1
|
Zero AM, Rice CL, Nogueira L. Competing effects of activation history on force and cytosolic Ca 2+ in intact single mice myofibers. Pflugers Arch 2025; 477:407-419. [PMID: 39738587 DOI: 10.1007/s00424-024-03061-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
The purpose was to investigate the changes in cytosolic Ca2+ and force output during post-tetanic potentiation (PTP) during pre-fatigue and during prolonged low-frequency force depression (PLFFD) following fatigue. Intact single myofibers from the flexor digitorum brevis of mice were electrically stimulated to record force (n = 8) and free cytosolic Ca2+ concentration ([Ca2+]c) with FURA-2 (n = 6) at 32 °C. Initially, force and [Ca2+]c were measured during brief (350 ms) trains of stimuli at 30, 50, 70, and 200 Hz at ~ 2 s intervals (Force-frequency protocol, FFP). Then, a conditioning stimulus (CS) of six 120 Hz stimuli, separated by ~ 3 s, was used to induce PTP, immediately followed by an FFP. Myofiber fatigue was produced by 150 Hz trains every 3 s until peak force decayed 70% of the initial. Thirty minutes after the fatigue, the CS was repeated to assess the effect of PTP on force and [Ca2+]c during PLFFD. The CS in unfatigued myofibers induced PTP as the submaximal force was enhanced and accompanied by increased peak [Ca2+]c with no change in myofilament Ca2+ sensitivity. After fatigue, PLFFD was due to lowered peak [Ca2+]c. Inducing PTP during PLFFD enhanced submaximal force primarily through greater peak [Ca2+]c, mitigating the submaximal force deficits. Despite the impaired force during PLFFD, myofibers remained sensitive to PTP, and this mitigated the submaximal force deficits through increased peak [Ca2+]c without a change in myofilament Ca2+ sensitivity. Therefore, force adjustments of intact single myofibers due to activation history are principally accomplished by opposing adjustments in [Ca2+]c.
Collapse
Affiliation(s)
- Alexander M Zero
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, ON, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, Canada
| | - Leonardo Nogueira
- School of Exercise and Nutritional Sciences, College of Health and Human Services, San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.
| |
Collapse
|
2
|
Debold EP, Westerblad H. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: the Marion J. Siegman Award Lectureships. Am J Physiol Cell Physiol 2024; 327:C946-C958. [PMID: 39069825 DOI: 10.1152/ajpcell.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle fibers need to have mechanisms to decrease energy consumption during intense physical exercise to avoid devastatingly low ATP levels, with the formation of rigor cross bridges and defective ion pumping. These protective mechanisms inevitably lead to declining contractile function in response to intense exercise, characterizing fatigue. Through our work, we have gained insights into cellular and molecular mechanisms underlying the decline in contractile function during acute fatigue. Key mechanistic insights have been gained from studies performed on intact and skinned single muscle fibers and more recently from studies performed and single myosin molecules. Studies on intact single fibers revealed several mechanisms of impaired sarcoplasmic reticulum Ca2+ release and experiments on single myosin molecules provide direct evidence of how putative agents of fatigue impact myosin's ability to generate force and motion. We conclude that changes in metabolites due to an increased dependency on anaerobic metabolism (e.g., accumulation of inorganic phosphate ions and H+) act to directly and indirectly (via decreased Ca2+ activation) inhibit myosin's force and motion-generating capacity. These insights into the acute mechanisms of fatigue may help improve endurance training strategies and reveal potential targets for therapies to attenuate fatigue in chronic diseases.
Collapse
Affiliation(s)
- Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Renaud JM, Ørtenblad N, McKenna MJ, Overgaard K. Exercise and fatigue: integrating the role of K +, Na + and Cl - in the regulation of sarcolemmal excitability of skeletal muscle. Eur J Appl Physiol 2023; 123:2345-2378. [PMID: 37584745 PMCID: PMC10615939 DOI: 10.1007/s00421-023-05270-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.
Collapse
Affiliation(s)
- Jean-Marc Renaud
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
- College of Physical Education, Southwest University, Chongqing, China
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Leijding C, Viken I, Bruton JD, Andersson DC, Cheng AJ, Westerblad H. Increased tetanic calcium in early fatigue of mammalian muscle fibers is accompanied by accelerated force development despite a decreased force. FASEB J 2023; 37:e22978. [PMID: 37191967 DOI: 10.1096/fj.202300401r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
During the initial phase of fatigue induced by repeated contractions in fast-twitch muscle fibers, tetanic force decreases despite increasing tetanic free cytosolic [Ca2+ ] ([Ca2+ ]cyt ). Here, we hypothesized that the increase in tetanic [Ca2+ ]cyt nevertheless has positive effects on force in early fatigue. Experiments on enzymatically isolated mouse flexor digitorum brevis (FDB) fibers showed that an increase in tetanic [Ca2+ ]cyt during ten 350 ms contractions required trains of electrical pulses to be elicited at short intervals (≤2 s) and at high frequencies (≥70 Hz). Mechanically dissected mouse FDB fibers showed greater decrease in tetanic force when the stimulation frequency during contractions was gradually reduced to prevent the increase in tetanic [Ca2+ ]cyt . Novel analyses of data from previous studies revealed an increased rate of force development in the tenth fatiguing contraction in mouse FDB fibers, as well as in rat FDB and human intercostal fibers. Mouse FDB fibers deficient in creatine kinase showed no increase in tetanic [Ca2+ ]cyt and slowed force development in the tenth contraction; after injection of creatine kinase to enable phosphocreatine breakdown, these fibers showed an increase in tetanic [Ca2+ ]cyt and accelerated force development. Mouse FDB fibers exposed to ten short contractions (43 ms) produced at short intervals (142 ms) showed increased tetanic [Ca2+ ]cyt accompanied by a marked (~16%) increase in the developed force. In conclusion, the increase in tetanic [Ca2+ ]cyt in early fatigue is accompanied by accelerated force development, which under some circumstances can counteract the decline in physical performance caused by the concomitant decrease in maximum force.
Collapse
Affiliation(s)
- Cecilia Leijding
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ida Viken
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Heart, Vascular and Neurology Theme, Cardiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Powell AR, Deban SM, Lappin AK. Sustained force production by the jaw-adductor muscles of a megalophagous frog, Ceratophrys cranwelli. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:437-445. [PMID: 36855228 DOI: 10.1002/jez.2690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/11/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
Most frogs have weak jaws that play a relatively minor role in tongue-mediated prey capture. Horned frogs (Ceratophrys spp.), however, follow the projection of a large tongue with a vice-like grip of their jaws to hold and immobilize prey. Prey include relatively large vertebrates, which they may restrain for minutes to possibly hours. High endurance behaviors, such as prolonged biting, require that muscles be capable of sustained force production. The feeding behavior of Ceratophrys suggests that their jaw-adductor muscles may be capable of powering sustained bites for long periods. We examined the capacity for sustained bite force by conducting an in situ experiment during which we measured bite force while bilaterally and supramaximally stimulating the jaw-adductor muscles of euthanized Cranwell's horned frogs (C. cranwelli). Muscles were stimulated for at least 60 min with a series of tetanic trains, with one experiment lasting over 6 h. We found that a significant sustained force develops during the first few minutes of the experiment, and this force is present between tetanic trains when the muscles are not being stimulated. The sustained force persists long after tetanic forces are barely detectable. The observed sustained force phenomenon parallels that observed for the jaw-adductor muscles of alligator lizards (Elgaria), another animal capable of sustained biting. The ability to bite with sustained and significant force by C. cranwelli may be facilitated by a configuration of different muscle fiber types, such as slow tonic fibers, as well as specializations in the muscle fibers that mitigate the effects of fatigue.
