abolished the effects of high calcium concentrations, suggesting that increased enzyme discharge is caused by stimulation of secretion not to cell damage. These data are consistent with a direct stimulatory effect of raised extracellular calcium concentrations on pancreatic acinar cell function.
Collapse
Affiliation(s)
- P Layer
- Department of Medicine, University of Essen, Federal Republic of Germany
| | | | | | | |
Collapse
|
30
|
Senseman DM, Horwitz IS, Salzberg BM. MSORTV imaging of electrotonic conduction in a syncitium: optical recording of polarization spread in a simple salivary gland. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1987; 244:79-88. [PMID: 3694142 DOI: 10.1002/jez.1402440110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The spread of hyperpolarizing current injected into the salivary gland of the snail Helisoma trivolvis was studied with the technique of multiple site optical recording of transmembrane voltage (MSORTV). Using MSORTV it was possible to monitor simultaneously the spread of current passed by an intracellular microelectrode in up to 124 separate gland regions. Our results demonstrate the feasibility of combining conventional intracellular injection techniques with MSORTV to visualize 2-dimensional current spread in an electrical syncitium.
Collapse
Affiliation(s)
- D M Senseman
- Division of Life Sciences, University of Texas at San Antonio 78285
| | | | | |
Collapse
|
31
|
Dormer RL, Brown GR, Doughney C, McPherson MA. Intracellular Ca2+ in pancreatic acinar cells: regulation and role in stimulation of enzyme secretion. Biosci Rep 1987; 7:333-44. [PMID: 3315027 DOI: 10.1007/bf01121455] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Evidence for a primary role for intracellular Ca2+ in the stimulation of pancreatic enzyme secretion is reviewed. Measurements of cytoplasmic free Ca2+ concentration have allowed direct demonstration of its importance in triggering enzyme secretion and defined the concentration range over which membrane Ca2+ pumps must work to regulate intracellular Ca2+. Current evidence suggests a key role for the Ca2+, Mg-ATPase of rough endoplasmic reticulum in regulating intracellular Ca2+ and accumulating a Ca2+ store which is released by the action of inositol-1,4,5 trisphosphate following stimulation of secretion.
Collapse
Affiliation(s)
- R L Dormer
- Department of Medical Biochemistry, University of Wales College of Medicine, Cardiff, UK
| | | | | | | |
Collapse
|
32
|
Sagulin GB, Tørring O, Hellsing K, Roomans GM. Saliva and sweat secretion in man during a one-hour calcium clamp. ACTA PHYSIOLOGICA SCANDINAVICA 1986; 128:509-13. [PMID: 2433897 DOI: 10.1111/j.1748-1716.1986.tb08006.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of a 1-h calcium infusion, directly regulated to obtain and maintain a predetermined blood calcium level ('calcium clamp'), on the composition of parotid saliva, mixed saliva, and sweat was determined in healthy volunteers. An increase in amylase content of the parotid saliva under hypercalcaemic conditions was observed, but the 'calcium clamp' had no effect on flow rate, total and ionized calcium, sodium, potassium, and phosphate levels as well as pH in parotid and mixed saliva. The sweat calcium concentration was negatively correlated with sweat rate, in contrast to sodium and chloride concentrations. Increasing serum calcium levels did not affect ionic composition of the sweat and sweat flow rate.
Collapse
|
33
|
Meda P, Bruzzone R, Knodel S, Orci L. Blockage of cell-to-cell communication within pancreatic acini is associated with increased basal release of amylase. J Biophys Biochem Cytol 1986; 103:475-83. [PMID: 2426281 PMCID: PMC2113828 DOI: 10.1083/jcb.103.2.475] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To assess whether junctional coupling is involved in the secretory activity of pancreatic acinar cells, dispersed rat acini were incubated for 30 min in the presence of either heptanol (3.5 mM) or octanol (1.0 mM). Exposure to either alkanol caused a marked uncoupling of the acinar cells which, in control acini, were extensively coupled. Uncoupling was associated with an increased basal release of amylase that was at least twice that of controls. By contrast, carbamylcholine (10(-5) M)-induced maximal amylase secretion, cytosolic pH, and free Ca2+, as well as the structure of gap junctions joining the acinar cells, were unaffected. Both uncoupling and the alteration of basal secretion were already observed after only 5 min of exposure to heptanol, they both persisted throughout the 30-min exposure to the alkanols, and were reversible after removal of either heptanol or octanol. Since neither of the two uncouplers appeared to alter unspecifically the secretory machinery and the nonjunctional membrane of acinar cells, the data are consistent with the view that junctional coupling participates in the control of the basal secretion of acinar cells.
