1
|
Coia AJ, Arizpe JM, Smith PA, Kuyk TK, Lovell JA. Measurements of chromatic adaptation and luminous efficiency while wearing colored filters. J Vis 2024; 24:9. [PMID: 39392444 PMCID: PMC11472893 DOI: 10.1167/jov.24.11.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/03/2024] [Indexed: 10/12/2024] Open
Abstract
The visual system adapts dynamically to stabilize perception over widely varying illuminations. Such adaptation allows the colors of objects to appear constant despite changes in spectral illumination. Similarly, the wearing of colored filters also alters spectral content, but this alteration can be more extreme than typically encountered in nature, presenting a unique challenge to color constancy mechanisms. While it is known that chromatic adaptation is affected by surrounding spatial context, a recent study reported a gradual temporal adaptation effect to colored filters such that colors initially appear strongly shifted but over hours of wear are perceived as closer to an unfiltered appearance. Presently, it is not clear whether the luminance system adapts spatially and temporally like the chromatic system. To address this, spatial and temporal adaptation effects to a colored filter were measured using tasks that assess chromatic and luminance adaptation separately. Prior to and for 1 hour after putting on a pair of colored filters, participants made achromatic and heterochromatic flicker photometry (HFP) settings to measure chromatic and luminance adaptation, respectively. Results showed significant chromatic adaptation with achromatic settings moving closer to baseline settings over 1 hour of wearing the filters and greater adaptation with spatial context. Conversely, there was no significant luminance adaptation and HFP matches fell close to what was predicted photometrically. The results are discussed in the context of prior studies of chromatic and luminance adaptation.
Collapse
Affiliation(s)
- Andrew J Coia
- Science Applications International Corporation, JBSA Fort Sam Houston, TX, USA
| | - Joseph M Arizpe
- Science Applications International Corporation, JBSA Fort Sam Houston, TX, USA
| | - Peter A Smith
- Science Applications International Corporation, JBSA Fort Sam Houston, TX, USA
| | - Thomas K Kuyk
- Science Applications International Corporation, JBSA Fort Sam Houston, TX, USA
| | - Julie A Lovell
- Air Force Research Laboratory, 711th Human Performance Wing, Bioeffects Division, JBSA Fort Sam Houston, TX, USA
| |
Collapse
|
2
|
Peiso JR, Palmer SE, Shevell SK. Perceptual Resolution of Ambiguity: Can Tuned, Divisive Normalization Account for both Interocular Similarity Grouping and Difference Enhancement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587646. [PMID: 38617235 PMCID: PMC11014560 DOI: 10.1101/2024.04.01.587646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Our visual system usually provides a unique and functional representation of the external world. At times, however, the visual system has more than one compelling interpretation of the same retinal stimulus; in this case, neural populations compete for perceptual dominance to resolve ambiguity. Spatial and temporal context can guide perceptual experience. Recent evidence shows that ambiguous retinal stimuli are sometimes resolved by enhancing either similarity or differences among multiple percepts. Divisive normalization is a canonical neural computation that enables context-dependent sensory processing by attenuating a neuron's response by other neurons. Experiments here show that divisive normalization can account for perceptual representations of either similarity enhancement (so-called grouping) or difference enhancement, offering a unified framework for opposite perceptual outcomes.
Collapse
Affiliation(s)
- Jaelyn R Peiso
- University of Chicago, Department of Psychology, Physics Frontier Center for Living Systems, Chicago, IL
| | - Stephanie E Palmer
- University of Chicago, Department of Organismal Biology & Anatomy, Department of Physics, Physics Frontier Center for Living Systems Chicago, IL
| | | |
Collapse
|
3
|
Vanston JE, Boehm AE, Tuten WS, Roorda A. It's not easy seeing green: The veridical perception of small spots. J Vis 2023; 23:2. [PMID: 37133838 PMCID: PMC10166115 DOI: 10.1167/jov.23.5.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/26/2023] [Indexed: 05/04/2023] Open
Abstract
When single cones are stimulated with spots of 543-nm light presented against a white background, subjects report percepts that vary between predominately red, white, and green. However, light of the same spectral composition viewed over a large field under normal viewing conditions looks invariably green and highly saturated. It remains unknown what stimulus parameters are most important for governing the color appearance in the transition between these two extreme cases. The current study varied the size, intensity and retinal motion of stimuli presented in an adaptive optics scanning laser ophthalmoscope. Stimuli were either stabilized on target locations or allowed to drift across the retina with the eye's natural motion. Increasing both stimulus size and intensity led to higher likelihoods that monochromatic spots of light were perceived as green, whereas only higher intensities led to increases in perceived saturation. The data also show an interaction between size and intensity, suggesting that the balance between magnocellular and parvocellular activation may be critical factors for color perception. Surprisingly, under the range of conditions tested, color appearance did not depend on whether stimuli were stabilized. Sequential activation of many cones does not appear to drive hue and saturation perception as effectively as simultaneous activation of many cones.
Collapse
Affiliation(s)
- John Erik Vanston
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Alexandra E Boehm
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - William S Tuten
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Yang CC, Tsujimura SI, Yeh SL. Blue-light background impairs visual exogenous attention shift. Sci Rep 2023; 13:3794. [PMID: 36882407 PMCID: PMC9992692 DOI: 10.1038/s41598-022-24862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/22/2022] [Indexed: 03/09/2023] Open
Abstract
Previous research into the effects of blue light on visual-spatial attention has yielded mixed results due to a lack of properly controlling critical factors like S-cone stimulation, ipRGCs stimulation, and color. We adopted the clock paradigm and systematically manipulated these factors to see how blue light impacts the speed of exogenous and endogenous attention shifts. Experiments 1 and 2 revealed that, relative to the control light, exposure to the blue-light background decreased the speed of exogenous (but not endogenous) attention shift to external stimuli. To further clarify the contribution(s) of blue-light sensitive photoreceptors (i.e., S-cone and ipRGCs), we used a multi-primary system that could manipulate the stimulation of a single type of photoreceptor without changing the stimulation of other photoreceptors (i.e., the silent substitution method). Experiments 3 and 4 revealed that stimulation of S-cones and ipRGCs did not contribute to the impairment of exogenous attention shift. Our findings suggest that associations with blue colors, such as the concept of blue light hazard, cause exogenous attention shift impairment. Some of the previously documented blue-light effects on cognitive performances need to be reevaluated and reconsidered in light of our findings.
Collapse
Affiliation(s)
- Chien-Chun Yang
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Sei-Ichi Tsujimura
- Faculty of Design and Architecture, Nagoya City University, Nagoya, Japan
| | - Su-Ling Yeh
- Department of Psychology, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.
- Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Alleysson D, Méary D. Measurement of individual color space using a luminous vector field. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:A199-A207. [PMID: 37133038 DOI: 10.1364/josaa.476757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study is intended to measure the geometry of the observer's color space when viewing a computer screen and to define individual variations from these data. A CIE photometric standard observer assumes that the eye's spectral efficiency function is constant, and photometry measurements correspond to vectors with fixed directions. By definition, the standard observer decomposes color space into planar surfaces of constant luminance. Using heterochromatic photometry with a minimum motion stimulus, we systematically measure the direction of luminous vectors for many observers and many color points. During the measurement process, the background and stimulus modulation averages are fixed to the given points to ensure that the observer is in a fixed adaptation mode. Our measurements result in a vector field or set of vectors (x,v), where x is the point's color space position, and v is the observer's luminosity vector. To estimate surfaces from vector fields, two mathematical hypotheses were used: (1) that surfaces are quadratic or, equivalently, that the vector field model is affine, and (2) that the metric of surfaces is proportional to a visual origin. Across 24 observers, we found that vector fields are convergent and the corresponding surfaces are hyperbolic. The equation of the surface in the display's color space coordinate system, and in particular the axis of symmetry, varied systematically from individual to individual. A hyperbolic geometry is compatible with studies that emphasize a modification of the photometric vector with changing adaptations.
Collapse
|
6
|
EMERY KARAJ, ISHERWOOD ZOEYJ, WEBSTER MICHAELA. Gaining the system: limits to compensating color deficiencies through post-receptoral gain changes. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:A16-A25. [PMID: 37132998 PMCID: PMC10157001 DOI: 10.1364/josaa.480035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 05/04/2023]
Abstract
Color percepts of anomalous trichromats are often more similar to normal trichromats than predicted from their receptor spectral sensitivities, suggesting that post-receptoral mechanisms can compensate for chromatic losses. The basis for these adjustments and the extent to which they could discount the deficiency are poorly understood. We modeled the patterns of compensation that might result from increasing the gains in post-receptoral neurons to offset their weakened inputs. Individual neurons and the population responses jointly encode luminance and chromatic signals. As a result, they cannot independently adjust for a change in the chromatic inputs, predicting only partial recovery of the chromatic responses and increased responses to achromatic contrast. These analyses constrain the potential sites and mechanisms of compensation for a color loss and characterize the utility and limits of neural gain changes for calibrating color vision.
Collapse
Affiliation(s)
- KARA J. EMERY
- Department of Psychology and Graduate Program in Integrative Neuroscience, University of Nevada, Reno, Reno NV 89557
- Center for Data Science, New York University, New York NY 10011
| | - ZOEY J. ISHERWOOD
- Department of Psychology and Graduate Program in Integrative Neuroscience, University of Nevada, Reno, Reno NV 89557
| | - MICHAEL A. WEBSTER
- Department of Psychology and Graduate Program in Integrative Neuroscience, University of Nevada, Reno, Reno NV 89557
| |
Collapse
|
7
|
Yoshimatsu H, Murai Y, Yotsumoto Y. Effect of luminance signal and perceived speed on motion-related duration distortions. Vision Res 2022; 198:108070. [DOI: 10.1016/j.visres.2022.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022]
|
8
|
Bozorgian A, Pedersen M, Thomas JB. Modification and evaluation of the peripheral contrast sensitivity function models. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:1650-1658. [PMID: 36215633 DOI: 10.1364/josaa.445234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
We propose a series of modifications to the Barten contrast sensitivity function model for peripheral vision based on anatomical and psychophysical studies. These modifications result in a luminance pattern detection model that could quantitatively describe the extent of veridical pattern resolution and the aliasing zone. We evaluated our model against psychophysical measurements in peripheral vision. Our numerical assessment shows that the modified Barten leads to lower estimate errors than its original version.