Collapse
Affiliation(s)
- Anthony R Powell
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| | - Stephen M Deban
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - A Kristopher Lappin
- Biological Sciences Department, California State Polytechnic University, Pomona, California, USA
| |
Collapse
|
6
|
Tamilio RA, Clarke ND, Duncan MJ, Morris R, Grgic J, Tallis J. Can 3 mg·kg -1 of Caffeine Be Used as An Effective Nutritional Supplement to Enhance the Effects of Resistance Training in Rugby Union Players? Nutrients 2021; 13:nu13103367. [PMID: 34684368 PMCID: PMC8539282 DOI: 10.3390/nu13103367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
The present study uniquely examined the effect of 3 mg·kg−1 chronic caffeine consumption on training adaptations induced by 7-weeks resistance training and assessed the potential for habituation to caffeine’s ergogenicity. Thirty non-specifically resistance-trained university standard male rugby union players (age (years): 20 ± 2; height (cm): 181 ± 7; body mass (kg): 92 ± 17) completed the study), who were moderate habitual caffeine consumers (118 ± 110 mg), completed the study. Using a within-subject double-blind, placebo-controlled experimental design, the acute effects of caffeine intake on upper and lower limb maximal voluntary concentric and eccentric torque were measured using isokinetic dynamometry (IKD) prior to and immediately following a resistance training intervention. Participants were split into strength-matched groups and completed a resistance-training program for seven weeks, consuming either caffeine or a placebo before each session. Irrespective of group, acute caffeine consumption improved peak eccentric torque of the elbow extensors (p < 0.013), peak concentric torque of the elbow flexors (p < 0.005), total eccentric work of the elbow flexors (p < 0.003), total concentric work of the knee extensors (p < 0.001), and total concentric and eccentric work of the knee flexors (p < 0.046) following repeated maximal voluntary contractions. Many of these acute caffeine effects were still prevalent following chronic exposure to caffeine throughout the intervention. The training intervention resulted in significant improvements in upper and lower body one-repetition maximum strength (p < 0.001). For the most part, the effect of the training intervention was equivalent in both the caffeine and placebo groups, despite a small but significant increase (p < 0.037) in the total work performed in the participants that consumed caffeine across the course of the intervention. These results infer that caffeine may be beneficial to evoke acute improvements in muscular strength, with acute effects prevalent following chronic exposure to the experimental dose. However, individuals that consumed caffeine during the intervention did not elicit superior post-intervention training- induced adaptations in muscular strength.
Collapse
Affiliation(s)
- Ryan A. Tamilio
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
| | - Neil D. Clarke
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
| | - Michael J. Duncan
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
| | - Rhys Morris
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
| | - Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
| | - Jason Tallis
- Centre for Applied Biological and Exercise Sciences, Alison Gingell Building, Coventry University, Priory Street, Coventry CV 15FB, UK; (R.A.T.); (N.D.C.); (M.J.D.); (R.M.)
- Correspondence:
| |
Collapse
|
7
|
Behm DG, Alizadeh S, Hadjizedah Anvar S, Hanlon C, Ramsay E, Mahmoud MMI, Whitten J, Fisher JP, Prieske O, Chaabene H, Granacher U, Steele J. Non-local Muscle Fatigue Effects on Muscle Strength, Power, and Endurance in Healthy Individuals: A Systematic Review with Meta-analysis. Sports Med 2021; 51:1893-1907. [PMID: 33818751 DOI: 10.1007/s40279-021-01456-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The fatigue of a muscle or muscle group can produce global responses to a variety of systems (i.e., cardiovascular, endocrine, and others). There are also reported strength and endurance impairments of non-exercised muscles following the fatigue of another muscle; however, the literature is inconsistent. OBJECTIVE To examine whether non-local muscle fatigue (NLMF) occurs following the performance of a fatiguing bout of exercise of a different muscle(s). DESIGN Systematic review and meta-analysis. SEARCH AND INCLUSION A systematic literature search using a Boolean search strategy was conducted with PubMed, SPORTDiscus, Web of Science, and Google Scholar in April 2020, and was supplemented with additional 'snowballing' searches up to September 2020. To be included in our analysis, studies had to include at least one intentional performance measure (i.e., strength, endurance, or power), which if reduced could be considered evidence of muscle fatigue, and also had to include the implementation of a fatiguing protocol to a location (i.e., limb or limbs) that differed to those for which performance was measured. We excluded studies that measured only mechanistic variables such as electromyographic activity, or spinal/supraspinal excitability. After search and screening, 52 studies were eligible for inclusion including 57 groups of participants (median sample = 11) and a total of 303 participants. RESULTS The main multilevel meta-analysis model including all effects sizes (278 across 50 clusters [median = 4, range = 1 to 18 effects per cluster) revealed a trivial point estimate with high precision for the interval estimate [- 0.02 (95% CIs = - 0.14 to 0.09)], yet with substantial heterogeneity (Q(277) = 642.3, p < 0.01), I2 = 67.4%). Subgroup and meta-regression analyses showed that NLMF effects were not moderated by study design (between vs. within-participant), homologous vs. heterologous effects, upper or lower body effects, participant training status, sex, age, the time of post-fatigue protocol measurement, or the severity of the fatigue protocol. However, there did appear to be an effect of type of outcome measure where both strength [0.11 (95% CIs = 0.01-0.21)] and power outcomes had trivial effects [- 0.01 (95% CIs = - 0.24 to 0.22)], whereas endurance outcomes showed moderate albeit imprecise effects [- 0.54 (95% CIs = - 0.95 to - 0.14)]. CONCLUSIONS Overall, the findings do not support the existence of a general NLMF effect; however, when examining specific types of performance outcomes, there may be an effect specifically upon endurance-based outcomes (i.e., time to task failure). However, there are relatively fewer studies that have examined endurance effects or mechanisms explaining this possible effect, in addition to fewer studies including women or younger and older participants, and considering causal effects of prior training history through the use of longitudinal intervention study designs. Thus, it seems pertinent that future research on NLMF effects should be redirected towards these still relatively unexplored areas.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Saman Hadjizedah Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.,University of Tehran, Tehran, Iran
| | - Courtney Hanlon
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Emma Ramsay
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Joseph Whitten
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - James P Fisher
- School of Sport, Health and Social Science, Solent University, Southampton, UK
| | - Olaf Prieske
- Division of Exercise and Movement, University of Applied Sciences for Sport and Management Potsdam, Potsdam, Germany
| | - Helmi Chaabene
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - James Steele
- School of Sport, Health and Social Science, Solent University, Southampton, UK.,Ukactive Research Institute, London, UK
| |
Collapse
|
8
|
MacDougall KB, Devrome AN, Kristensen AM, MacIntosh BR. Force-frequency relationship during fatiguing contractions of rat medial gastrocnemius muscle. Sci Rep 2020; 10:11575. [PMID: 32665563 PMCID: PMC7360560 DOI: 10.1038/s41598-020-68392-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 01/26/2023] Open
Abstract
The force–frequency relationship presents the amount of force a muscle can produce as a function of the frequency of activation. During repetitive muscular contractions, fatigue and potentiation may both impact the resultant contractile response. However, both the apparent fatigue observed, and the potential for activity-dependent potentiation can be affected by the frequency of activation. Thus, we wanted to explore the effects that repetitive stimulation had on the force–frequency relationship. The force–frequency relationship of the rat medial gastrocnemius muscle was investigated during consecutive bouts of increasing fatigue with 20 to 100 Hz stimulation. Force was measured prior to the fatiguing protocol, during each of three levels of fatigue, and after 30 min of recovery. Force at each frequency was quantified relative to the pre-fatigued 100 Hz contractions, as well as the percentage reduction of force from the pre-fatigued level at a given frequency. We observed less reduction in force at low frequencies compared to high frequencies, suggesting an interplay of fatigue and potentiation, in which potentiation can “protect” against fatigue in a frequency-dependent manner. The exact mechanism of fatigue is unknown, however the substantial reduction of force at high frequency suggests a role for reduced force per cross-bridge.
Collapse
Affiliation(s)
| | - Andrea N Devrome
- Faculty of Medicine, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | | | - Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
9
|
Johnson M, Baudin P, Ley AL, Collins DF. A Warm-Up Routine That Incorporates a Plyometric Protocol Potentiates the Force-Generating Capacity of the Quadriceps Muscles. J Strength Cond Res 2019; 33:380-389. [PMID: 28595235 DOI: 10.1519/jsc.0000000000002054] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mariska Johnson
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Pierre Baudin
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Alejandro L Ley
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Human Neurophysiology Laboratory, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David F Collins
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada
- Human Neurophysiology Laboratory, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Ferreira-Júnior JB, Guttierres APM, Encarnação IGA, Lima JRP, Borba DA, Freitas EDS, Bemben MG, Vieira CA, Bottaro M. Effects of Different Conditioning Activities on 100-m Dash Performance in High School Track and Field Athletes. Percept Mot Skills 2018; 125:566-580. [PMID: 29558842 DOI: 10.1177/0031512518764494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study compared the effects of different conditioning activities on the 100-m dash performance of 11 male, high school track and field athletes (mean age = 16.3; SD = 1.2 years). Participants performed a 100-m dash seven minutes after each of four randomized conditioning protocols, with each condition and 100-m dash separated by 3-10 days. The conditioning protocols were (a) control, no conditioning activity; (b) weighted plyometric, three sets of 10 repetitions of alternate leg bounding with additional load of 10% of the body mass; (c) free sprint, two 20-m sprints; and (d) resisted sprint (RS), two 20-m resisted sprints using an elastic tubing tool. We obtained session ratings of perceived exertion (SRPE) immediately after each conditioning protocol. There were no significant differences between any of the three experimental conditioning activities on 100-m sprint time, but the RS protocol improved 100-m sprint time compared with the control (no conditioning) protocol ( p < .001). The RS also led to greater sprint velocity and higher SRPE compared with the control condition ( p < .01). There was no significant association between SRPE and 100-m performance ( p = .77, r = .05). These results suggest a benefit for young male track and field athletes to the elastic tubing warm-up activities prior to the 100-m dash.