Collapse
|
34
|
Berger Z, Laugier R. Dopamine, noradrenaline and isoprenaline: secretory and electrophysiological effects in vitro on mouse pancreas. J Physiol 1986; 376:359-75. [PMID: 2432233 PMCID: PMC1182803 DOI: 10.1113/jphysiol.1986.sp016158] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The amylase release from mouse pancreatic fragments was studied after dopamine (DA), and alpha- or beta-sympathomimetic agonist application. The electrical parameters of the acinar cell membrane were also monitored. Both DA (from 5 X 10(-6) to 10(-4) M) and beta-stimulants (isoprenaline from 5 X 10(-6) to 5 X 10(-5) M; noradrenaline from 3 X 10(-4) to 10(-3) M) evoked an increase in amylase release, while noradrenaline in alpha-receptor stimulating doses failed to have any effect. The stimulatory effect of DA was blocked by ganglion blockers (Arfonad 10(-5) M; pentamethonium 3 X 10(-5) M) in a competitive manner and a dual antagonism was observed with atropine (10(-7) M, 10(-9) M). An alpha-receptor antagonist (phentolamine 10(-5) M) and a beta-receptor antagonist (propranolol 10(-5) M) had no influence on the dopamine response. Moreover, the DA-induced stimulation was dependent on the presence of extracellular calcium. Perfusion with 10(-4) and 10(-3) M-DA or local application (from 77 micrograms to 4.3 mg), resulted in marked membrane depolarization with diminution of the input resistance. This effect was blocked by atropine (10(-5) M) and pentamethonium (10(-4) M), but not by propranolol (10(-5) M) or phentolamine (10(-5) M). The isoprenaline- (IP) and noradrenaline- (NA) induced increase in amylase release was competitively blocked by propranolol (10(-5) M) but not by phentolamine (10(-5) M). Atropine caused a dose-dependent (10(-7) M, 10(-6) M) decrease in the maximal response (non-competitive antagonism), while the ganglion blocker pentamethonium (10(-4) M) was without effect. NA caused membrane depolarization accompanied by a decrease in the input resistance after local application (from 77 micrograms to 1.6 mg). This effect persisted in the presence of 10(-5) M-phentolamine but was abolished by 10(-5) M-propranolol. IP perfusion (10(-4) and 10(-3) M) or local application (0.3 M; from 32 to 130 micrograms) caused the same electrical changes as those induced by NA and DA. The effect of IP persisted in the presence of 10(-5) M-phentolamine, 10(-4) M-pentamethonium and 10(-4) M-domperidone, but was abolished by propranolol (10(-5) M) and tetrodotoxin (5 X 10(-6) M) and markedly diminished by atropine (10(-5) M).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
35
|
Akao S, Bockman DE, Lechene de la Porte P, Sarles H. Three-dimensional pattern of ductuloacinar associations in normal and pathological human pancreas. Gastroenterology 1986; 90:661-8. [PMID: 3943696 DOI: 10.1016/0016-5085(86)91121-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To explain the changes that must occur to produce the characteristic lesions of chronic calcifying pancreatitis, a three-dimensional reconstruction of pancreatic ductules and acini has been undertaken in normal subjects and in patients presenting with disease. This has been done with 3-micron serial sections of tissue embedded in plastic. Two approaches were used. In the first, ductules were reconstructed along with the acini directly associated with them. Using this method, adhesions or anastomoses between acini were not evident in normal specimens, and the quantity of acini associated with the ductules seemed small. The second method involved tracing the association of acini and ductules, beginning in the periphery of lobules, with the aid of a drawing tube. It became evident that an acinus was not necessarily the termination of the glandular system, but that intercalated ducts could be formed on the other side of the acinus, extending the quantity of acinar contributions that could be made to a primary ductular system. Evidence of dilation of ducts, atrophy of acini, formation of cul-de-sacs, and localized obstruction were found by three-dimensional reconstruction of serial sections from patients with chronic pancreatitis along with anastomosis between acini. It is probable that anastomosis becomes more detectable in patients as duct lumina enlarge. Anastomoses in the ductules in chronic pancreatitis may result from loss of some lobular structures, emphasizing preexisting connections or fusions of pancreatic elements, or both, as part of the pathological process.