Collapse
|
9
|
Carther-Krone TA, Marotta JJ. The influence of magnocellular and parvocellular visual information on global processing in White and Asian populations. PLoS One 2022; 17:e0270422. [PMID: 35834469 PMCID: PMC9282618 DOI: 10.1371/journal.pone.0270422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022] Open
Abstract
Humans have the remarkable ability to efficiently group elements of a scene together to form a global whole. However, cross-cultural comparisons show that East Asian individuals process scenes more globally than White individuals. This experiment presents new insights into global processing, revealing the relative contributions of two types of visual cells in mediating global and local visual processing in these two groups. Participants completed the Navon hierarchical letters task under divided-attention conditions, indicating whether a target letter “H” was present in the stimuli. Stimuli were either ‘unbiased’, displayed as black letters on a grey screen, or biased to predominantly process low spatial frequency information using psychophysical thresholds that converted unbiased stimuli into achromatic magnocellular-biased stimuli and red-green isoluminant parvocellular-biased stimuli. White participants processed stimuli more globally than Asian participants when low spatial frequency information was conveyed via the parvocellular pathway, while Asian participants showed a global processing advantage when low spatial frequency information was conveyed via the magnocellular pathway, and to a lesser extent through the parvocellular pathway. These findings suggest that the means by which a global processing bias is achieved depends on the subcortical pathway through which visual information is transmitted, and provides a deeper understanding of the relationship between global/local processing, subcortical pathways and spatial frequencies.
Collapse
Affiliation(s)
- Tiffany A. Carther-Krone
- Perception and Action Lab, Department of Psychology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| | - Jonathan J. Marotta
- Perception and Action Lab, Department of Psychology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Lee BB, Swanson WH. Detection and discrimination of achromatic contrast: A ganglion cell perspective. J Vis 2022; 22:11. [PMID: 35848903 PMCID: PMC9308016 DOI: 10.1167/jov.22.8.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/26/2022] [Indexed: 11/24/2022] Open
Abstract
The magnocellular (MC) pathway in the primate has much higher achromatic contrast sensitivity than the parvocellular (PC) pathway, and is implicated in luminance contrast detection. But MC pathway responses tend to saturate at lower achromatic contrast than do PC pathway responses. It has been proposed that the PC pathway plays a major role in discriminating suprathreshold achromatic contrast, because the MC pathway is in saturation. This has been termed the pulsed-pedestal protocol. To test this hypothesis, responses of MC and PC pathway ganglion cells have been examined under suprathreshold conditions with stimulus configurations similar to those in psychophysical tests. For MC cells, response saturation was much less for flashed or moving edges than for sinusoidal modulation, and MC cell thresholds predicted for these stimuli were similar to psychophysical discrimination (and detection) data. Results suggest the protocol is not effective in segregating MC and PC function.
Collapse
Affiliation(s)
- Barry B Lee
- Graduate Center for Vision Research, Department of Biological Sciences, SUNY College of Optometry, New York, NY, USA
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|
11
|
Rezeanu D, Neitz M, Neitz J. How We See Black and White: The Role of Midget Ganglion Cells. Front Neuroanat 2022; 16:944762. [PMID: 35864822 PMCID: PMC9294633 DOI: 10.3389/fnana.2022.944762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
According to classical opponent color theory, hue sensations are mediated by spectrally opponent neurons that are excited by some wavelengths of light and inhibited by others, while black-and-white sensations are mediated by spectrally non-opponent neurons that respond with the same sign to all wavelengths. However, careful consideration of the morphology and physiology of spectrally opponent L vs. M midget retinal ganglion cells (RGCs) in the primate retina indicates that they are ideally suited to mediate black-and-white sensations and poorly suited to mediate color. Here we present a computational model that demonstrates how the cortex could use unsupervised learning to efficiently separate the signals from L vs. M midget RGCs into distinct signals for black and white based only correlation of activity over time. The model also reveals why it is unlikely that these same ganglion cells could simultaneously mediate our perception of red and green, and shows how, in theory, a separate small population of midget RGCs with input from S, M, and L cones would be ideally suited to mediating hue perception.
Collapse
Affiliation(s)
| | | | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Lem DW, Davey PG, Gierhart DL, Rosen RB. A Systematic Review of Carotenoids in the Management of Age-Related Macular Degeneration. Antioxidants (Basel) 2021; 10:1255. [PMID: 34439503 PMCID: PMC8389280 DOI: 10.3390/antiox10081255] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
Age-related macular degeneration (AMD) remains a leading cause of modifiable vision loss in older adults. Chronic oxidative injury and compromised antioxidant defenses represent essential drivers in the development of retinal neurodegeneration. Overwhelming free radical species formation results in mitochondrial dysfunction, as well as cellular and metabolic imbalance, which becomes exacerbated with increasing age. Thus, the depletion of systemic antioxidant capacity further proliferates oxidative stress in AMD-affected eyes, resulting in loss of photoreceptors, neuroinflammation, and ultimately atrophy within the retinal tissue. The aim of this systematic review is to examine the neuroprotective potential of the xanthophyll carotenoids lutein, zeaxanthin, and meso-zeaxanthin on retinal neurodegeneration for the purpose of adjunctive nutraceutical strategy in the management of AMD. A comprehensive literature review was performed to retrieve 55 eligible publications, using four database searches from PubMed, Embase, Cochrane Library, and the Web of Science. Epidemiology studies indicated an enhanced risk reduction against late AMD with greater dietary consumption of carotenoids, meanwhile greater concentrations in macular pigment demonstrated significant improvements in visual function among AMD patients. Collectively, evidence strongly suggests that carotenoid vitamin therapies offer remarkable synergic protection in the neurosensory retina, with the potential to serve as adjunctive nutraceutical therapy in the management of established AMD, albeit these benefits may vary among different stages of disease.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, Pomona, CA 91766, USA;
| | | | | | - Richard B. Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
13
|
Abstract
Visual images can be described in terms of the illuminants and objects that are causal to the light reaching the eye, the retinal image, its neural representation, or how the image is perceived. Respecting the differences among these distinct levels of description can be challenging but is crucial for a clear understanding of color vision. This article approaches color by reviewing what is known about its neural representation in the early visual cortex, with a brief description of signals in the eye and the thalamus for context. The review focuses on the properties of single neurons and advances the general theme that experimental approaches based on knowledge of feedforward signals have promoted greater understanding of the neural code for color than approaches based on correlating single-unit responses with color perception. New data from area V1 illustrate the strength of the feedforward approach. Future directions for progress in color neurophysiology are discussed: techniques for improved single-neuron characterization, for investigations of neural populations and small circuits, and for the analysis of natural image statistics.
Collapse
Affiliation(s)
- Gregory D Horwitz
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA; .,Washington National Primate Research Center, University of Washington, Seattle, Washington 98121, USA
| |
Collapse
|
14
|
Wienke C, Bartsch MV, Vogelgesang L, Reichert C, Hinrichs H, Heinze HJ, Dürschmid S. Mind-wandering Is Accompanied by Both Local Sleep and Enhanced Processes of Spatial Attention Allocation. Cereb Cortex Commun 2021; 2:tgab001. [PMID: 34296151 PMCID: PMC8153027 DOI: 10.1093/texcom/tgab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Mind-wandering (MW) is a subjective, cognitive phenomenon, in which thoughts move away from the task toward an internal train of thoughts, possibly during phases of neuronal sleep-like activity (local sleep, LS). MW decreases cortical processing of external stimuli and is assumed to decouple attention from the external world. Here, we directly tested how indicators of LS, cortical processing, and attentional selection change in a pop-out visual search task during phases of MW. Participants’ brain activity was recorded using magnetoencephalography, MW was assessed via self-report using randomly interspersed probes. As expected, the performance decreased under MW. Consistent with the occurrence of LS, MW was accompanied by a decrease in high-frequency activity (HFA, 80–150 Hz) and an increase in slow wave activity (SWA, 1–6 Hz). In contrast, visual attentional selection as indexed by the N2pc component was enhanced during MW with the N2pc amplitude being directly linked to participants’ performance. This observation clearly contradicts accounts of attentional decoupling that would predict a decrease in attention-related responses to external stimuli during MW. Together, our results suggest that MW occurs during phases of LS with processes of attentional target selection being upregulated, potentially to compensate for the mental distraction during MW.