Collapse
Affiliation(s)
| | - Ana P M Guttierres
- 1 Federal Institute of Sudeste of Minas Gerais, Campus Rio Pomba, MG, Brazil
| | | | - Jorge R P Lima
- 2 College of Physical Education, 28113 Federal University of Juiz de Fora , Juiz de Fora, MG, Brazil
| | - Diego A Borba
- 3 State University of Minas Gerais, Campus Ibirité, Ibirité, MG, Brazil
| | - Eduardo D S Freitas
- 4 Department of Health and Exercise Science, Neuromuscular Research Laboratory, University of Oklahoma, Norman, OK, USA
| | - Michael G Bemben
- 4 Department of Health and Exercise Science, Neuromuscular Research Laboratory, University of Oklahoma, Norman, OK, USA
| | - Carlos A Vieira
- 5 College of Physical Education, University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil
| | - Martim Bottaro
- 6 College of Physical Education and Dance, Federal University of Goiás, Campus Samambaia, Goiania, GO, Brazil
| |
Collapse
|
11
|
Kristensen AM, Nielsen OB, Overgaard K. Effects of manipulating tetanic calcium on the curvature of the force-velocity relationship in isolated rat soleus muscles. Acta Physiol (Oxf) 2018; 222. [PMID: 28972685 DOI: 10.1111/apha.12977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 01/03/2023]
Abstract
AIM In dynamically contracting muscles, increased curvature of the force-velocity relationship contributes to the loss of power during fatigue. It has been proposed that fatigue-induced reduction in [Ca++ ]i causes this increased curvature. However, earlier studies on single fibres have been conducted at low temperatures. Here, we investigated the hypothesis that curvature is increased by reductions in tetanic [Ca++ ]i in isolated skeletal muscle at near-physiological temperatures. METHODS Rat soleus muscles were stimulated at 60 Hz in standard Krebs-Ringer buffer, and contraction force and velocity were measured. Tetanic [Ca++ ]i was in some experiments either lowered by addition of 10 μmol/L dantrolene or use of submaximal stimulation (30 Hz) or increased by addition of 2 mmol/L caffeine. Force-velocity curves were constructed by fitting shortening velocity at different loading forces to the Hill equation. Curvature was determined as the ratio a/F0 with increased curvature reflecting decreased a/F0 . RESULTS Compared to control levels, lowering tetanic [Ca++ ]i with dantrolene or reduced stimulation frequency decreased the curvature slightly as judged from increase in a/F0 of 13 ± 1% (P = < .001) and 20 ± 2% (P = < .001) respectively. In contrast, increasing tetanic [Ca++ ]i with caffeine increased the curvature (a/F0 decreased by 17 ± 1%; P = < .001). CONCLUSION Contrary to our hypothesis, interventions that reduced tetanic [Ca++ ]i caused a decrease in curvature, while increasing tetanic [Ca++ ]i increased the curvature. These results reject a simple causal relation between [Ca++ ]i and curvature of the force-velocity relation during fatigue.
Collapse
Affiliation(s)
- A. M. Kristensen
- Department of Public Health; Aarhus University; Aarhus C Denmark
| | - O. B. Nielsen
- Department of Biomedicine; Aarhus University; Aarhus C Denmark
| | - K. Overgaard
- Department of Public Health; Aarhus University; Aarhus C Denmark
| |
Collapse
|
12
|
Cheng AJ, Place N, Westerblad H. Molecular Basis for Exercise-Induced Fatigue: The Importance of Strictly Controlled Cellular Ca 2+ Handling. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029710. [PMID: 28432118 DOI: 10.1101/cshperspect.a029710] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The contractile function of skeletal muscle declines during intense or prolonged physical exercise, that is, fatigue develops. Skeletal muscle fibers fatigue acutely during highly intense exercise when they have to rely on anaerobic metabolism. Early stages of fatigue involve impaired myofibrillar function, whereas decreased Ca2+ release from the sarcoplasmic reticulum (SR) becomes more important in later stages. SR Ca2+ release can also become reduced with more prolonged, lower intensity exercise, and it is then related to glycogen depletion. Increased reactive oxygen/nitrogen species can cause long-lasting impairments in SR Ca2+ release resulting in a prolonged force depression after exercise. In this article, we discuss molecular and cellular mechanisms of the above fatigue-induced changes, with special focus on multiple mechanisms to decrease SR Ca2+ release to avoid energy depletion and preserve muscle fiber integrity. We also discuss fatigue-related effects of exercise-induced Ca2+ fluxes over the sarcolemma and between the cytoplasm and mitochondria.
Collapse
Affiliation(s)
- Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nicolas Place
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
13
|
Rosas F, Ramírez-Campillo R, Martínez C, Caniuqueo A, Cañas-Jamet R, McCrudden E, Meylan C, Moran J, Nakamura FY, Pereira LA, Loturco I, Diaz D, Izquierdo M. Effects of Plyometric Training and Beta-Alanine Supplementation on Maximal-Intensity Exercise and Endurance in Female Soccer Players. J Hum Kinet 2017; 58:99-109. [PMID: 28828081 PMCID: PMC5548158 DOI: 10.1515/hukin-2017-0072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Plyometric training and beta-alanine supplementation are common among soccer players, although its combined use had never been tested. Therefore, a randomized, double-blind, placebo-controlled trial was conducted to compare the effects of a plyometric training program, with or without beta-alanine supplementation, on maximal-intensity and endurance performance in female soccer players during an in-season training period. Athletes (23.7 ± 2.4 years) were assigned to either a plyometric training group receiving a placebo (PLACEBO, n = 8), a plyometric training group receiving beta-alanine supplementation (BA, n = 8), or a control group receiving placebo without following a plyometric training program (CONTROL, n = 9). Athletes were evaluated for single and repeated jumps and sprints, endurance, and change-of-direction speed performance before and after the intervention. Both plyometric training groups improved in explosive jumping (ES = 0.27 to 1.0), sprinting (ES = 0.31 to 0.78), repeated sprinting (ES = 0.39 to 0.91), 60 s repeated jumping (ES = 0.32 to 0.45), endurance (ES = 0.35 to 0.37), and change-of-direction speed performance (ES = 0.36 to 0.58), whereas no significant changes were observed for the CONTROL group. Nevertheless, compared to the CONTROL group, only the BA group showed greater improvements in endurance, repeated sprinting and repeated jumping performances. It was concluded that beta-alanine supplementation during plyometric training may add further adaptive changes related to endurance, repeated sprinting and jumping ability.
Collapse
Affiliation(s)
- Fabián Rosas
- Rosas of Buenos Aires Sport Club, Buenos Aires, Argentina
| | - Rodrigo Ramírez-Campillo
- Department of Physical Activity Sciences, Research Nucleus in Health, Physical Activity and Sport, Universidad de Los Lagos, Osorno, Chile.,Laboratory of Exercise Sciences, MEDS Clinic, Santiago, Chile
| | - Cristian Martínez
- Department of Physical Education, Sport and Recreation, Universidad de La Frontera, Temuco, Chile
| | - Alexis Caniuqueo
- Laboratory of Physiology and Biomechanics, Universidad Autónoma de Chile, Temuco, Chile
| | - Rodrigo Cañas-Jamet
- Laboratory of Physiology, Department of Biological Sciences, Faculty of Biological Sciences, Universidad Andrés Bello, Viña del Mar, Chile.,Laboratory of Exercise Sciences, Movement Solutions, Viña del Mar, Chile
| | | | - Cesar Meylan
- Canadian Sport Institute Pacific, Vancouver, Canada.,Canadian Soccer Association, Ottawa, Canada
| | - Jason Moran
- Centre for Sports and Exercise Science, School of Biological Sciences,University of Essex, Colchester, United Kingdom
| | - Fábio Y Nakamura
- The College of Healthcare Sciences, James Cook University, Queensland, Australia.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Lucas A Pereira
- Nucleus of High Performance in Sport - NAR, São Paulo, SP, Brazil
| | - Irineu Loturco
- Nucleus of High Performance in Sport - NAR, São Paulo, SP, Brazil
| | - Daniela Diaz
- Department of Physical Activity Sciences, Research Nucleus in Health, Physical Activity and Sport, Universidad de Los Lagos, Osorno, Chile
| | - Mikel Izquierdo
- Faculty of Physical Culture, Sport and Recreation, Santo Tomás University, Bogotá, DC, Colombia.,Department of Health Sciences, Public University of Navarre, Navarra, Spain
| |
Collapse
|
14
|
Peoples GE, McLennan PL. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb. Appl Physiol Nutr Metab 2017; 42:613-620. [PMID: 28177707 DOI: 10.1139/apnm-2016-0501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O2 (SaO2-98%) and hypoxia 14% O2 (SaO2-89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g-1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P < 0.05), and the time to decline to 50% of maximum twitch tension was extended (SF: 546 ± 58; n-6 PUFA: 522 ± 58; FO: 792 ± 96 s; P < 0.05). In addition, caffeine-stimulated skeletal muscle contractile recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.