Collapse
|
36
|
IWAMATSU T, OHTA T, OSHIMA E, SUGIURA T. Requirement of Extracellular Calcium Ions for the Early Fertilization Events in the Medaka Egg. (calcium/microinjection/calcium-uptake/Oryzias latipes/sperm penetration). Dev Growth Differ 1985. [DOI: 10.1111/j.1440-169x.1985.00751.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
37
|
Bjerknes M, Cheng H, Erlandsen S. Functional gap junctions in mouse small intestinal crypts. Anat Rec (Hoboken) 1985; 212:364-7. [PMID: 4073553 DOI: 10.1002/ar.1092120407] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We demonstrate intercellular transfer of Lucifer yellow and the existence of gap junctions in isolated mouse small intestinal crypts. The pattern of dye transfer approximates the normal pattern of cell proliferation and differentiation in the intestinal epithelium. These findings indicate that the cells of normal crypts form an effective intercellular continuum. This intercellular route may function in the establishment of chemical, ionic, or electrical fields, which in turn may play a role in the control of cell proliferation, differentiation, and secretion in the crypt.
Collapse
|
38
|
Abstract
Mouse pancreatic segments were superfused with physiological saline solutions and the K+ concentration in the effluent was measured by flame photometry. Acetylcholine (ACh) evoked a dose-dependent and transient increase in the K+ concentration in the effluent (K+ release). The removal of calcium (Ca2+) from the superfusing solution and addition of 10(-4) M-EGTA (ethyleneglycol-bis-(beta-amino-ethylether)N,N'-tetraacetic acid) caused a significant reduction in the ACh-elicited K+ outflow. Pre-treatment of pancreatic segments with the 'loop diuretics' (furosemide, piretanide and bumetanide; all 10(-4) M) resulted in uptake of K+ into the tissue segments. The diuretics also caused a marked reduction in the ACh-induced K+ release. Replacement of chloride (Cl-) in the physiological salt solution by nitrate (NO3-), sulphate (SO42-) or iodide (I-) caused K+ uptake and a significant reduction in the ACh-evoked K+ release. However, when Cl- was replaced by bromide (Br-) the response to ACh was virtually unaffected. When sodium (Na+) was replaced by lithium (Li+) ACh did not evoke K+ release but instead K+ uptake was observed. However, when Tris+ was substituted for Na+ ACh evoked a very small K+ release. Pre-treatment of pancreatic segments with 10(-3) M-ouabain resulted in a marked sustained K+ release. In the continuing presence of ouabain ACh induced a further increase in K+ outflow. Pre-treatment of the preparation with 10 mM-tetraethyl-ammonium (TEA) caused a small transient increase in K+ efflux, but TEA had virtually no effect on the secretagogue-evoked changes in effluent K+ concentration. The results suggest the presence of a diuretic-sensitive Na+-K+-Cl- co-transport system in the mouse pancreatic acinar membrane.