Collapse
Affiliation(s)
- Christian Wienke
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Mandy V Bartsch
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Lena Vogelgesang
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Christoph Reichert
- Forschungscampus STIMULATE, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.,CBBS - center of behavioral brain sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Hermann Hinrichs
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.,Forschungscampus STIMULATE, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.,CBBS - center of behavioral brain sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.,Forschungscampus STIMULATE, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany.,CBBS - center of behavioral brain sciences, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Stefan Dürschmid
- Department of Neurology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| |
Collapse
|
15
|
Lem DW, Gierhart DL, Davey PG. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients 2021; 13:2441. [PMID: 34371951 PMCID: PMC8308772 DOI: 10.3390/nu13072441] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy, which was primarily regarded as a microvascular disease, is the leading cause of irreversible blindness worldwide. With obesity at epidemic proportions, diabetes-related ocular problems are exponentially increasing in the developed world. Oxidative stress due to hyperglycemic states and its associated inflammation is one of the pathological mechanisms which leads to depletion of endogenous antioxidants in retina in a diabetic patient. This contributes to a cascade of events that finally leads to retinal neurodegeneration and irreversible vision loss. The xanthophylls lutein and zeaxanthin are known to promote retinal health, improve visual function in retinal diseases such as age-related macular degeneration that has oxidative damage central in its etiopathogenesis. Thus, it can be hypothesized that dietary supplements with xanthophylls that are potent antioxidants may regenerate the compromised antioxidant capacity as a consequence of the diabetic state, therefore ultimately promoting retinal health and visual improvement. We performed a comprehensive literature review of the National Library of Medicine and Web of Science databases, resulting in 341 publications meeting search criteria, of which, 18 were found eligible for inclusion in this review. Lutein and zeaxanthin demonstrated significant protection against capillary cell degeneration and hyperglycemia-induced changes in retinal vasculature. Observational studies indicate that depletion of xanthophyll carotenoids in the macula may represent a novel feature of DR, specifically in patients with type 2 or poorly managed type 1 diabetes. Meanwhile, early interventional trials with dietary carotenoid supplementation show promise in improving their levels in serum and macular pigments concomitant with benefits in visual performance. These findings provide a strong molecular basis and a line of evidence that suggests carotenoid vitamin therapy may offer enhanced neuroprotective effects with therapeutic potential to function as an adjunct nutraceutical strategy for management of diabetic retinopathy.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| |
Collapse
|
16
|
Attention expedites target selection by prioritizing the neural processing of distractor features. Commun Biol 2021; 4:814. [PMID: 34188169 PMCID: PMC8242025 DOI: 10.1038/s42003-021-02305-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
Whether doing the shopping, or driving the car – to navigate daily life, our brain has to rapidly identify relevant color signals among distracting ones. Despite a wealth of research, how color attention is dynamically adjusted is little understood. Previous studies suggest that the speed of feature attention depends on the time it takes to enhance the neural gain of cortical units tuned to the attended feature. To test this idea, we had human participants switch their attention on the fly between unpredicted target color alternatives, while recording the electromagnetic brain response to probes matching the target, a non-target, or a distracting alternative target color. Paradoxically, we observed a temporally prioritized processing of distractor colors. A larger neural modulation for the distractor followed by its stronger attenuation expedited target identification. Our results suggest that dynamic adjustments of feature attention involve the temporally prioritized processing and elimination of distracting feature representations. In order to investigate underlying mechanisms of color attention, Bartsch et al measured electromagnetic brain responses in participants who were challenged to switch their attention in accordance with unpredicted target colors changes in the absence or presence of ‘distractor colors’. They demonstrated that dynamic adjustments of feature attention involve the temporally prioritized processing and elimination of distracting feature representations.
Collapse
|
17
|
Lem DW, Gierhart DL, Davey PG. Carotenoids in the Management of Glaucoma: A Systematic Review of the Evidence. Nutrients 2021; 13:1949. [PMID: 34204051 PMCID: PMC8228567 DOI: 10.3390/nu13061949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Primary open-angle glaucoma (POAG) remains a leading cause of irreversible blindness globally. Recent evidence further substantiates sustained oxidative stress, and compromised antioxidant defenses are key drivers in the onset of glaucomatous neurodegeneration. Overwhelming oxidative injury is likely attributed to compounding mitochondrial dysfunction that worsens with age-related processes, causing aberrant formation of free radical species. Thus, a compromised systemic antioxidant capacity exacerbates further oxidative insult in glaucoma, leading to apoptosis, neuroinflammation, and subsequent tissue injury. The purpose of this systematic review is to investigate the neuroprotective benefits of the macular carotenoids lutein, zeaxanthin, and meso-zeaxanthin on glaucomatous neurodegeneration for the purpose of adjunctive nutraceutical treatment in glaucoma. A comprehensive literature search was conducted in three databases (PubMed, Cochrane Library, and Web of Science) and 20 records were identified for screening. Lutein demonstrated enhanced neuroprotection on retinal ganglion cell survival and preserved synaptic activity. In clinical studies, a protective trend was seen with greater dietary consumption of carotenoids and risk of glaucoma, while greater carotenoid levels in macular pigment were largely associated with improved visual performance in glaucomatous eyes. The data suggest that carotenoid vitamin therapy exerts synergic neuroprotective benefits and has the capacity to serve adjunctive therapy in the management of glaucoma.
Collapse
Affiliation(s)
- Drake W. Lem
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| | | | - Pinakin Gunvant Davey
- College of Optometry, Western University of Health Sciences, 309 E Second St, Pomona, CA 91766, USA;
| |
Collapse
|
18
|
Huchzermeyer C, Horn F, Lämmer R, Mardin C, Kremers J. Summation of Temporal L-Cone- and M-Cone-Contrast in the Magno- and Parvocellular Retino-Geniculate Systems in Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:17. [PMID: 33988692 PMCID: PMC8132014 DOI: 10.1167/iovs.62.6.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose The purpose of this study was to characterize summation of temporal L- and M-cone contrasts in the parvo- (P-) and magnocellular (M-) pathways in glaucoma and the relationship between the respective temporal contrast sensitivities (tCS) and clinical parameters. Methods Perifoveal tCS to isolated or combined L- and M-cone contrasts (with different contrast ratios, and therefore different luminance and chromatic components) were measured at different temporal frequencies (at 1 or 2 Hz and at 20 Hz) using triple silent substitution in 73 subjects (13 healthy, 25 with glaucoma, and 35 with perimetric glaucoma). A vector summation model was used to analyze whether perception was driven by the P-pathway, the M-pathway, or both. Using this model, L- and M-cone input strengths (AL, AM) and phase differences between L- and M-cone inputs were estimated. Results Perception was always mediated by the P-pathway at low frequencies, as indicated by a median phase angle of 179.84 degrees (cone opponency) and a median AL/AM ratio of 1.04 (balanced L- and M-cone input strengths). In contrast, perception was exclusively mediated by the M-pathway at higher frequencies (input strength not balanced: AL/AM = 2.94, median phase angles = 130.17 degrees). Differences in phase were not significant between diagnosis groups (Kruskal-Wallis = 0.092 for P- and 0.35 for M-pathway). We found differences between groups only for the M-pathway (L-cone tCS deviations at 20 Hz were significantly lower in the patients with glaucoma P = 0.014, with a strong tendency in M-cones P = 0.049). L-cone driven tCS deviations at 20 Hz were linearly correlated with perimetric mean defect (MD) and quadratically correlated with retinal nerve fiber layer (RNFL) thickness. Conclusions Unaltered phase angles between L- and M-cone inputs in glaucoma indicated intact temporal processing. Only in the M-pathway, contrast sensitivity deviations were closely related to diagnosis group, MD, and RNFL thickness, indicating M-pathway involvement.
Collapse
Affiliation(s)
- Cord Huchzermeyer
- Department of Ophthalmology, University Hospital Erlangen, Germany.,Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Folkert Horn
- Department of Ophthalmology, University Hospital Erlangen, Germany.,Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Robert Lämmer
- Department of Ophthalmology, University Hospital Erlangen, Germany.,Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Christian Mardin
- Department of Ophthalmology, University Hospital Erlangen, Germany.,Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Germany.,Friedrich-Alexander-University Erlangen-Nürnberg, Germany
| |
Collapse
|
19
|
Kremers J, Aher AJ, Parry NRA, Patel NB, Frishman LJ. Comparison of macaque and human L- and M-cone driven electroretinograms. Exp Eye Res 2021; 206:108556. [PMID: 33794198 DOI: 10.1016/j.exer.2021.108556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE The macaque retina is often used as a model for the human retina. However, there are only a handful of direct in vivo comparisons of the retinal physiology in humans and macaques. In the current study, ERG responses to luminance, L-cone isolating and M-cone isolating stimuli with sinusoidal, sawtooth and square wave temporal profiles were measured. The results were compared with those obtained from human observers. METHODS The responses from five anesthetized adult macaques were measured. Full field stimuli were created. L- and M-cone isolating stimuli were based on the triple silent substitution technique. Sinusoidal stimuli had temporal frequencies between 4 and 56 Hz in 4 Hz steps. Sawtooth stimuli with rapid-on ramp-off and with rapid-off ramp-on excitation profiles had a frequency of 4 Hz. Square stimuli were presented at 2 Hz. RESULTS Macaque and human ERGs in response to L- and M-cone isolating stimuli reflect L/M opponency and luminance activity. In responses to sine waves, cone opponency dominates at low temporal frequencies (4-12 Hz); luminance dominates at high temporal frequencies. The responses to sawtooth and square wave stimuli reflect a mixture of chromatic and luminance activity. L:M response ratios vary between individuals both in macaques and humans. Macaques show more complex responses, including greater second harmonic contributions than those in humans. CONCLUSIONS Macaque and human ERGs share basic underlying mechanisms reflecting L/M opponency and luminance activity. There may be quantitative differences possibly reflecting differences in contributions of inner retinal mechanisms to the ERGs.
Collapse
Affiliation(s)
- Jan Kremers
- Section for Retinal Physiology, University Hospital Erlangen, 91054, Erlangen, Germany.
| | - Avinash J Aher
- Section for Retinal Physiology, University Hospital Erlangen, 91054, Erlangen, Germany
| | - Neil R A Parry
- Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Nimesh B Patel
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, TX, USA
| | - Laura J Frishman
- Department of Vision Sciences, College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
20
|
Sutterer DW, Coia AJ, Sun V, Shevell SK, Awh E. Decoding chromaticity and luminance from patterns of EEG activity. Psychophysiology 2021; 58:e13779. [PMID: 33550667 DOI: 10.1111/psyp.13779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
A long-standing question in the field of vision research is whether scalp-recorded EEG activity contains sufficient information to identify stimulus chromaticity. Recent multivariate work suggests that it is possible to decode which chromaticity an observer is viewing from the multielectrode pattern of EEG activity. There is debate, however, about whether the claimed effects of stimulus chromaticity on visual evoked potentials (VEPs) are instead caused by unequal stimulus luminances, which are achromatic differences. Here, we tested whether stimulus chromaticity could be decoded when potential confounds with luminance were minimized by (1) equating chromatic stimuli in luminance using heterochromatic flicker photometry for each observer and (2) independently varying the chromaticity and luminance of target stimuli, enabling us to test whether the pattern for a given chromaticity generalized across wide variations in luminance. We also tested whether luminance variations can be decoded from the topography of voltage across the scalp. In Experiment 1, we presented two chromaticities (appearing red and green) at three luminance levels during separate trials. In Experiment 2, we presented four chromaticities (appearing red, orange, yellow, and green) at two luminance levels. Using a pattern classifier and the multielectrode pattern of EEG activity, we were able to accurately decode the chromaticity and luminance level of each stimulus. Furthermore, we were able to decode stimulus chromaticity when we trained the classifier on chromaticities presented at one luminance level and tested at a different luminance level. Thus, EEG topography contains robust information regarding stimulus chromaticity, despite large variations in stimulus luminance.