Collapse
Affiliation(s)
- Gregory E Peoples
- School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia
| | - Peter L McLennan
- School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia.,School of Medicine, University of Wollongong, Wollongong, 2522, NSW, Australia
| |
Collapse
|
15
|
Tallis J, James RS, Cox VM, Duncan MJ. Is the Ergogenicity of Caffeine Affected by Increasing Age? The Direct Effect of a Physiological Concentration of Caffeine on the Power Output of Maximally Stimulated EDL and Diaphragm Muscle Isolated from the Mouse. J Nutr Health Aging 2017; 21:440-448. [PMID: 28346571 DOI: 10.1007/s12603-016-0832-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Caffeine is a well-established performance enhancing nutritional supplement in a young healthy population, however far less is known about how its ergogenicity is affected by increasing age. A recent review has highlighted the value of studies examining the direct effect of caffeine on isolated skeletal muscle contractility, but the present work is the first to assess the direct effect of 70µM caffeine (physiological maximum) on the maximal power output of isolated mammalian muscle from an age range representing developmental to early ageing. METHOD Female CD1 mice were aged to 3, 10, 30 and 50 weeks (n = 20 in each case) and either whole EDL or a section of the diaphragm was isolated and maximal power output determined using the work loop technique. Once contractile performance was maximised, each muscle preparation was treated with 70µM caffeine and its contractile performance was measured for a further 60 minutes. RESULTS In both mouse EDL and diaphragm 70µM caffeine treatment resulted in a significant increase in maximal muscle power output that was greatest at 10 or 30 weeks (up to 5% and 6% improvement respectively). This potentiation of maximal muscle power output was significantly lower at the early ageing time point, 50 weeks (up to 3% and 2% improvement respectively), and in mice in the developmental stage, at 3 weeks of age (up to 1% and 2% improvement respectively). CONCLUSION Uniquely, the present findings indicate a reduced age specific sensitivity to the performance enhancing effect of caffeine in developmental and aged mice which is likely to be attributed to age related muscle growth and degradation, respectively. Importantly, the findings indicate that caffeine may still provide a substantial ergogenic aid in older populations which could prove important for improving functional capacity in tasks of daily living.
Collapse
Affiliation(s)
- J Tallis
- Jason Tallis, Research Centre for Applied Biological and Exercise Sciences, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, United Kingdom,
| | | | | | | |
Collapse
|
16
|
Vandenboom R. Modulation of Skeletal Muscle Contraction by Myosin Phosphorylation. Compr Physiol 2016; 7:171-212. [PMID: 28135003 DOI: 10.1002/cphy.c150044] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The striated muscle sarcomere is a highly organized and complex enzymatic and structural organelle. Evolutionary pressures have played a vital role in determining the structure-function relationship of each protein within the sarcomere. A key part of this multimeric assembly is the light chain-binding domain (LCBD) of the myosin II motor molecule. This elongated "beam" functions as a biological lever, amplifying small interdomain movements within the myosin head into piconewton forces and nanometer displacements against the thin filament during the cross-bridge cycle. The LCBD contains two subunits known as the essential and regulatory myosin light chains (ELC and RLC, respectively). Isoformic differences in these respective species provide molecular diversity and, in addition, sites for phosphorylation of serine residues, a highly conserved feature of striated muscle systems. Work on permeabilized skeletal fibers and thick filament systems shows that the skeletal myosin light chain kinase catalyzed phosphorylation of the RLC alters the "interacting head motif" of myosin motor heads on the thick filament surface, with myriad consequences for muscle biology. At rest, structure-function changes may upregulate actomyosin ATPase activity of phosphorylated cross-bridges. During activation, these same changes may increase the Ca2+ sensitivity of force development to enhance force, work, and power output, outcomes known as "potentiation." Thus, although other mechanisms may contribute, RLC phosphorylation may represent a form of thick filament activation that provides a "molecular memory" of contraction. The clinical significance of these RLC phosphorylation mediated alterations to contractile performance of various striated muscle systems are just beginning to be understood. © 2017 American Physiological Society. Compr Physiol 7:171-212, 2017.
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, Ontario, Canada
| |
Collapse
|
17
|
Halperin I, Chapman DW, Behm DG. Non-local muscle fatigue: effects and possible mechanisms. Eur J Appl Physiol 2015; 115:2031-48. [DOI: 10.1007/s00421-015-3249-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
|
18
|
Tallis J, Duncan MJ, James RS. What can isolated skeletal muscle experiments tell us about the effects of caffeine on exercise performance? Br J Pharmacol 2015; 172:3703-13. [PMID: 25988508 DOI: 10.1111/bph.13187] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 01/12/2023] Open
Abstract
Caffeine is an increasingly popular nutritional supplement due to the legal, significant improvements in sporting performance that it has been documented to elicit, with minimal side effects. Therefore, the effects of caffeine on human performance continue to be a popular area of research as we strive to improve our understanding of this drug and make more precise recommendations for its use in sport. Although variations in exercise intensity seems to affect its ergogenic benefits, it is largely thought that caffeine can induce significant improvements in endurance, power and strength-based activities. There are a number of limitations to testing caffeine-induced effects on human performance that can be better controlled when investigating its effects on isolated muscles under in vitro conditions. The hydrophobic nature of caffeine results in a post-digestion distribution to all tissues of the body making it difficult to accurately quantify its key mechanism of action. This review considers the contribution of evidence from isolated muscle studies to our understating of the direct effects of caffeine on muscle during human performance. The body of in vitro evidence presented suggests that caffeine can directly potentiate skeletal muscle force, work and power, which may be important contributors to the performance-enhancing effects seen in humans.
Collapse
Affiliation(s)
- Jason Tallis
- Centre for Research in Applied Biological and Exercise Sciences, Coventry University, Coventry, UK
| | - Michael J Duncan
- Centre for Research in Applied Biological and Exercise Sciences, Coventry University, Coventry, UK
| | - Rob S James
- Centre for Research in Applied Biological and Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
19
|
Camillo CA, Burtin C, Hornikx M, Demeyer H, De Bent K, van Remoortel H, Osadnik CR, Janssens W, Troosters T. Physiological responses during downhill walking. Chron Respir Dis 2015; 12:155-64. [DOI: 10.1177/1479972315575717] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Skeletal muscle quadriceps low-frequency fatigue (LFF) during exercise promotes improvements in exercise capacity with exercise training. In healthy subjects, eccentric muscle work induced by downhill walking (DW) generates higher muscular stress, whilst metabolic cost is lower compared to level walking (LW). We investigated quadriceps LFF and metabolic cost of DW in patients with chronic obstructive pulmonary disease. Ten participants (67 ± 7 years, FEV1 51 ± 15% predicted) performed DW, DW carrying a load (DWL) of 10% body weight via vest and LW, in random order. Quadriceps potentiated twitch force (TWqpot) was assessed before and after each walk, and muscle damage was assessed before and 24 hours after each walk via serum creatine kinase (CK) levels. Ventilation (VE) and oxygen consumption (VO2) were measured via breath-by-breath analysis during each walk. DW and DWL resulted in a greater decrease in TWqpot (−30 ± 14 N in DW, p < 0.05; and −22 ± 16 N in DWL, p < 0.05) compared to LW (−3 ± 21 N, p > 0.05). CK levels only increased 24 hours following DW and DWL ( p < 0.05). DW and DWL showed lower VE and VO2 than LW ( p < 0.05). DW is associated with enhanced quadriceps LFF and lower cardiorespiratory costs than LW. The addition of a chest load to DW does not seem to enhance these effects.