Collapse
|
39
|
Fong JC. Effects of ionophore A23187 and lanthanum on pepsinogen secretion from frog esophageal mucosa in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 814:356-62. [PMID: 2579675 DOI: 10.1016/0005-2736(85)90456-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The role of Ca2+ in the mediation of pepsinogen secretion from frog esophagus was investigated by means of ionophore A23187 and LaCl3. The esophageal mucosa from Asian bullfrog Rana tigerina was mounted in a double-chamber system to preserve its polarity and was incubated in a medium containing 1.5 mM CaCl2. Pepsinogen secreted was measured and expressed as % of total. The basal secretion averaged 3.5%/h. Bethanechol (25 microM), dibutyryl-cAMP (10 mM), ionophore A23187 (30 microM) and 3-isobutyl-1-methylxanthine (0.1 mM) increased the secretion to 8.7, 7.4, 7.1 and 6.8%, respectively. The stimulatory effect of bethanechol and of dibutyryl-cAMP were not affected by removing the exogenous Ca2+ with EGTA. The basal secretion was, however, reduced by 50% when Ca2+ in the incubation medium was lowered to 20 microM. At this low Ca2+ concentration, ionophore A23187 not only lost its stimulatory effect but also diminished the stimulation caused by bethanechol and dibutyryl-cAMP. While LaCl3 at 1 mM had no effect on basal and bethanechol-stimulated secretion, at 10 mM it abolished the stimulation evoked by bethanechol or dibutyryl-cAMP. The conclusions are: (1) both Ca2+ and cAMP are involved in the mediation of pepsinogen secretion from frog esophagus, (2) basal secretion is dependent on extracellular Ca2+, whereas bethanechol-stimulated secretion is not, (3) in the plasma membranes of peptic cells may exist a distinct Ca2+ pool (La3+-and ionophore A23187-sensitive) which is involved in the stimulated pepsinogen secretion.
Collapse
|
40
|
Schulz I, Streb H, Bayerdörffer E, Thévenod F. Stimulus-secretion coupling in exocrine glands: the role of inositol-1,4,5-trisphosphate, calcium and cAMP. Curr Eye Res 1985; 4:467-73. [PMID: 2990822 DOI: 10.3109/02713688509025162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Enzyme, electrolyte and fluid secretion from exocrine glands is stimulated by neurotransmitters and peptide hormones. Whereas for some of these secretagogues calcium is an important intracellular messenger, for others it is cyclic AMP. Regulation of steady state free Ca2+ concentration at rest and at stimulation have been studied in isolated permeabilized acinar cells from pancreas, parotid and lacrimal glands by measuring the free Ca2+ concentration of the surrounding incubation medium with a Ca2+-specific macroelectrode. Ca2+ transport mechanisms have been further characterized in subcellular membrane fractions by measuring 45Ca2+ uptake into membrane vesicles from rough endoplasmic reticulum (RER) and plasma membranes (PM). The data show that the intracellular messenger for secretagogue-induced Ca2+ release from RER is inositol-1,4,5-trisphosphate (IP3) which is produced during stimulation by phospholipase C mediated hydrolysis of phosphatidylinositol-bisphosphate. At rest both Ca2+ uptake into RER and Ca2+ extrusion from the cell is promoted by (Ca2+ + Mg2+)-ATPases with different characteristics in both types of membranes and by a coupled Na+/Ca2+ countertransport in the PM which keep cytosolic free Ca2+ concentration at a low level of approximately 2 - 4 X 10(-7) mol/l. During stimulation the Ca2+ permeability of endoplasmic reticulum membrane increases via IP3 and that of the PM by a yet unknown "receptor-operated" mechanism. These events lead to increase in cytosolic free Ca2+ concentration that is a trigger for enzyme, electrolyte and fluid secretion.