Collapse
Affiliation(s)
- David W Sutterer
- Department of Psychology, University of Chicago, Chicago, IL, USA.,Institute for Mind and Biology, University of Chicago, Chicago, IL, USA.,Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Andrew J Coia
- Department of Psychology, University of Chicago, Chicago, IL, USA.,Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| | - Vincent Sun
- Center for Visual Communication and Color Research, Chinese Culture University, Taipei, Taiwan
| | - Steven K Shevell
- Department of Psychology, University of Chicago, Chicago, IL, USA.,Institute for Mind and Biology, University of Chicago, Chicago, IL, USA.,Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL, USA
| | - Edward Awh
- Department of Psychology, University of Chicago, Chicago, IL, USA.,Institute for Mind and Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
21
|
Abstract
Heterochromatic flicker photometry (HFP), minimum motion (MM), and minimally distinct border (MDB) settings have often been used to determine equiluminance, a relative intensity setting for two chromaticities that, in theory, eliminates the responses of a luminance or achromatic psychophysical mechanism. These settings have been taken to reflect the relative contribution of the long (L) and medium (M) wavelength cones to luminance, which varies widely across individuals. The present study compares HFP, MM, and MDB using stimuli that do not modulate the short (S) wavelength cones, in both practiced and naïve observers. MDB was performed with both flashed and steadily viewed stimuli. Results are represented in the (∆L/L, ∆M/M) plane of cone contrast space. Considering both practiced and naïve observers, both MM and HFP had excellent within-subject precision and high test–retest reliability, whereas HFP also had low between-subject variability. The MDB tasks were less reliable and less precise. The mean L:M contrast ratios at equiluminance were lower for the two temporal tasks (HFP and MM) compared to the spatial tasks (MDB), perhaps consistent with the existence of multiple luminance mechanisms. Overall, the results suggest that the best method for determining equiluminance is HFP, with MM being a close second.
Collapse
|
22
|
Zele AJ, Dey A, Adhikari P, Feigl B. Melanopsin hypersensitivity dominates interictal photophobia in migraine. Cephalalgia 2020; 41:217-226. [PMID: 33040593 DOI: 10.1177/0333102420963850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE To define the melanopsin and cone luminance retinogeniculate pathway contributions to photophobia in healthy controls and migraineurs. METHODS Healthy controls and migraineurs were categorized according to the International Classification of Headache Disorders criteria. Photophobia was measured under full-field illumination using electromyography in response to narrowband lights spanning the melanopsin and cone luminance action spectra. Migraineurs were tested during their interictal headache-free period. Melanopsin-mediated post-illumination pupil responses quantified intrinsically photosensitive Retinal Ganglion Cell (ipRGC) function. RESULTS A model combining the melanopsin and cone luminance action spectra best described photophobia thresholds in controls and migraineurs; melanopsin contributions were ∼1.5× greater than cone luminance. In the illumination range causing photophobia, migraineurs had lower photophobia thresholds (∼0.55 log units; p < 0.001) and higher post-illumination pupil response amplitudes (p = 0.03) than controls. CONCLUSION Photophobia is driven by melanopsin and cone luminance inputs to the cortex via the retino-thalamocortical pathway. In migraineurs, lower photophobia thresholds reflect hypersensitivity of ipRGC and cone luminance pathways, with the larger and prolonged post-illumination pupil response amplitude indicative of a supranormal melanopsin response. Our findings inform artificial lighting strategies incorporating luminaires with low melanopsin excitation and photopic luminance to limit the lighting conditions leading to photophobia.
Collapse
Affiliation(s)
- Andrew J Zele
- Centre for Vision and Eye Research, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Ashim Dey
- Centre for Vision and Eye Research, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - Prakash Adhikari
- Centre for Vision and Eye Research, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia.,Queensland Eye Institute, Brisbane, Queensland, Australia
| |
Collapse
|
23
|
Developments in non-invasive visual electrophysiology. Vision Res 2020; 174:50-56. [PMID: 32540518 DOI: 10.1016/j.visres.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/23/2023]
Abstract
To study the physiology of the primate visual system, non-invasive electrophysiological techniques are of major importance. Two main techniques are available: the electroretinogram (ERG), a mass potential originating in the retina, and the visual evoked potential (VEP), which reflects activity in the primary visual cortex. In this overview, the history and the state of the art of these techniques are briefly presented as an introduction to the special issue "New Developments in non-invasive visual electrophysiology". The overview and the special issue can be used as the starting point for exciting new developments in the electrophysiology of primate and mammalian vision.
Collapse
|
24
|
Lee KR, Richardson AJ, Walowit E, Crognale MA, Webster MA. Predicting color matches from luminance matches. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:A35-A43. [PMID: 32400514 PMCID: PMC7233378 DOI: 10.1364/josaa.381256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/06/2020] [Indexed: 05/20/2023]
Abstract
Color vision and spectral sensitivity vary among individuals with normal color vision; thus, for many applications, it is important to measure and correct for an observer's sensitivity. Full correction would require measuring color and luminance matches and is rarely implemented. However, luminance matches (equiluminance settings) are routinely measured and simple to conduct. We modeled how well an observer's color matches could be approximated by measuring only luminance sensitivity, since both depend on a common set of factors. We show that lens and macular pigment density and $L/M$L/M cone ratios alter equiluminance settings in different ways and can therefore be estimated from the settings. In turn, the density variations can account for a large proportion of the normal variation in color matching. Thus, luminance matches may provide a simple method to at least partially predict an observer's color matches without requiring more complex tasks or equipment.
Collapse
Affiliation(s)
- Kassandra R. Lee
- Graduate Programs in Integrative Neuroscience, University of Nevada, Reno, Department of Psychology, University of Nevada Reno, Reno Nevada 89557, USA
| | - Alex J. Richardson
- Cognitive and Brain Sciences, University of Nevada, Reno, Department of Psychology, University of Nevada Reno, Reno Nevada 89557, USA
| | | | - Michael A. Crognale
- Graduate Programs in Integrative Neuroscience, University of Nevada, Reno, Department of Psychology, University of Nevada Reno, Reno Nevada 89557, USA
- Cognitive and Brain Sciences, University of Nevada, Reno, Department of Psychology, University of Nevada Reno, Reno Nevada 89557, USA
| | - Michael A. Webster
- Graduate Programs in Integrative Neuroscience, University of Nevada, Reno, Department of Psychology, University of Nevada Reno, Reno Nevada 89557, USA
- Cognitive and Brain Sciences, University of Nevada, Reno, Department of Psychology, University of Nevada Reno, Reno Nevada 89557, USA
| |
Collapse
|
25
|
Grünert U, Martin PR. Cell types and cell circuits in human and non-human primate retina. Prog Retin Eye Res 2020; 78:100844. [PMID: 32032773 DOI: 10.1016/j.preteyeres.2020.100844] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022]
Abstract
This review summarizes our current knowledge of primate including human retina focusing on bipolar, amacrine and ganglion cells and their connectivity. We have two main motivations in writing. Firstly, recent progress in non-invasive imaging methods to study retinal diseases mean that better understanding of the primate retina is becoming an important goal both for basic and for clinical sciences. Secondly, genetically modified mice are increasingly used as animal models for human retinal diseases. Thus, it is important to understand to which extent the retinas of primates and rodents are comparable. We first compare cell populations in primate and rodent retinas, with emphasis on how the fovea (despite its small size) dominates the neural landscape of primate retina. We next summarise what is known, and what is not known, about the postreceptoral neurone populations in primate retina. The inventories of bipolar and ganglion cells in primates are now nearing completion, comprising ~12 types of bipolar cell and at least 17 types of ganglion cell. Primate ganglion cells show clear differences in dendritic field size across the retina, and their morphology differs clearly from that of mouse retinal ganglion cells. Compared to bipolar and ganglion cells, amacrine cells show even higher morphological diversity: they could comprise over 40 types. Many amacrine types appear conserved between primates and mice, but functions of only a few types are understood in any primate or non-primate retina. Amacrine cells appear as the final frontier for retinal research in monkeys and mice alike.
Collapse
Affiliation(s)
- Ulrike Grünert
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia.
| | - Paul R Martin
- The University of Sydney, Save Sight Institute, Faculty of Medicine and Health, Sydney, NSW, 2000, Australia; Australian Research Council Centre of Excellence for Integrative Brain Function, Sydney Node, The University of Sydney, Sydney, NSW, 2000, Australia
| |
Collapse
|
26
|
Cushing CA, Im HY, Adams RB, Ward N, Kveraga K. Magnocellular and parvocellular pathway contributions to facial threat cue processing. Soc Cogn Affect Neurosci 2020; 14:151-162. [PMID: 30721981 PMCID: PMC6382926 DOI: 10.1093/scan/nsz003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 01/25/2023] Open
Abstract
Human faces evolved to signal emotions, with their meaning contextualized by eye gaze. For instance, a fearful expression paired with averted gaze clearly signals both presence of threat and its probable location. Conversely, direct gaze paired with facial fear leaves the source of the fear-evoking threat ambiguous. Given that visual perception occurs in parallel streams with different processing emphases, our goal was to test a recently developed hypothesis that clear and ambiguous threat cues would differentially engage the magnocellular (M) and parvocellular (P) pathways, respectively. We employed two-tone face images to characterize the neurodynamics evoked by stimuli that were biased toward M or P pathways. Human observers (N = 57) had to identify the expression of fearful or neutral faces with direct or averted gaze while their magnetoencephalogram was recorded. Phase locking between the amygdaloid complex, orbitofrontal cortex (OFC) and fusiform gyrus increased early (0–300 ms) for M-biased clear threat cues (averted-gaze fear) in the β-band (13–30 Hz) while P-biased ambiguous threat cues (direct-gaze fear) evoked increased θ (4–8 Hz) phase locking in connections with OFC of the right hemisphere. We show that M and P pathways are relatively more sensitive toward clear and ambiguous threat processing, respectively, and characterize the neurodynamics underlying emotional face processing in the M and P pathways.