Collapse
Affiliation(s)
| | - Chris Burtin
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- Hasselt University, Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - Miek Hornikx
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Heleen Demeyer
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
| | - Kristien De Bent
- University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| | | | - Christian R Osadnik
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- Monash University, Department of Physiotherapy, Victoria, Australia
- Institute for Breathing and Sleep, Victoria, Australia
| | - Wim Janssens
- University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| | - Thierry Troosters
- KU Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- University Hospital Leuven, Respiratory Division and Rehabilitation, Leuven, Belgium
| |
Collapse
|
20
|
Andrade DC, Henriquez-Olguín C, Beltrán AR, Ramírez MA, Labarca C, Cornejo M, Álvarez C, Ramírez-Campillo R. Effects of general, specific and combined warm-up on explosive muscular performance. Biol Sport 2015; 32:123-8. [PMID: 26060335 PMCID: PMC4447757 DOI: 10.5604/20831862.1140426] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/03/2014] [Accepted: 12/22/2014] [Indexed: 11/29/2022] Open
Abstract
The purpose of this study was to compare the acute effects of general, specific and combined warm-up (WU) on explosive performance. Healthy male (n = 10) subjects participated in six WU protocols in a crossover randomized study design. Protocols were: passive rest (PR; 15 min of passive rest), running (Run; 5 min of running at 70% of maximum heart rate), stretching (STR; 5 min of static stretching exercise), jumping [Jump; 5 min of jumping exercises – 3x8 countermovement jumps (CMJ) and 3x8 drop jumps from 60 cm (DJ60)], and combined (COM; protocols Run+STR+Jump combined). Immediately before and after each WU, subjects were assessed for explosive concentric-only (i.e. squat jump – SJ), slow stretch-shortening cycle (i.e. CMJ), fast stretch-shortening cycle (i.e. DJ60) and contact time (CT) muscle performance. PR significantly reduced SJ performance (p =0.007). Run increased SJ (p =0.0001) and CMJ (p =0.002). STR increased CMJ (p =0.048). Specific WU (i.e. Jump) increased SJ (p =0.001), CMJ (p =0.028) and DJ60 (p =0.006) performance. COM increased CMJ performance (p =0.006). Jump was superior in SJ performance vs. PR (p =0.001). Jump reduced (p =0.03) CT in DJ60. In conclusion, general, specific and combined WU increase slow stretch-shortening cycle (SSC) muscle performance, but only specific WU increases fast SSC muscle performance. Therefore, to increase fast SSC performance, specific fast SSC muscle actions must be included during the WU.
Collapse
Affiliation(s)
- D C Andrade
- Laboratory of Exercise Sciences, MEDS Clinic. Santiago, Chile
| | | | - A R Beltrán
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile ; Education Department, Universidad de Antofagasta, Antofagasta, Chile
| | - M A Ramírez
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - C Labarca
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - M Cornejo
- Cellular Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta, Chile
| | - C Álvarez
- Family Health Center of Los Lagos, Health Promotion Program, Los Lagos, Chile
| | - R Ramírez-Campillo
- Department of Physical Activity Sciences, Universidad de Los Lagos, Osorno, Chile ; Department of Physical Education, Sport and Recreation, Universidad de la Frontera, Temuco, Chile
| |
Collapse
|
21
|
Kim JH, Johnson PW. Fatigue development in the finger flexor muscle differs between keyboard and mouse use. Eur J Appl Physiol 2014; 114:2469-82. [PMID: 25107647 PMCID: PMC9798874 DOI: 10.1007/s00421-014-2974-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/30/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE The aim of the present study was to determine whether there were any physiological changes in the muscle as a result of intensive computer use. METHODS Using a repeated measures experimental design, eighteen subjects participated in four different 8-h conditions: a control (no exposure) condition and three exposure conditions comprised of 6 h of computer use (keyboard, mouse, and combined keyboard and mouse use) followed by 2 h of recovery. In each condition, using 2 Hz neuromuscular electrical stimulation, eight temporal measurements were collected to evaluate the fatigue state (twitch force, contraction time, and ½ relaxation time) of the right middle finger Flexor Digitorum Superficialis (FDS) muscle before, during, and after computer use. RESULTS The results indicated that 6 h of keyboard, mouse, and combined mouse and keyboard use all caused temporal fatigue-related changes in physiological state of the FDS muscle. Keyboard use resulted in muscle potentiation, which was characterized by approximately 30% increase in twitch force (p < 0.0001) and 3% decrease (p = 0.04) in twitch durations. Mouse use resulted in a combined state of potentiation and fatigue, which was characterized by an increase in twitch forces (p = 0.002) but a prolonging (11 %) rather than a shortening of twitch durations (p < 0.0001). CONCLUSIONS When comparing mouse and keyboard use, the more substantial change in the physiological state of the muscle with mouse use (potentiation and fatigue compared to just potentiation with keyboard use) provides some physiological evidence which may explain why mouse use has a greater association with computer-related injuries.
Collapse
Affiliation(s)
- Jeong Ho Kim
- Department of Industrial and Systems Engineering, Northern Illinois University, DeKalb, IL, USA
| | - Peter W Johnson
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Calderón JC, Bolaños P, Caputo C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 2014; 6:133-160. [PMID: 28509964 PMCID: PMC5425715 DOI: 10.1007/s12551-013-0135-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.
Collapse
Affiliation(s)
- Juan C Calderón
- Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
- Departamento de Fisiología y Bioquímica, Grupo de Investigación en Fisiología y Bioquímica-Physis, Facultad de Medicina, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Carlo Caputo
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| |
Collapse
|
23
|
Abstract
Skeletal muscle fatigue is defined as the fall of force or power in response to contractile activity. Both the mechanisms of fatigue and the modes used to elicit it vary tremendously. Conceptual and technological advances allow the examination of fatigue from the level of the single molecule to the intact organism. Evaluation of muscle fatigue in a wide range of disease states builds on our understanding of basic function by revealing the sources of dysfunction in response to disease.
Collapse
Affiliation(s)
- Jane A Kent-Braun
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
| | | | | |
Collapse
|
24
|
Tallis J, Higgins MF, Cox VM, Duncan MJ, James RS. Does a physiological concentration of taurine increase acute muscle power output, time to fatigue, and recovery in isolated mouse soleus (slow) muscle with or without the presence of caffeine? Can J Physiol Pharmacol 2013; 92:42-9. [PMID: 24383872 DOI: 10.1139/cjpp-2013-0195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High concentrations of caffeine and taurine are key constituents of many ergogenic supplements ingested acutely to provide legal enhancements in athlete performance. Despite this, there is little evidence supporting the claims for the performance-enhancing effects of acute taurine supplementation. In-vitro models have demonstrated that a caffeine-induced muscle contracture can be further potentiated when combined with a high concentration of taurine. However, the high concentrations of caffeine used in previous research would be toxic for human consumption. Therefore, this study aimed to investigate whether a physiological dose of caffeine and taurine would directly potentiate skeletal muscle performance. Isolated mouse soleus muscle was used to examine the effects of physiological taurine (TAU), caffeine (CAF), and taurine-caffeine combined (TC) on (i) acute muscle power output; (ii) time to fatigue; and (iii) recovery from fatigue, compared with the untreated controls (CON). Treatment with TAU failed to elicit any significant difference in the measured parameters. Treatment with TC resulted in a significant increase in acute muscle power output and faster time to fatigue. The ergogenic benefit posed by TC was not different from the effects of caffeine alone, suggesting no acute ergogenic benefit of taurine.
Collapse
Affiliation(s)
- Jason Tallis
- Faculty of Health and Life Sciences, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | | | | | | | | |
Collapse
|
25
|
Tallis J, James RS, Cox VM, Duncan MJ. The effect of a physiological concentration of caffeine on the endurance of maximally and submaximally stimulated mouse soleus muscle. J Physiol Sci 2013; 63:125-32. [PMID: 23292763 PMCID: PMC10717149 DOI: 10.1007/s12576-012-0247-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
Abstract
The use of caffeine as an ergogenic aid to promote endurance has been widely studied, with human literature showing the greatest benefit during submaximal muscle activities. Recent evidence suggests that the acute treatment of skeletal muscle with physiological concentrations of caffeine (70 μM maximum) will directly potentiate force production. The aims of the present study are: firstly, to assess the effects of a physiological concentration (70 μM) of caffeine on endurance in maximally activated mouse soleus (relatively slow) muscle; and secondly, to examine whether endurance changes when muscle is activated submaximally during caffeine treatment. Maximally stimulated soleus muscle treated with 70 μM caffeine resulted in a significant (17.6 %) decrease in endurance. In contrast, at a submaximal stimulation frequency, caffeine treatment significantly prolonged endurance (by 19.2 %). Findings are activation-dependent such that, during high frequency stimulation, caffeine accelerates fatigue, whereas, during low frequency stimulation, caffeine delays fatigue.