Collapse
|
41
|
Iwatsuki N. Effects of divalent cations on acetylcholine-evoked membrane potential in the ionophore A23187 treated mouse pancreas. Pflugers Arch 1984; 402:465-72. [PMID: 6441149 DOI: 10.1007/bf00583949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Membrane potential and resistance were measured in isolated segments of mouse pancreas superfused in vitro using two intracellular microelectrodes. The acinar cells were stimulated by microionophoretic ACh application from an extracellular AChCl filled micropipette. The membrane depolarization and resistance reduction evoked by short pulses of ACh stimulation were abolished by treatment with A23187 containing Ca-free solution. The subsequent exposure of the A23187-treated tissue to a Ca or Sr containing solution restored the responses to short pulses of ACh. Addition of Ba, Co, or Mn instead of Ca had no such restorative effects. Mn or Co markedly suppressed the restorative effects of Ca or Sr. It is concluded that A23187 treatment causes depletion of intracellular Ca stores. The restorative effect of Ca or Sr indicates that short pulses of ACh stimulation evoke an increase in intracellular Ca or Sr concentration. Short pulses of ACh seem to release Ca from the stimulant-sensitive Ca pool and, in addition, to increase the membrane Ca permeability.
Collapse
|
42
|
Knight DE, Koh E. Ca2+ and cyclic nucleotide dependence of amylase release from isolated rat pancreatic acinar cells rendered permeable by intense electric fields. Cell Calcium 1984; 5:401-18. [PMID: 6207929 DOI: 10.1016/0143-4160(84)90007-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enzyme digestion of rat pancreatic tissue yielded a preparation of isolated acinar cells, over 90% of which excluded trypan blue. These isolated cells responded to a variety of secretagogues, the responses being sensitive to the removal of extracellular calcium, increasing extracellular magnesium, and by trifluoperazine, an antagonist of Ca-dependent processes. When exposed to intense electric fields, isolated acinar cells became permeable to CaEGTA and MgATP, these markers gaining access to over 60% of the intracellular milieu within minutes. The accessibility to these markers seemed independent of the ionised Ca2+ level. Less than 0.5% of the cellular amylase was released when cells were rendered leaky in a medium containing about 10(-9) M Ca2+, but typically 4% was released when the Ca2+ level was subsequently raised to 10(-5)M levels, the EC50 for Ca2+ being 2 microM. This amount of amylase released was comparable to the amounts secreted from intact cells in response to a variety of agonists. The cytosolic marker lactate dehydrogenase was also released from leaky cells, but the extent was independent of Ca2+ concentration. No amylase was released at 10(-7)M Ca2+ when permeable cells were exposed to cyclic 3',5'-AMP or cyclic 3',5'-GMP. The calcium activation curve for amylase release seemed to be independent of cyclic nucleotides, but was markedly increased in both the extent of release and apparent affinity for Ca2+ in the presence of the phorbol ester 12-0-tetradecanoyl phorbol 13 acetate. These results suggest that when "functionally normal" isolated acinar cells are rendered permeable, Ca2+-but not cyclic nucleotides-acts as a second messenger for amylase secretion, and furthermore that protein kinase C may be involved in the secretory process.
Collapse
|
43
|
Petersen OH. The mechanism by which cholecystokinin peptides excite their target cells. Review. Biosci Rep 1984; 4:275-83. [PMID: 6329351 DOI: 10.1007/bf01140491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
44
|
Pearson GT, Petersen OH. Nervous control of membrane conductance in mouse lacrimal acinar cells. Pflugers Arch 1984; 400:51-9. [PMID: 6709489 DOI: 10.1007/bf00670536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracellular microelectrode recordings were made from superfused in vitro preparations of mouse lacrimal gland. The lacrimal acinar cell had a mean resting membrane potential of -44.1 +/- 0.5 mV and a mean input resistance of 3.5 +/- 0.15 M omega. Electrical field stimulation (FS) had similar effects to ACh applied by microionophoresis, both evoking a biphasic membrane hyperpolarization (up to 15 mV) accompanied by a reduction in input resistance. The equilibrium potential values (EFS and EACh) for the responses to brief duration FS and ACh ionophoresis ranged between -45 and -75 mV and depended on the time at which measurements were made following the onset of stimulation. Superfusion of ACh or adrenaline also caused membrane hyperpolarization and increased membrane conductance. Estimations of EFS and EACh made during prolonged periods of FS and ACh superfusion yielded mean values of -53.9 +/- 1.9 mV and -53.4 +/- 1.5 mV respectively. FS evoked a response in all preparations tested with maximal effects seen at 40 Hz frequency. The mean latency of the FS-evoked hyperpolarization (40 Hz) was 270 +/- 21 ms and that for the ACh ionophoretic response was 400 +/- 65 ms. Low frequency FS (0.5-5 Hz) also induced membrane hyperpolarization and responses to single shock stimuli were occasionally observed. The FS-evoked hyperpolarization was abolished following the blockade of nerve conduction by superfusion of either Na-free or tetrodotoxin-containing media. Effects of FS were not seen in the presence of atropine. Neostigmine potentiated the FS- and ACh-evoked hyperpolarizations.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