Collapse
Affiliation(s)
- Cody A Cushing
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Hee Yeon Im
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Reginald B Adams
- Department of Psychology, The Pennsylvania State University, University Park, PA, USA
| | - Noreen Ward
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kestutis Kveraga
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Neuronavigated TMS of early visual cortex eliminates unconscious processing of chromatic stimuli. Neuropsychologia 2020; 136:107266. [DOI: 10.1016/j.neuropsychologia.2019.107266] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
|
28
|
Thoreson WB, Dacey DM. Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina. Physiol Rev 2019; 99:1527-1573. [PMID: 31140374 PMCID: PMC6689740 DOI: 10.1152/physrev.00027.2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 01/13/2023] Open
Abstract
Synaptic interactions to extract information about wavelength, and thus color, begin in the vertebrate retina with three classes of light-sensitive cells: rod photoreceptors at low light levels, multiple types of cone photoreceptors that vary in spectral sensitivity, and intrinsically photosensitive ganglion cells that contain the photopigment melanopsin. When isolated from its neighbors, a photoreceptor confounds photon flux with wavelength and so by itself provides no information about color. The retina has evolved elaborate color opponent circuitry for extracting wavelength information by comparing the activities of different photoreceptor types broadly tuned to different parts of the visible spectrum. We review studies concerning the circuit mechanisms mediating opponent interactions in a range of species, from tetrachromatic fish with diverse color opponent cell types to common dichromatic mammals where cone opponency is restricted to a subset of specialized circuits. Distinct among mammals, primates have reinvented trichromatic color vision using novel strategies to incorporate evolution of an additional photopigment gene into the foveal structure and circuitry that supports high-resolution vision. Color vision is absent at scotopic light levels when only rods are active, but rods interact with cone signals to influence color perception at mesopic light levels. Recent evidence suggests melanopsin-mediated signals, which have been identified as a substrate for setting circadian rhythms, may also influence color perception. We consider circuits that may mediate these interactions. While cone opponency is a relatively simple neural computation, it has been implemented in vertebrates by diverse neural mechanisms that are not yet fully understood.
Collapse
Affiliation(s)
- Wallace B Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| | - Dennis M Dacey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center , Omaha, Nebraska ; and Department of Biological Structure, Washington National Primate Research Center, University of Washington , Seattle, Washington
| |
Collapse
|
29
|
Ijekah R, Vanston JE, Crognale MA. Mechanisms contributing to increment threshold and decrement threshold spectral sensitivities. Vision Res 2019; 158:157-163. [PMID: 30885879 DOI: 10.1016/j.visres.2019.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/17/2022]
Abstract
The shape of the human spectral sensitivity function depends on how it is measured. In the increment threshold (IT) technique, sensitivity is typically measured as the inverse of threshold for detection of increments of monochromatic light presented for relatively long durations on achromatic pedestals. Spectral sensitivity functions derived from IT techniques have long been used to reveal contribution from opponent color channels. Although IT functions have been studied extensively, little attention has been given to functions derived from decrement thresholds (DT), partly due to technical challenges of producing appropriate stimuli. Comparison of IT and DT spectral sensitivities may be of interest because there are known asymmetries in the visual system between on- and off-pathways and between increment and decrement responses within these pathways. Consequently, spectral sensitivity functions obtained using DT measures may reveal a different complement of contributing mechanisms than those that produce IT functions. We report here that IT and DT derived spectral sensitivities were essentially identical over much of the visible spectrum. However, decrement sensitivity was slightly greater than increment sensitivity in the shorter wavelengths at modest light levels. This difference was not present at higher light levels, implicating rod pathways as a possible source of the difference. In sum, it appears that under conditions shown to reveal strong contribution from opponent mechanisms, decrement functions are either 1) determined by a similar complement of spectrally opponent mechanisms as those that define increment spectral sensitivities or 2) that the present conditions are insensitive to underlying asymmetries.
Collapse
|
30
|
Bartsch MV, Donohue SE, Strumpf H, Schoenfeld MA, Hopf JM. Enhanced spatial focusing increases feature-based selection in unattended locations. Sci Rep 2018; 8:16132. [PMID: 30382137 PMCID: PMC6208401 DOI: 10.1038/s41598-018-34424-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/12/2018] [Indexed: 11/30/2022] Open
Abstract
Attention is a multifaceted phenomenon, which operates on features (e.g., colour or motion) and over space. A fundamental question is whether the attentional selection of features is confined to the spatially-attended location or operates independently across the entire visual field (global feature-based attention, GFBA). Studies providing evidence for GFBA often employ feature probes presented at spatially unattended locations, which elicit enhanced brain responses when they match a currently-attended target feature. However, the validity of this interpretation relies on consistent spatial focusing onto the target. If the probe were to temporarily attract spatial attention, the reported effects could reflect transient spatial selection processes, rather than GFBA. Here, using magnetoencephalographic recordings (MEG) in humans, we manipulate the strength and consistency of spatial focusing to the target by increasing the target discrimination difficulty (Experiment 1), and by demarcating the upcoming target’s location with a placeholder (Experiment 2), to see if GFBA effects are preserved. We observe that motivating stronger spatial focusing to the target did not diminish the effects of GFBA. Instead, aiding spatial pre-focusing with a placeholder enhanced the feature response at unattended locations. Our findings confirm that feature selection effects measured with spatially-unattended probes reflect a true location-independent neural bias.
Collapse
Affiliation(s)
- Mandy V Bartsch
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany. .,Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany.
| | - Sarah E Donohue
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Hendrik Strumpf
- Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany
| | - Mircea A Schoenfeld
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany.,Kliniken Schmieder Heidelberg, 69117, Heidelberg, Germany
| | - Jens-Max Hopf
- Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany.,Department of Neurology, Otto-von-Guericke University, 39120, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto-von-Guericke University, 39106, Magdeburg, Germany
| |
Collapse
|
31
|
Zele AJ, Adhikari P, Feigl B, Cao D. Cone and melanopsin contributions to human brightness estimation: reply. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:1783. [PMID: 30462100 DOI: 10.1364/josaa.35.001783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/05/2018] [Indexed: 06/09/2023]
Abstract
Our analytical description of full-field brightness perception data [J. Opt. Soc. Am. A35, B19 (2018)JOAOD60740-323210.1364/JOSAA.35.000B19] with contributions from cone luminance and melanopsin expressing intrinsically photosensitive retinal ganglion cells has been extended [J. Opt. Soc. Am. A35, 1780 (2018)JOAOD60740-323210.1364/JOSAA.35.001780] to include S-cones through a blue-yellow opponent channel. We welcome this reanalysis and provide a few remarks on the approach.
Collapse
|
32
|
Unconscious influence over executive control: Absence of conflict detection and adaptation. Conscious Cogn 2018; 63:110-122. [PMID: 29990956 DOI: 10.1016/j.concog.2018.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/26/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022]
Abstract
Executive control and its modulation of attentional mechanisms allow us to detect and adapt to conflicting information. According to recent studies, executive control functions may be modulated by unconsciously perceived information, although the available evidence is not consistent. In this study, we used a Flanker Task and employed Chromatic Flicker Fusion, a suppression technique that has been proposed as more adequate to elicit executive control functions, to assess conflict and conflict adaptation effects. Our results showed that, when suppressed, flankers did not evoke conflict related effects on performance. However, in trials where most flankers were incongruent, longer response times in congruent trials were observed, consistent with orienting responses. Our results help to support earlier theories regarding the inherent limitations of unconsciously perceived information, though future studies should further investigate why and under which conditions is the executive control system modulated by unconscious information.
Collapse
|
33
|
Zele AJ, Adhikari P, Feigl B, Cao D. Cone and melanopsin contributions to human brightness estimation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:B19-B25. [PMID: 29603934 DOI: 10.1364/josaa.35.000b19] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/17/2017] [Indexed: 06/08/2023]
Abstract
We determined the contributions of cone and melanopsin luminance signaling to human brightness perception. The absolute brightness of four narrowband primary lights presented in a full-field Ganzfeld was estimated in two conditions, either cone luminance-equated (186.7-1,867.0 cd·m-2) or melanopsin luminance-equated (31.6-316.3 melanopsin cd·m-2). We show that brightness estimations for each primary light follow an approximately linear increase with increasing cone or melanopsin luminance (in log units), but are not equivalent for primary lights equated with either cone or melanopsin luminance. Instead, brightness estimations result from a combined interaction between cone and melanopsin signaling. Analytical modeling with wavelength-dependent coefficients signifies that melanopsin luminance positively correlates with brightness magnitudes, and the cone luminance has two contribution components, one that is additive to melanopsin luminance and a second that is negative, implying an adaptation process. These results provide a new framework for evaluating the physiological basis of brightness perception and have direct practical applications for the development of energy-efficient light sources.
Collapse
|
34
|
Bednařík P, Tkáč I, Giove F, Eberly LE, Deelchand DK, Barreto FR, Mangia S. Neurochemical responses to chromatic and achromatic stimuli in the human visual cortex. J Cereb Blood Flow Metab 2018; 38:347-359. [PMID: 28273721 PMCID: PMC5951013 DOI: 10.1177/0271678x17695291] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, we aimed at determining the metabolic responses of the human visual cortex during the presentation of chromatic and achromatic stimuli, known to preferentially activate two separate clusters of neuronal populations (called "blobs" and "interblobs") with distinct sensitivity to color or luminance features. Since blobs and interblobs have different cytochrome-oxidase (COX) content and micro-vascularization level (i.e., different capacities for glucose oxidation), different functional metabolic responses during chromatic vs. achromatic stimuli may be expected. The stimuli were optimized to evoke a similar load of neuronal activation as measured by the bold oxygenation level dependent (BOLD) contrast. Metabolic responses were assessed using functional 1H MRS at 7 T in 12 subjects. During both chromatic and achromatic stimuli, we observed the typical increases in glutamate and lactate concentration, and decreases in aspartate and glucose concentration, that are indicative of increased glucose oxidation. However, within the detection sensitivity limits, we did not observe any difference between metabolic responses elicited by chromatic and achromatic stimuli. We conclude that the higher energy demands of activated blobs and interblobs are supported by similar increases in oxidative metabolism despite the different capacities of these neuronal populations.