Collapse
Affiliation(s)
- Jason Tallis
- Faculty of Health and Life Sciences, James Starley Building, Coventry University, Priory Street, Coventry CV1 5FB, UK.
| | | | | | | |
Collapse
|
26
|
Tucker MA, Hargreaves JM, Clarke JC, Dale DL, Blackwell GJ. The Effect of Caffeine on Maximal Oxygen Uptake and Vertical Jump Performance in Male Basketball Players. J Strength Cond Res 2013; 27:382-7. [DOI: 10.1519/jsc.0b013e31825922aa] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Shields RK, Chang YJ. The effects of fatigue on the torque-frequency curve of the human paralysed soleus muscle. J Electromyogr Kinesiol 2012; 7:3-13. [PMID: 20719687 DOI: 10.1016/s1050-6411(96)00015-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/1995] [Revised: 09/15/1995] [Accepted: 12/07/1995] [Indexed: 10/17/2022] Open
Abstract
An advanced understanding of the torque-generating properties of the chronically paralysed soleus muscle may be instrumental in developing improved methods to activate human paralysed muscle. We established the shape of the torque-frequency curve before and after fatigue of the human paralysed soleus muscle. After fatigue, the normalized torque-frequency curve was shifted to the right, suggesting a higher frequency was required to generate the same relative torque. Low frequency fatigue (LFF) consisting of reduced torques at low frequencies and normal torques at higher frequencies was demonstrated. Conversely, the acutely paralysed soleus muscle was found to be fatigue-resistant and showed no shift in the torque-frequency curve. The muscle activation history (potentiation), LFF, and changing contractile speeds may affect the torque-frequency curve after fatigue. These factors may also play an important role in the development of optimal methods to activate paralysed muscle to attenuate fatigue.
Collapse
|
28
|
Enoka RM. Mechanisms of muscle fatigue: Central factors and task dependency. J Electromyogr Kinesiol 2012; 5:141-9. [PMID: 20719645 DOI: 10.1016/1050-6411(95)00010-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1994] [Revised: 03/16/1995] [Accepted: 03/20/1995] [Indexed: 10/17/2022] Open
Abstract
Muscle fatigue can be caused by a number of different mechanisms that result in an acute reduction in the ability to perform a motor task. These mechanisms include the physiological processes that range from the motivation associated with performing the task through to the force exerted by the contractile proteins once they are activated. Two issues are examined in this brief review. First, the role of mechanisms located in the central nervous system (central factors) in the fatigue experienced by human subjects. Second, the importance of task conditions (task dependency) on the fatigue mechanisms involved in a particular performance. The literature documents a prominent role for central factors in the development of muscle fatigue. This role is examined by considering subject motivation, the descending signals sent by suprasegmental centres (central command) and motor unit behaviour. The significance of these or other mechanisms, however, appears to depend on the details of the task. Variation in such requirements as contraction intensity or duration, speed of movement, or type of muscle contraction alters the role of the different mechanisms in limiting performance. Unfortunately, few studies have examined these effects systematically. The field of muscle fatigue would benefit substantially from studies that determined the boundary conditions for the different fatigue mechanisms.
Collapse
Affiliation(s)
- R M Enoka
- Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, OH 44195-5254, U.S.A
| |
Collapse
|
29
|
Kisiel-Sajewicz K, Davis MP, Siemionow V, Seyidova-Khoshknabi D, Wyant A, Walsh D, Hou J, Yue GH. Lack of muscle contractile property changes at the time of perceived physical exhaustion suggests central mechanisms contributing to early motor task failure in patients with cancer-related fatigue. J Pain Symptom Manage 2012; 44:351-61. [PMID: 22835480 DOI: 10.1016/j.jpainsymman.2011.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/09/2011] [Accepted: 09/09/2011] [Indexed: 11/26/2022]
Abstract
CONTEXT Fatigue is one of the most common symptoms reported by cancer survivors, and fatigue worsens when patients are engaged in muscle exertion, which results in early motor task failure. Central fatigue plays a significant role, more than muscle (peripheral) fatigue, in contributing to early task failure in cancer-related fatigue (CRF). OBJECTIVES The purpose of this study was to determine if muscle contractile property alterations (reflecting muscle fatigue) occurred at the end of a low-intensity muscle contraction to exhaustion and if these properties differed between those with CRF and healthy controls. METHODS Ten patients (aged 59.9±10.6 years, seven women) with advanced solid cancer and CRF and 12 age- and gender-matched healthy controls (aged 46.6±12.8 years, nine women) performed a sustained contraction of the right arm elbow flexion at 30% maximal level until exhaustion. Peak twitch force, time to peak twitch force, rate of peak twitch force development, and half relaxation time derived from electrical stimulation-evoked twitches were analyzed pre- and post-sustained contraction. RESULTS CRF patients reported significantly greater fatigue as measured by the Brief Fatigue Inventory and failed the motor task earlier, 340±140 vs. 503±155 seconds in controls. All contractile property parameters did not change significantly in CRF but did change significantly in controls. CONCLUSION CRF patients perceive physical exhaustion sooner during a motor fatigue task with minimal muscular fatigue. The observation supports that central fatigue is a more significant factor than peripheral fatigue in causing fatigue feelings and limits motor function in cancer survivors with fatigue symptoms.
Collapse
Affiliation(s)
- Katarzyna Kisiel-Sajewicz
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cè E, Rampichini S, Agnello L, Limonta E, Veicsteinas A, Esposito F. Combined effects of fatigue and temperature manipulation on skeletal muscle electrical and mechanical characteristics during isometric contraction. J Electromyogr Kinesiol 2012; 22:348-55. [PMID: 22353336 DOI: 10.1016/j.jelekin.2012.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/19/2012] [Accepted: 01/19/2012] [Indexed: 10/28/2022] Open
Abstract
Peripheral fatigue and muscle cooling induce similar effects on sarcolemmal propagation properties. The aim of the study was to assess the combined effects of muscle temperature (Tm) manipulation and fatigue on skeletal muscle electrical and mechanical characteristics during isometric contraction. After maximum voluntary contraction (MVC) assessment, 16 participants performed brief and sustained isometric tasks of different intensities in low (Tm(L)), high (Tm(H)) and neutral (Tm(N)) temperature conditions, before and after a fatiguing exercise (6s on/4s off at 50% MVC, to the point of fatigue). During contraction, the surface electromyogram (EMG) and force were recorded from the biceps brachii muscle. The root mean square (RMS) and conduction velocity (CV) were calculated off-line. After the fatiguing exercise: (i) MVC decreased similarly in all Tm conditions (P<0.05), while EMG RMS did not change; and (ii) CV decreased to a further extent in Tm(L) compared to Tm(N) and Tm(H) in all brief and sustained contractions (P<0.05). The larger CV drop in Tm(L) after fatigue suggests that Tm(L) and fatigue have a combined and additional effect on sarcolemmal propagation properties. Despite these changes, force generating capacity was not affected by Tm manipulation. A compensatory mechanism has been proposed to explain this phenomenon.
Collapse
Affiliation(s)
- Emiliano Cè
- Department of Sport, Nutrition and Health Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Reactive oxygen and nitrogen species (ROS/RNS) are involved in numerous aspects of cellular signaling. Classically ROS/RNS have been associated with cellular dysfunction and disease, but it is now clear that they are also of integral importance under normal conditions. In this review, we discuss ROS/RNS effects in skeletal muscle, with special focus on changes in contractile function. The review deals with the tentative roles of ROS/RNS for acute changes that can occur during strenuous exercise resulting in muscle fatigue, for the recovery from fatigue, and for the effects of training/overtraining. We also discuss two groups of inherited diseases; muscle dystrophies, where recent data suggest that ROS/RNS may be of unexpectedly large importance, and mitochondrial myopathies, where the role of ROS seems more limited than originally thought.