45
|
Thörig L, Van Haeringen NJ, Timmermans PB, Van Zwieten PA. Peroxidase secretion from rat lacrimal gland cells in vitro. I. Alpha-adrenergic stimulation in the absence of alpha-adrenoceptors. Exp Eye Res 1983; 37:475-83. [PMID: 6323204 DOI: 10.1016/0014-4835(83)90023-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The identification of alpha-adrenergic receptors and subdivision into alpha 1- or alpha 2-subtypes were studied by measuring the specific binding of the radioligands [3H]-prazosin as well as [3H]-clonidine to membranes prepared from homogenized rat lacrimal glands. The absence of high-affinity binding for [3H]-prazosin as well as for [3H]-clonidine indicates that rat lacrimal glands do not possess a substantial amount of alpha 1- and alpha 2-adrenoceptors. The binding data correspond with the characterization by pharmacological means. Monolayers of lacrimocytes were incubated with various selective alpha 1-, alpha 2-, beta-adrenergic agonists and antagonists or other substances, and peroxidase discharge was measured over a period of 1 hr. Among various substances only L-norepinephrine, L-phenylephrine, tyramine and ionophore A 23187 were stimulants of peroxidase secretion, whereas the adrenergic-stimulated secretory response was only suppressed by phentolamine.
Collapse
|
46
|
McArthur KE, Jensen RT, Gardner JD. The actions of tetraethylammonium on dispersed acini from guinea pig pancreas. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 762:373-7. [PMID: 6189525 DOI: 10.1016/0167-4889(83)90001-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In dispersed acini from guinea pig pancreas, replacing extracellular sodium by tetraethylammonium (1) abolished carbamylcholine-stimulated amylase secretion but did not alter the increase in amylase secretion caused by the C-terminal octapeptide of cholecystokinin, bombesin, ionophore A23187, vasoactive intestinal peptide or 8-bromoadenosine 3':5' monophosphate, (2) caused a parallel rightward shift in the dose-response curve for carbamylcholine-stimulated amylase secretion and (3) inhibited binding of N-[3H]methyl scopolamine to muscarinic cholinergic receptors. Detectable inhibition of carbamylcholine-stimulated amylase secretion and binding of N-[3H]methyl scopolamine occurred with 300 microM tetraethylammonium, and half-maximal inhibition of these functions occurred with 1-2 mM tetraethylammonium. Replacing extracellular sodium by Tris did not alter the stimulation of enzyme secretion caused by any secretagogue tested. These results indicate that the tetraethylammonium is a muscarinic cholinergic receptor antagonist and that enzyme secretion from pancreatic acini does not depend on extracellular sodium.
Collapse
|
47
|
Senseman DM, Shimizu H, Horwitz IS, Salzberg BM. Multiple-site optical recording of membrane potential from a salivary gland. Interaction of synaptic and electrotonic excitation. J Gen Physiol 1983; 81:887-908. [PMID: 6875509 PMCID: PMC2215556 DOI: 10.1085/jgp.81.6.887] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The interaction between synaptic and electronic excitation of cells from the salivary gland of the snail Helisoma trivolvis was studied using a voltage-sensitive merocyanine dye. Linear and square photodiode matrix arrays were used to record simultaneously the response to neuronal stimulation of 15-25 separate regions of the gland. Laterally opposed acini exhibited highly synchronous electrical activity, which suggested a correspondingly high degree of electrical coupling. In the longitudinal direction, coupling appeared weaker. The onset of depolarization after neuronal stimulation was progressively delayed along the longitudinal gland axis, in agreement with the measured conduction velocity of the presynaptic nerve spike. In most instances, neuronal stimulation directly activated a regenerative gland response (action potential) at the junction between the anterior and central duct. Excitation of distal gland regions was usually mediated by electronic spread from active, more proximal gland regions. Occasionally, "collisions" between excitatory waves traveling in opposite directions were observed.