Collapse
Affiliation(s)
- Petr Bednařík
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.,2 Division of Endocrinology and Diabetes, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,3 CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ivan Tkáč
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Federico Giove
- 4 MARBILab, Museo storico della fisica e Centro di studi e ricerche Enrico Fermi, Rome, Italy.,5 Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Lynn E Eberly
- 6 Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Dinesh K Deelchand
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Felipe R Barreto
- 7 Physics Department, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Silvia Mangia
- 1 Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
35
|
Nonselective Wiring Accounts for Red-Green Opponency in Midget Ganglion Cells of the Primate Retina. J Neurosci 2018; 38:1520-1540. [PMID: 29305531 DOI: 10.1523/jneurosci.1688-17.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
In primate retina, "red-green" color coding is initiated when signals originating in long (L) and middle (M) wavelength-sensitive cone photoreceptors interact antagonistically. The center-surround receptive field of "midget" ganglion cells provides the neural substrate for L versus M cone-opponent interaction, but the underlying circuitry remains unsettled, centering around the longstanding question of whether specialized cone wiring is present. To address this question, we measured the strength, sign, and spatial tuning of L- and M-cone input to midget receptive fields in the peripheral retina of macaque primates of either sex. Consistent with previous work, cone opponency arose when one of the cone types showed a stronger connection to the receptive field center than to the surround. We implemented a difference-of-Gaussians spatial receptive field model, incorporating known biology of the midget circuit, to test whether physiological responses we observed in real cells could be captured entirely by anatomical nonselectivity. When this model sampled nonselectively from a realistic cone mosaic, it accurately reproduced key features of a cone-opponent receptive field structure, and predicted both the variability and strength of cone opponency across the retina. The model introduced here is consistent with abundant anatomical evidence for nonselective wiring, explains both local and global properties of the midget population, and supports a role in their multiplexing of spatial and color information. It provides a neural basis for human chromatic sensitivity across the visual field, as well as the maintenance of normal color vision despite significant variability in the relative number of L and M cones across individuals.SIGNIFICANCE STATEMENT Red-green color vision is a hallmark of the human and nonhuman primate that starts in the retina with the presence of long (L)- and middle (M)-wavelength sensitive cone photoreceptor types. Understanding the underlying retinal mechanism for color opponency has focused on the broad question of whether this characteristic can emerge from nonselective wiring, or whether complex cone-type-specific wiring must be invoked. We provide experimental and modeling support for the hypothesis that nonselective connectivity is sufficient to produce the range of red-green color opponency observed in midget ganglion cells across the retina. Our nonselective model reproduces the diversity of physiological responses of midget cells while also accounting for systematic changes in color sensitivity across the visual field.
Collapse
|
36
|
Abstract
Attention to a feature enhances the sensory representation of that feature. Although much has been learned about the properties of attentional modulation when attending to a single feature, the effectiveness of attending to multiple features is not well understood. We investigated this question in a series of experiments using a color-detection task while varying the number of attended colors in a cueing paradigm. Observers were shown either a single cue, two cues, or no cue (baseline) before detecting a coherent color target. We measured detection threshold by varying the coherence level of the target. Compared to the baseline condition, we found consistent facilitation of detection performance in the one-cue and two-cue conditions, but performance in the two-cue condition was lower than that in the one-cue condition. In the final experiment, we presented a 50% valid cue to emulate the situation in which observers were only able to attend a single color in the two-cue condition, and found equivalent detection thresholds with the standard two-cue condition. These results indicate a limit in attending to two colors and further imply that observers could effectively attend a single color at a time. Such a limit is likely due to an inability to maintain multiple active attentional templates for colors.
Collapse
Affiliation(s)
- Taosheng Liu
- Department of Psychology, Michigan State University, 316 Physics Rd., East Lansing, MI, 48864, USA.
- Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| | - Michael Jigo
- Department of Psychology, Michigan State University, 316 Physics Rd., East Lansing, MI, 48864, USA
| |
Collapse
|
37
|
Attention to Color Sharpens Neural Population Tuning via Feedback Processing in the Human Visual Cortex Hierarchy. J Neurosci 2017; 37:10346-10357. [PMID: 28947573 DOI: 10.1523/jneurosci.0666-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/23/2017] [Accepted: 08/26/2017] [Indexed: 11/21/2022] Open
Abstract
Attention can facilitate the selection of elementary object features such as color, orientation, or motion. This is referred to as feature-based attention and it is commonly attributed to a modulation of the gain and tuning of feature-selective units in visual cortex. Although gain mechanisms are well characterized, little is known about the cortical processes underlying the sharpening of feature selectivity. Here, we show with high-resolution magnetoencephalography in human observers (men and women) that sharpened selectivity for a particular color arises from feedback processing in the human visual cortex hierarchy. To assess color selectivity, we analyze the response to a color probe that varies in color distance from an attended color target. We find that attention causes an initial gain enhancement in anterior ventral extrastriate cortex that is coarsely selective for the target color and transitions within ∼100 ms into a sharper tuned profile in more posterior ventral occipital cortex. We conclude that attention sharpens selectivity over time by attenuating the response at lower levels of the cortical hierarchy to color values neighboring the target in color space. These observations support computational models proposing that attention tunes feature selectivity in visual cortex through backward-propagating attenuation of units less tuned to the target.SIGNIFICANCE STATEMENT Whether searching for your car, a particular item of clothing, or just obeying traffic lights, in everyday life, we must select items based on color. But how does attention allow us to select a specific color? Here, we use high spatiotemporal resolution neuromagnetic recordings to examine how color selectivity emerges in the human brain. We find that color selectivity evolves as a coarse to fine process from higher to lower levels within the visual cortex hierarchy. Our observations support computational models proposing that feature selectivity increases over time by attenuating the responses of less-selective cells in lower-level brain areas. These data emphasize that color perception involves multiple areas across a hierarchy of regions, interacting with each other in a complex, recursive manner.
Collapse
|
38
|
Koenderink J, van Doorn A, Gegenfurtner K. Color weight photometry. Vision Res 2017; 151:88-98. [PMID: 28705690 DOI: 10.1016/j.visres.2017.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/27/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
We study the "color weight" for a number of rather different paradigms. In well researched heterochromatic photometry methods we find that the "weights" determined by settings of naive observers are closely determined by the CIE luminance functional. This is very different for tasks that involve mid- and high-level aspects of perception. In several cases we find equipollence for the display red, green and blue channels. Moreover, in such cases the very nonlinear maximum-rule fits the data rather better than a linear functional. These findings are of interest when photometry needs to be applied for stimuli that are different from the high temporal and low spatial frequency gratings typical for flicker photometry. These results are relevant for science, ergonomics and art.
Collapse
Affiliation(s)
- Jan Koenderink
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Germany; Experimental Psychology, Leuven University, KU Leuven, Belgium; Experimental Psychology, Utrecht University, The Netherlands
| | - Andrea van Doorn
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Germany; Experimental Psychology, Leuven University, KU Leuven, Belgium; Experimental Psychology, Utrecht University, The Netherlands
| | - Karl Gegenfurtner
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Giessen, Germany.
| |
Collapse
|
39
|
Chen J, Valsecchi M, Gegenfurtner KR. Enhanced brain responses to color during smooth-pursuit eye movements. J Neurophysiol 2017; 118:749-754. [PMID: 28468995 DOI: 10.1152/jn.00208.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 11/22/2022] Open
Abstract
Eye movements alter visual perceptions in a number of ways. During smooth-pursuit eye movements, previous studies reported decreased detection threshold for colored stimuli and for high-spatial-frequency luminance stimuli, suggesting a boost in the parvocellular system. The present study investigated the underlying neural mechanism using EEG in human participants. Participants followed a moving target with smooth-pursuit eye movements while steady-state visually evoked potentials (SSVEPs) were elicited by equiluminant red-green flickering gratings in the background. SSVEP responses to colored gratings were 18.9% higher during smooth pursuit than during fixation. There was no enhancement of SSVEPs by smooth pursuit when the flickering grating was defined by luminance instead of color. This result provides physiological evidence that the chromatic response in the visual system is boosted by the execution of smooth-pursuit eye movements in humans. Because the response improvement is thought to be the result of an improved response in the parvocellular system, SSVEPs to equiluminant stimuli could provide a direct test of parvocellular signaling, especially in populations where collecting an explicit behavioral response from the participant is not feasible.NEW & NOTEWORTHY We constantly move our eyes when we explore the world. Eye movements alter visual perception in various ways. The smooth-pursuit eye movements have been shown to boost color sensitivity. We recorded steady-state visually evoked potentials to equiluminant chromatic flickering stimuli and observed increased steady-state visually evoked potentials when participants smoothly pursued a moving target compared with when they maintained fixation. This work provides direct neurophysiological evidence for the parvocellular boost by smooth-pursuit eye movements in humans.