Collapse
Affiliation(s)
- Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
32
|
Tallis J, James RS, Cox VM, Duncan MJ. The effect of physiological concentrations of caffeine on the power output of maximally and submaximally stimulated mouse EDL (fast) and soleus (slow) muscle. J Appl Physiol (1985) 2011; 112:64-71. [PMID: 21979804 DOI: 10.1152/japplphysiol.00801.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ergogenic effects of caffeine in human exercise have been shown to improve endurance and anaerobic exercise performance. Previous work has demonstrated that 70 μM caffeine (physiological maximum) can directly increase mouse extensor digitorum longus (EDL) muscle power output (PO) in sprintlike activity by 3%. Our study used the work loop technique on isolated mouse muscles to investigate whether the direct effect of 70 μM caffeine on PO differed between 1) maximally and submaximally activated muscle; 2) relatively fast (EDL) and relatively slow (soleus) muscles; and 3) caffeine concentrations. Caffeine treatment of 70 μM resulted in significant improvements in PO in maximally and submaximally activated EDL and soleus (P < 0.03 in all cases). For EDL, the effects of caffeine were greatest when the lowest, submaximal stimulation frequency was used (P < 0.001). Caffeine treatments of 140, 70, and 50 μM resulted in significant improvements in acute PO for both maximally activated EDL (3%) and soleus (6%) (P < 0.023 in all cases); however, there was no significant difference in effect between these concentrations (P > 0.420 in all cases). Therefore, the ergogenic effects of caffeine on PO were higher in muscles with a slower fiber type (P < 0.001). Treatment with 35 μM caffeine failed to elicit any improvement in PO in either muscle (P > 0.72 in both cases). Caffeine concentrations below the physiological maximum can directly potentiate skeletal muscle PO. This caffeine-induced increase in force could provide similar benefit across a range of exercise intensities, with greater gains likely in activities powered by slower muscle fiber type.
Collapse
Affiliation(s)
- Jason Tallis
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK.
| | | | | | | |
Collapse
|
33
|
Calderón JC, Bolaños P, Caputo C. Kinetic changes in tetanic Ca²⁺ transients in enzymatically dissociated muscle fibres under repetitive stimulation. J Physiol 2011; 589:5269-83. [PMID: 21878526 DOI: 10.1113/jphysiol.2011.213314] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We used enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres loaded with the fast Ca(2+) dye Magfluo-4 AM, and adhered to Laminin, to test whether repetitive stimulation induces progressive changes in the kinetics of Ca(2+) release and reuptake in a fibre-type-dependent fashion. We applied a protocol of tetani of 350 ms, 100 Hz, every 4 s to reach a mean amplitude reduction of 25% of the first peak. Morphology type I (MT-I) and morphology type II (MT-II) fibres underwent a total of 96 and 52.8 tetani (P < 0.01 between groups), respectively. The MT-II fibres (n = 18) showed significant reductions of the amplitude (19%), an increase in rise time (8.5%) and a further reduction of the amplitude/rise time ratio (25.5%) of the first peak of the tetanic transient after 40 tetani, while MT-I fibres (n = 5) did not show any of these changes. However, both fibre types showed significant reductions in the maximum rate of rise of the first peak after 40 tetani. Two subpopulations among the MT-II fibres could be distinguished according to Ca(2+) reuptake changes. Fast-fatigable MT-II fibres (fMT-II) showed an increase of 32.2% in the half-width value of the first peak, while for fatigue-resistant MT-II fibres (rMT-II), the increase amounted to 6.9%, both after 40 tetani. Significant and non-significant increases of 36.4% and 11.9% in the first time constant of decay (t(1)) values were seen after 40 tetani in fMT-II and rMT-II fibres, respectively. MT-I fibres did not show kinetic changes in any of the Ca(2+) reuptake variables. All changes were reversed after an average recovery of 7.5 and 15.4 min for MT-I and MT-II fibres, respectively. Further experiments ruled out the possibility that the differences in the kinetic changes of the first peak of the Ca(2+) transients between fibres MT-I and MT-II could be related to the inactivation of Ca(2+) release mechanism. In conclusion, we established a model of enzymatically dissociated fibres, loaded with Magfluo-4 and adhered to Laminin, to study muscle fatigue and demonstrated fibre-type-dependent, fatigue-induced kinetic changes in both Ca(2+) release and reuptake.
Collapse
Affiliation(s)
- Juan C Calderón
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
| | | | | |
Collapse
|
34
|
Allen DG, Clugston E, Petersen Y, Röder IV, Chapman B, Rudolf R. Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue. J Appl Physiol (1985) 2011; 111:358-66. [DOI: 10.1152/japplphysiol.01404.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fatigue was studied in intact tibialis anterior muscle of anesthetized mice. The distal tendon was detached and connected to a force transducer while blood flow continued normally. The muscle was stimulated with electrodes applied directly to the muscle surface and fatigued by repeated (1 per 4 s), brief (0.4 s), maximal (100-Hz stimulation frequency) tetani. Force declined monotonically to 49 ± 5% of the initial value with a half time of 36 ± 5 s and recovered to 86 ± 4% after 4 min. Intracellular phosphate concentration ([Pi]) was measured by 31P-NMR on perchloric acid extracts of muscles. [Pi] increased during fatigue from 7.6 ± 1.7 to 16.0 ± 1.6 mmol/kg muscle wet wt and returned to control during recovery. Intracellular Ca2+ was measured with cameleons whose plasmids had been transfected in the muscle 2 wk before the experiment. Yellow cameleon 2 was used to measure myoplasmic Ca2+, and D1ER was used to measure sarcoplasmic reticulum (SR) Ca2+. The myoplasmic Ca2+ during tetani declined steadily during the period of fatigue and showed complete recovery over 4 min. The SR Ca2+ also declined monotonically during fatigue and showed a partial recovery with rest. These results show that the initial phase of force decline is accompanied by a rise in [Pi] and a reduction in the tetanic myoplasmic Ca2+. We suggest that both changes contribute to the fatigue. A likely cause of the decline in tetanic myoplasmic Ca2+ is precipitation of CaPi in the SR.
Collapse
Affiliation(s)
- D. G. Allen
- School of Medical Sciences and Bosch Institute and
| | - E. Clugston
- School of Medical Sciences and Bosch Institute and
| | - Y. Petersen
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - I. V. Röder
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - B. Chapman
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia; and
| | - R. Rudolf
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
35
|
MacIntosh BR, Shahi MRS. A peripheral governor regulates muscle contraction. Appl Physiol Nutr Metab 2011; 36:1-11. [PMID: 21326373 DOI: 10.1139/h10-073] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Active skeletal muscles are capable of keeping the global [adenosine triphosphate (ATP)] reasonably constant during exercise, whether it is mild exercise, activating a few motor units, or all-out exercise using a substantial mass of muscle. This could only be accomplished if there were regulatory processes in place not only to replenish ATP as quickly as possible, but also to modulate the rate of ATP use when that rate threatens to exceed the rate of ATP replenishment, a situation that could lead to metabolic catastrophe. This paper proposes that there is a regulatory process or "peripheral governor" that can modulate activation of muscle to avoid metabolic catastrophe. A peripheral governor, working at the cellular level, should be able to reduce the cellular rate of ATP hydrolysis associated with muscle contraction by attenuating activation. This would necessarily cause something we call peripheral fatigue (i.e., reduced contractile response to a given stimulation). There is no doubt that peripheral fatigue occurs. It has been demonstrated in isolated muscles, in muscles in situ with no central nervous system input, and in intact human subjects performing voluntary exercise with small muscle groups or doing whole-body exercise. The regulation of muscle activation is achieved in at least 3 ways (decreasing membrane excitability, inhibiting Ca2+ release through ryanodine receptors, and decreasing the availability of Ca2+ in the sarcoplasmic reticulum), making this a highly redundant control system. The peripheral governor attenuates cellular activation to reduce the metabolic demand, thereby preserving ATP and the integrity of the cell.