Collapse
|
48
|
Findlay I, Petersen OH. The extent of dye-coupling between exocrine acinar cells of the mouse pancreas. The dye-coupled acinar unit. Cell Tissue Res 1983; 232:121-7. [PMID: 6883436 DOI: 10.1007/bf00222378] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sustained intra-acinar microiontophoretic injection of the fluorescent dye Lucifer Yellow CH in isolated fragments of mouse pancreas reveals a finite limit to the extent of intercellular communication between acinar cells. In two preparations for which complete sets of serial sections could be obtained the dye-coupled intercommunicating acinar units consisted of 110 and 230 individual exocrine acinar cells.
Collapse
|
49
|
Lydén A, Larsson BS, Lindquist NG. Autoradiography of manganese: accumulation and retention in the pancreas. ACTA PHARMACOLOGICA ET TOXICOLOGICA 1983; 52:205-10. [PMID: 6405580 DOI: 10.1111/j.1600-0773.1983.tb01087.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
By means of whole-body autoradiography, the general distribution of 54MnCl2 was studied in mice and a Marmoset monkey. High accumulation and retention were observed in the pancreas in both species. Gamma counting experiments in mice after a single intravenous injection of 54MnCl2 showed that the level in the pancreas exceeded that of the liver at all survival times (20 min. - 30 days). Also in the monkey, the concentration in the pancreas exceeded that of the liver, and the pancreas had the highest tissue/liver ratio of the organs measured at 24 hours after injection. The high uptake and long retention in the pancreas suggest that manganese is of importance for the pancreatic function but also that the pancreas may be a target organ for manganese toxicity. Positron tomography, using 11C-labelled amino acids, has been found to be a promising diagnostic technique for the study of pancreatic disease. Positron emitting manganese isotopes may be worth further studies as possible agents for pancreatic imaging.
Collapse
|
50
|
Roberts ML, Butcher FR. The involvement of protein phosphorylation in stimulus-secretion coupling in the mouse exocrine pancreas. Biochem J 1983; 210:353-9. [PMID: 6134521 PMCID: PMC1154231 DOI: 10.1042/bj2100353] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Secretagogue-induced protein phosphorylation was studied in the mouse pancreas in vitro, by using polyacrylamide-gel electrophoresis to separate the labelled proteins. Muscarinic cholinergic agonists increased the phosphorylation of a single band, which corresponded to Mr 32000, when the tissue was incubated with Ca2+ present in the extracellular medium, but not in Ca2+-free Krebs solution. In the presence of Ca2+, ionophore A23187 stimulated phosphorylation of the same band. The dose-response curve for carbachol-induced phosphorylation was biphasic, with maximum response at 1.0 microM-carbachol, and lesser responses when greater concentrations were used. This resembles the dose-response curve for carbachol-induced amylase secretion. The data suggest that the muscarinic-agonist-induced protein phosphorylation is stimulated secondarily to elevation of cytosol [Ca2+] and do not support the idea that diacylglycerol formed from hydrolysis of phosphatidylinositol is the activator of the protein kinase. Derivatives of cyclic AMP stimulated phosphorylation of bands corresponding to Mr 95500, 32000 and 20000. The effects of dibutyryl cyclic AMP and bethanechol on the protein of Mr 32000 were not additive, suggesting that the two agents produced phosphorylation of the same site(s) on this protein. Since derivatives of cyclic AMP, which are not very effective secretagogues in the exocrine pancreas, stimulate phosphorylation of the protein of Mr 32000, it is difficult to argue that phosphorylation of this particular protein leads to protein secretion.
Collapse
|