Collapse
Affiliation(s)
- Jing Chen
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Matteo Valsecchi
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Karl R Gegenfurtner
- Abteilung Allgemeine Psychologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| |
Collapse
|
40
|
Benoudis L, Ingrand P, Jeau J, Lichtwitz O, Boissonnot M, Leveziel N. Relationships between macular pigment optical density and lacquer cracks in high myopia. J Fr Ophtalmol 2016; 39:615-21. [PMID: 27544327 DOI: 10.1016/j.jfo.2016.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/04/2016] [Accepted: 04/06/2016] [Indexed: 11/26/2022]
Abstract
PURPOSE A low concentration of macular carotenoid pigment (lutein and zeaxanthin) is a significant risk factor for macular degeneration. The goal of this paper is to investigate the relationship between macular pigment optical density (MPOD) and lacquer cracks (LC) in high myopia. METHODS This is a prospective comparative observational study (NCT02205632) including high myopic patients with or without LC. High myopia was defined as a refractive error greater than 6 diopters of myopia or axial length greater than 26mm. All patients underwent best-corrected visual acuity in logMAR, MPOD measurement, multicolor imaging, SD-OCT, autofluorescence and axial length measurement. MPOD was calculated using heterochromatic flicker photometry. Group 1 was defined as eyes without LC and group 2 as eyes with LC. RESULTS Forty-five eyes of 32 patients with a mean age of 51.3 years were included in group 1, and 15 eyes of 13 patients aged 54.1 in group 2 (P=0.56). Mean spherical equivalent was -10.11 diopters in group 1 and -15.11 in group 2 (P=0.0004). Mean visual acuity was +0.08 logMAR (0.8 in decimal notation) in group 1 and +0.11 logMAR (0.8 in decimal notation) in group 2 (P=0.061). Axial length was 27.8mm in group 1 and 29.2 in group 2 (P=0.0052). Central macular thickness was lower in group 1 (295μm) than in group 2 (305μm) (P<0.0001), and macular choroidal thickness did not differ between the two groups (P=0.094). Mean MPOD in group 2 was 0.52 and 0.63 in group 1 (P=0.042). Differences in axial length were not related to MPOD measurements (P=0.74). CONCLUSION A lower rate of MPOD was observed in cases of LC in high myopia. Further studies are needed to investigate if dietary carotenoids could have a protective effect in reducing the risk of LC.
Collapse
Affiliation(s)
- L Benoudis
- Service d'ophtalmologie, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France; Fondation ophtalmologique Adolphe-de-Rothschild, 29, rue Manin, 75019 Paris, France.
| | - P Ingrand
- Service de Santé Publique, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| | - J Jeau
- Service d'ophtalmologie, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| | - O Lichtwitz
- Service d'ophtalmologie, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| | - M Boissonnot
- Service d'ophtalmologie, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France
| | - N Leveziel
- Service d'ophtalmologie, CHU de Poitiers, 2, rue de la Milétrie, 86000 Poitiers, France; Inserm 1084, 1, rue Georges-Bonnet, BP 633, TSA 51106, 86073 Poitiers cedex 9, France
| |
Collapse
|
41
|
Schiller PH, Carvey CE. Demonstrations of Spatiotemporal Integration and what they Tell us about the Visual System. Perception 2016; 35:1521-55. [PMID: 17286122 DOI: 10.1068/p5564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Five sets of displays are presented on the journal website to be viewed in conjunction with the text. We concentrate on the factors that give rise to the integration and disruption of the direction of apparent motion in two-dimensional and three-dimensional space. In the first set of displays we examine what factors contribute to the integration and disruption of apparent motion in the Ramachandran/Anstis clustered bistable quartets. In the second set we examine what factors give rise to the perception of the direction of motion in rotating two-dimensional wheels and dots. In the third and fourth sets we examine how the depth cues of shading and disparity contribute to the perception of apparent motion of opaque displays, and to the perception of rotating unoccluded displays, respectively. In the fifth set we examine how the depth cue of motion parallax influences the perception of apparent motion. Throughout, we make inferences about the roles which various parallel pathways and cortical areas play in the perceptions produced by the displays shown.
Collapse
Affiliation(s)
- Peter H Schiller
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
42
|
Smollon WE, Wooten BR, Hammond BR. Stimulus edge effects in the measurement of macular pigment using heterochromatic flicker photometry. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:115004. [PMID: 26562031 DOI: 10.1117/1.jbo.20.11.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Heterochromatic flicker photometry (HFP) is the most common technique of measuring macular pigment optical density (MPOD). Some data strongly suggest that HFP samples MPOD specifically at the edge of center-fixated circular stimuli. Other data have led to the conclusion that HFP samples over the entire area of the stimulus. To resolve this disparity, MPOD was measured using HFP and a series of solid discs of varying radii (0.25 to 2.0 deg) and with thin annuli corresponding to the edge of those discs. MPOD assessed with the two methods yielded excellent correspondence and linearity: Y=0.01+0.98X , r=0.96. A second set of experiments showed that if a disc stimulus is adjusted for no-flicker (the standard procedure) and simply reduced in size, no flicker is observed despite the higher level of MPOD in the smaller area. Taken together, these results confirm that MPOD is determined at the edge of the measuring stimulus when using stimulus sizes in the range that is in dispute (up to a radius of 0.75 deg). The basis for this edge effect can be explained by quantitative differences in the spatial-temporal properties of the visual field as a function of angular distance from the fixation point.
Collapse
Affiliation(s)
- William E Smollon
- Brown University, Department of Psychology, 190 Thayer Street, Providence, Rhode Island 02912, United States
| | - Billy R Wooten
- Brown University, Department of Psychology, 190 Thayer Street, Providence, Rhode Island 02912, United States
| | - Billy R Hammond
- University of Georgia, Brain and Behavioral Sciences, 125 Baldwin Street, Athens, Georgia 30602, United States
| |
Collapse
|
43
|
Abstract
In two experiments, we tested whether subliminal abrupt onset cues capture attention in a stimulus-driven way. An onset cue was presented 16 ms prior to the stimulus display that consisted of clearly visible color targets. The onset cue was presented either at the same side as the target (the valid cue condition) or on the opposite side of the target (the invalid cue condition). Because the onset cue was presented 16 ms before other placeholders were presented, the cue was subliminal to the participant. To ensure that this subliminal cue captured attention in a stimulus-driven way, the cue's features did not match the top-down attentional control settings of the participants: (1) The color of the cue was always different than the color of the non-singleton targets ensuring that a top-down set for a specific color or for a singleton would not match the cue, and (2) colored targets and distractors had the same objective luminance (measured by the colorimeter) and subjective lightness (measured by flicker photometry), preventing a match between the top-down set for target and cue contrast. Even though a match between the cues and top-down settings was prevented, in both experiments, the cues captured attention, with faster response times in valid than invalid cue conditions (Experiments 1 and 2) and faster response times in valid than the neutral conditions (Experiment 2). The results support the conclusion that subliminal cues capture attention in a stimulus-driven way.
Collapse
|
44
|
Allenmark F, Moutsopoulou K, Waszak F. A new look on S-R associations: How S and R link. Acta Psychol (Amst) 2015; 160:161-9. [PMID: 26253594 DOI: 10.1016/j.actpsy.2015.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/28/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022] Open
Abstract
Humans can learn associations between stimuli and responses which allow for faster, more efficient behavior when the same response is required to the same stimulus in the future. This is called stimulus-response (S-R) priming. Perceptual representations are known to be modular and hierarchical, i.e. different brain areas represent different perceptual features and higher brain areas represent increasingly abstract properties of the stimulus. In this study we investigated how perceptually specific the stimulus in S-R priming is. In particular we wanted to test whether basic visual features play a role in the S-R associations. We used a novel stimulus: images of objects built from basic visual features. Participants performed a classification task on the objects. We found no significant effect on reaction times of switching vs. repeating perceptual features between presentations of the same object. This suggests that S-R associations involve a perceptually non-specific stimulus representation.
Collapse
|
45
|
Smollon WE, Wooten BR, Hammond BR. Photopigment self-screening and the determination of macular pigment absorbance using heterochromatic flicker photometry. Exp Eye Res 2015; 140:10-18. [PMID: 26277581 DOI: 10.1016/j.exer.2015.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/23/2015] [Accepted: 07/28/2015] [Indexed: 11/25/2022]
Abstract
PURPOSE Heterochromatic flicker photometry (HFP) is commonly used to determine macular pigment optical density (MPOD). Since HFP in this application is a locus comparison method, an identical relative spectral response at each locus is required for a perfect measure. We know this requirement cannot be strictly true since the optical density of photopigments increases as the foveal center is approached. Thus, the self-screening effect would result in an underestimate of MPOD. An earlier study concluded that the underestimate is on the order of 30%. We examined this issue by manipulating photopigment optical density, and consequently the degree of selfscreening. METHODS A continuously exposed, 470 nm, background bleached cone photopigments over a range from 0 to 80%. MPOD was determined 10' and 30' from the foveal center. Two subjects were used in the main experiment. Five additional subjects were studied with just the 0% and 80% bleach levels. Spectral measures were obtained at 0% and 70% bleach levels for the two primary subjects. RESULTS Subjects in the main experiment showed MPOD estimates that increased with increasing bleaching. The effect, however, was small: one observer's MPOD increased 0.08 and 0.02 for the 10' and 30' loci, respectively; the other observer's values were 0.04 and 0.01 for the same loci. Comparable values were obtained for the other five subjects using the 0% and 80% bleach conditions. Spectral measures were consistent with the findings of the main experiment. CONCLUSIONS When self-screening is nearly abolished (80% bleach), a relatively small underestimation is revealed for the unbleached state. For the 1° target we show about 2-3% underestimation. Our 20' target reveals a larger underestimate (8-9%), consistent with longer photoreceptor outer-segments nearer the foveal center. We conclude that HFP yields values essentially independent of self-screening for targets of 1° diameter or greater. Smaller targets are less than 10% underestimated for near-zero bleach conditions.
Collapse
Affiliation(s)
- William E Smollon
- Department of Psychology, Brown University, Providence, RI 02906, USA.
| | - Billy R Wooten
- Department of Psychology, Brown University, Providence, RI 02906, USA.
| | - Billy R Hammond
- Brain and Behavioral Sciences, University of Georgia, Athens, GA 30602-3013, USA.
| |
Collapse
|
46
|
A synaptic signature for ON- and OFF-center parasol ganglion cells of the primate retina. Vis Neurosci 2015; 31:57-84. [PMID: 24801624 DOI: 10.1017/s0952523813000461] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the primate retina, parasol ganglion cells contribute to the primary visual pathway via the magnocellular division of the lateral geniculate nucleus, display ON and OFF concentric receptive field structure, nonlinear spatial summation, and high achromatic temporal-contrast sensitivity. Parasol cells may be homologous to the alpha-Y cells of nonprimate mammals where evidence suggests that N-methyl-D-aspartate (NMDA) receptor-mediated synaptic excitation as well as glycinergic disinhibition play critical roles in contrast sensitivity, acting asymmetrically in OFF- but not ON-pathways. Here, light-evoked synaptic currents were recorded in the macaque monkey retina in vitro to examine the circuitry underlying parasol cell receptive field properties. Synaptic excitation in both ON and OFF types was mediated by NMDA as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors. The NMDA-mediated current-voltage relationship suggested high Mg2+ affinity such that at physiological potentials, NMDA receptors contributed ∼20% of the total excitatory conductance evoked by moderate stimulus contrasts and temporal frequencies. Postsynaptic inhibition in both ON and OFF cells was dominated by a large glycinergic "crossover" conductance, with a relatively small contribution from GABAergic feedforward inhibition. However, crossover inhibition was largely rectified, greatly diminished at low stimulus contrasts, and did not contribute, via disinhibition, to contrast sensitivity. In addition, attenuation of GABAergic and glycinergic synaptic inhibition left center-surround and Y-type receptive field structure and high temporal sensitivity fundamentally intact and clearly derived from modulation of excitatory bipolar cell output. Thus, the characteristic spatial and temporal-contrast sensitivity of the primate parasol cell arises presynaptically and is governed primarily by modulation of the large AMPA/kainate receptor-mediated excitatory conductance. Moreover, the negative feedback responsible for the receptive field surround must derive from a nonGABAergic mechanism.
Collapse
|
47
|
Muniz JAPC, de Athaide LM, Gomes BD, Finlay BL, Silveira LCDL. Ganglion cell and displaced amacrine cell density distribution in the retina of the howler monkey (Alouatta caraya). PLoS One 2014; 9:e115291. [PMID: 25546077 PMCID: PMC4278902 DOI: 10.1371/journal.pone.0115291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/20/2014] [Indexed: 01/20/2023] Open
Abstract
Unlike all other New World (platyrrine) monkeys, both male and female howler monkeys (Alouatta sp.) are obligatory trichromats. In all other platyrrines, only females can be trichromats, while males are always dichromats, as determined by multiple behavioral, electrophysiological, and genetic studies. In addition to obligatory trichromacy, Alouatta has an unusual fovea, with substantially higher peak cone density in the foveal pit than every other diurnal anthropoid monkey (both platyrrhines and catarrhines) and great ape yet examined, including humans. In addition to documenting the general organization of the retinal ganglion cell layer in Alouatta, the distribution of cones is compared to retinal ganglion cells, to explore possible relationships between their atypical trichromacy and foveal specialization. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from five Alouatta caraya. Ganglion cell density peaked at 0.5 mm between the fovea and optic nerve head, reaching 40,700-45,200 cells/mm2. Displaced amacrine cell density distribution peaked between 0.5-1.75 mm from the fovea, reaching mean values between 2,050-3,100 cells/mm2. The mean number of ganglion cells was 1,133,000±79,000 cells and the mean number of displaced amacrine cells was 537,000±61,800 cells, in retinas of mean area 641±62 mm2. Ganglion cell and displaced amacrine cell density distribution in the Alouatta retina was consistent with that observed among several species of diurnal Anthropoidea, both platyrrhines and catarrhines. The principal alteration in the Alouatta retina appears not to be in the number of any retinal cell class, but rather a marked gradient in cone density within the fovea, which could potentially support high chromatic acuity in a restricted central region.
Collapse
Affiliation(s)
| | | | - Bruno Duarte Gomes
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Barbara L. Finlay
- Department of Psychology, Cornell University, Ithaca, New York, United States of America
| | - Luiz Carlos de Lima Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
48
|
Silveira LCL, Saito CA, da Silva Filho M, Kremers J, Bowmaker JK, Lee BB. Alouatta trichromatic color vision: cone spectra and physiological responses studied with microspectrophotometry and single unit retinal electrophysiology. PLoS One 2014; 9:e113321. [PMID: 25405863 PMCID: PMC4236167 DOI: 10.1371/journal.pone.0113321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/27/2014] [Indexed: 11/18/2022] Open
Abstract
The howler monkeys (Alouatta sp.) are the only New World primates to exhibit routine trichromacy. Both males and females have three cone photopigments. However, in contrast to Old World monkeys, Alouatta has a locus control region upstream of each opsin gene on the X-chromosome and this might influence the retinal organization underlying its color vision. Post-mortem microspectrophotometry (MSP) was performed on the retinae of two male Alouatta to obtain rod and cone spectral sensitivities. The MSP data were consistent with only a single opsin being expressed in each cone and electrophysiological data were consistent with this primate expressing full trichromacy. To study the physiological organization of the retina underlying Alouatta trichromacy, we recorded from retinal ganglion cells of the same animals used for MSP measurements with a variety of achromatic and chromatic stimulus protocols. We found MC cells and PC cells in the Alouatta retina with similar properties to those previously found in the retina of other trichromatic primates. MC cells showed strong phasic responses to luminance changes and little response to chromatic pulses. PC cells showed strong tonic response to chromatic changes and small tonic response to luminance changes. Responses to other stimulus protocols (flicker photometry; changing the relative phase of red and green modulated lights; temporal modulation transfer functions) were also similar to those recorded in other trichromatic primates. MC cells also showed a pronounced frequency double response to chromatic modulation, and with luminance modulation response saturation accompanied by a phase advance between 10-20 Hz, characteristic of a contrast gain mechanism. This indicates a very similar retinal organization to Old-World monkeys. Cone-specific opsin expression in the presence of a locus control region for each opsin may call into question the hypothesis that this region exclusively controls opsin expression.
Collapse
Affiliation(s)
- Luiz Carlos L. Silveira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
- Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Pará, Brazil
- * E-mail:
| | - Cézar A. Saito
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany
| | - James K. Bowmaker
- Division of Visual Science, Institute of Ophthalmology, University College London, London, England, United Kingdom
| | - Barry B. Lee
- State College of Optometry, State University of New York, New York, New York, United States of America
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
49
|
Huchzermeyer C, Schlomberg J, Welge-Lüssen U, Berendschot TTJM, Pokorny J, Kremers J. Macular pigment optical density measured by heterochromatic modulation photometry. PLoS One 2014; 9:e110521. [PMID: 25354049 PMCID: PMC4212909 DOI: 10.1371/journal.pone.0110521] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/15/2014] [Indexed: 01/05/2023] Open
Abstract
Purpose To psychophysically determine macular pigment optical density (MPOD) employing the heterochromatic modulation photometry (HMP) paradigm by estimating 460 nm absorption at central and peripheral retinal locations. Methods For the HMP measurements, two lights (B: 460 nm and R: 660 nm) were presented in a test field and were modulated in counterphase at medium or high frequencies. The contrasts of the two lights were varied in tandem to determine flicker detection thresholds. Detection thresholds were measured for different R:B modulation ratios. The modulation ratio with minimal sensitivity (maximal threshold) is the point of equiluminance. Measurements were performed in 25 normal subjects (11 male, 14 female; age: 30±11 years, mean ± sd) using an eight channel LED stimulator with Maxwellian view optics. The results were compared with those from two published techniques – one based on heterochromatic flicker photometry (Macular Densitometer) and the other on fundus reflectometry (MPR). Results We were able to estimate MPOD with HMP using a modified theoretical model that was fitted to the HMP data. The resultant MPODHMP values correlated significantly with the MPODMPR values and with the MPODHFP values obtained at 0.25° and 0.5° retinal eccentricity. Conclusions HMP is a flicker-based method with measurements taken at a constant mean chromaticity and luminance. The data can be well fit by a model that allows all data points to contribute to the photometric equality estimate. Therefore, we think that HMP may be a useful method for MPOD measurements, in basic and clinical vision experiments.
Collapse
Affiliation(s)
- Cord Huchzermeyer
- University Eye Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail: (CH); (JK)
| | - Juliane Schlomberg
- University Eye Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Ophthalmology, Charité, University Medicine Berlin, Berlin, Germany
| | - Ulrich Welge-Lüssen
- University Eye Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | | | - Joel Pokorny
- Department of Ophthalmology and Visual Sciences, University of Chicago, Chicago, Illinois, United States of America
| | - Jan Kremers
- University Eye Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- * E-mail: (CH); (JK)
| |
Collapse
|
50
|
Fogelson SV, Kohler PJ, Miller KJ, Granger R, Tse PU. Unconscious neural processing differs with method used to render stimuli invisible. Front Psychol 2014; 5:601. [PMID: 24982647 PMCID: PMC4058905 DOI: 10.3389/fpsyg.2014.00601] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/28/2014] [Indexed: 11/13/2022] Open
Abstract
Visual stimuli can be kept from awareness using various methods. The extent of processing that a given stimulus receives in the absence of awareness is typically used to make claims about the role of consciousness more generally. The neural processing elicited by a stimulus, however, may also depend on the method used to keep it from awareness, and not only on whether the stimulus reaches awareness. Here we report that the method used to render an image invisible has a dramatic effect on how category information about the unseen stimulus is encoded across the human brain. We collected fMRI data while subjects viewed images of faces and tools, that were rendered invisible using either continuous flash suppression (CFS) or chromatic flicker fusion (CFF). In a third condition, we presented the same images under normal fully visible viewing conditions. We found that category information about visible images could be extracted from patterns of fMRI responses throughout areas of neocortex known to be involved in face or tool processing. However, category information about stimuli kept from awareness using CFS could be recovered exclusively within occipital cortex, whereas information about stimuli kept from awareness using CFF was also decodable within temporal and frontal regions. We conclude that unconsciously presented objects are processed differently depending on how they are rendered subjectively invisible. Caution should therefore be used in making generalizations on the basis of any one method about the neural basis of consciousness or the extent of information processing without consciousness.
Collapse
Affiliation(s)
- Sergey V Fogelson
- Department of Psychological and Brain Sciences, Dartmouth College Hanover, NH, USA
| | - Peter J Kohler
- Department of Psychology, Stanford University Stanford, CA, USA
| | - Kevin J Miller
- Princeton Neuroscience Institute, Princeton University Princeton, NJ, USA
| | - Richard Granger
- Department of Psychological and Brain Sciences, Dartmouth College Hanover, NH, USA
| | - Peter U Tse
- Department of Psychological and Brain Sciences, Dartmouth College Hanover, NH, USA
| |
Collapse
|