Collapse
Affiliation(s)
- Brian R MacIntosh
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | | |
Collapse
|
36
|
Chang YJ, Shields RK. Doublet electrical stimulation enhances torque production in people with spinal cord injury. Neurorehabil Neural Repair 2011; 25:423-32. [PMID: 21304018 DOI: 10.1177/1545968310390224] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Muscle fatigue prevents repetitive use of paralyzed muscle after spinal cord injury (SCI). OBJECTIVE This study compared the effects of hybrid patterns of muscle stimulation in individuals with acute and chronic SCI. METHODS Individuals with chronic (n = 11) or acute paralysis (n = 3) underwent soleus muscle activation with a constant (CT) or doublet (DT) stimulation train before and at various times after a fatigue protocol. RESULTS The chronically paralyzed soleus was highly fatigable with a fatigue index (FI) of 19% ± 6%, whereas the acutely paralyzed soleus was fatigue resistant (FI = 89% ± 8%). For the chronically paralyzed group, the DT protocol caused less than 5% improvement in peak and mean force relative to the CT protocol before fatigue; however, after fatigue the DT protocol caused an increase in peak and mean force (>10%), compared with the CT protocol (P < .05). As the chronically paralyzed muscle developed low-frequency fatigue, the DT protocol became more effective than the CT protocol (P < .05). The DT protocol increased the rate of torque development before fatigue (42% ± 78%), after fatigue (62% ± 52%), and during recovery (87% ± 54% to 101% ± 56%; P < .05). The acutely paralyzed group showed minimal change in peak and mean torque with the DT protocol. CONCLUSIONS Chronic reduced activity is associated with muscle adaptations (slow to fast) that render the muscle more amenable to force enhancement through doublet train activation after fatigue. These findings are applicable to patients using neuromuscular stimulation.
Collapse
Affiliation(s)
- Ya-Ju Chang
- Chang Gung University, Taiwan, Republic of China
| | | |
Collapse
|
37
|
Gittings W, Huang J, Smith IC, Quadrilatero J, Vandenboom R. The effect of skeletal myosin light chain kinase gene ablation on the fatigability of mouse fast muscle. J Muscle Res Cell Motil 2011; 31:337-48. [PMID: 21298329 DOI: 10.1007/s10974-011-9239-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/17/2011] [Indexed: 11/27/2022]
Abstract
Contraction-induced activation of a skeletal muscle specific Ca(2+) and calmodulin dependent myosin light chain kinase (skMLCK) catalyzes phosphorylation of the myosin regulatory light chain (RLC), a reaction that potentiates twitch force. The purpose of this study was to test the effect of skMLCK gene ablation on the fatigability of mouse extensor digitorum longus (EDL) muscle (in vitro at 25°C). Muscles were isolated from wildtype (WT, n = 10-12) and skeletal MLCK knockout (skMLCK KO, n = 10-12) mice and fatigued using a protocol consisting of 5 min of repeated tetanic stimulation (150 Hz for 1000 ms every 5 s). Both twitch (P(t)) and tetanic (P(o)) force as well as unloaded shortening velocity (V(o)) were assessed before, during and after fatiguing stimulation. Fatiguing stimulation increased RLC phosphorylation in WT but not skMLCK KO muscles (16 ± 0.01-0.63 ± 0.02 and 0.07 ± 0.02-0.08 ± 0.02 mol phos mol RLC, respectively). Although P(t) was potentiated above baseline in both WT and KO muscles, this increase was greater in WT than in KO muscles (to 1.37 ± 0.05 vs. 1.14 ± 0.02 of unpotentiated values, respectively). The difference in P(t) persisted until P(o) had been diminished to ~60% of baseline and thereafter P(t) declined to similar levels in both WT and KO muscles (to ~35% of initial). Overall, the time-course and decline in P(o) for WT and KO was similar (reduced to 0.20 ± 0.01 and 0.20 ± 0.01 of baseline, respectively) (P < 0.05). Initial values for V(o) were similar between WT and KO muscles and, moreover, the fatigue related decline in Vo was similar for both muscle genotypes (P < 0.05). Thus, our results demonstrate that skMLCK--catalyzed RLC phosphorylation augments isometric twitch force during moderate, but not severe, levels of fatigue.
Collapse
Affiliation(s)
- William Gittings
- Center for Muscle Metabolism and Biophysics, Faculty of Applied Health Sciences, Brock University, 500 Glenridge Ave, St Catharines, ON L2S 3A1, Canada
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Andrade F, Trujillo X, Sánchez-Pastor E, Montoya-Pérez R, Saavedra-Molina A, Ortiz-Mesina M, Huerta M. Glibenclamide increases post-fatigue tension in slow skeletal muscle fibers of the chicken. J Comp Physiol B 2010; 181:403-12. [PMID: 21079972 PMCID: PMC3058534 DOI: 10.1007/s00360-010-0527-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/08/2010] [Accepted: 10/25/2010] [Indexed: 01/18/2023]
Abstract
In contrast to fast-twitch skeletal muscle fibers of the chicken, slow-twitch fibers are fatigue-resistant. In fast fibers, the fatigue process has been related to K(ATP) channels. In the present study, we investigated the action of glibenclamide (an anti-diabetic sulphonylurea that acts on K(ATP) channels) on fatigued slow skeletal muscle, studying twitch and tetanus tension after inducing the muscle to fatigue by continuous electrical stimulation. Our results showed that glibenclamide (150 μM) increased post-fatigue twitch tension by about 25% with respect to the fatigued condition (P < 0.05). In addition, glibenclamide (150 μM) increased post-fatigue tetanic tension (83.61 ± 15.7% in peak tension, and 85.0 ± 19.0% in tension-time integral, P = 0.02, and 0.04, respectively; n = 3). Moreover, after exposing the muscle to a condition that inhibits mitochondrial ATP formation in order to activate K(ATP) channels with cyanide (10 mM), tension also diminished, but in the presence of glibenclamide the effect produced by cyanide was abolished. To determine a possible increase in intracellular calcium concentration, the effects of glibenclamide on caffeine-evoked contractures were explored. After muscle pre-incubation with glibenclamide (150 μM), tension of caffeine-evoked contractures increased (6.5 ± 1.5% in maximal tension, and 5.9 ± 3.8% in tension-time integral, P < 0.05). These results suggest a possible role of K(ATP) channels in the fatigue process, since glibenclamide increases twitch and tetanus tension in fatigued slow muscle of the chicken and during metabolic inhibition, possibly by increasing intracellular calcium.
Collapse
Affiliation(s)
- Felipa Andrade
- Instituto Tecnológico de Colima, Avenida Tecnológico No. 1, C.P. 28976, Villa de Álvarez, Colima, México
| | | | | | | | | | | | | |
Collapse
|
40
|
Prosser BL, Hernández-Ochoa EO, Lovering RM, Andronache Z, Zimmer DB, Melzer W, Schneider MF. S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle. Am J Physiol Cell Physiol 2010; 299:C891-902. [PMID: 20686070 DOI: 10.1152/ajpcell.00180.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of S100A1 in skeletal muscle is just beginning to be elucidated. We have previously shown that skeletal muscle fibers from S100A1 knockout (KO) mice exhibit decreased action potential (AP)-evoked Ca(2+) transients, and that S100A1 binds competitively with calmodulin to a canonical S100 binding sequence within the calmodulin-binding domain of the skeletal muscle ryanodine receptor. Using voltage clamped fibers, we found that Ca(2+) release was suppressed at all test membrane potentials in S100A1(-/-) fibers. Here we examine the role of S100A1 during physiological AP-induced muscle activity, using an integrative approach spanning AP propagation to muscle force production. With the voltage-sensitive indicator di-8-aminonaphthylethenylpyridinium, we first demonstrate that the AP waveform is not altered in flexor digitorum brevis muscle fibers isolated from S100A1 KO mice. We then use a model for myoplasmic Ca(2+) binding and transport processes to calculate sarcoplasmic reticulum Ca(2+) release flux initiated by APs and demonstrate decreased release flux and greater inactivation of flux in KO fibers. Using in vivo stimulation of tibialis anterior muscles in anesthetized mice, we show that the maximal isometric force response to twitch and tetanic stimulation is decreased in S100A1(-/-) muscles. KO muscles also fatigue more rapidly upon repetitive stimulation than those of wild-type counterparts. We additionally show that fiber diameter, type, and expression of key excitation-contraction coupling proteins are unchanged in S100A1 KO muscle. We conclude that the absence of S100A1 suppresses physiological AP-induced Ca(2+) release flux, resulting in impaired contractile activation and force production in skeletal muscle.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Center for Biomedical Engineering and Technology, University of Maryland, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Intracellular Ca2+ signaling in skeletal muscle: decoding a complex message. Exerc Sport Sci Rev 2010; 38:76-85. [PMID: 20335739 DOI: 10.1097/jes.0b013e3181d495d2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intracellular calcium (Ca2+) plays an important role in regulating muscle force production, metabolism, and muscle gene expression. It is hypothesized that the precise pattern of Ca2+ oscillations, determined by the Ca2+ channels activated and the contributing Ca2+ pools, controls the coupling between neural activation, force production, cellular energetics, and gene expression. The physiological and cellular coordination between these events will be discussed.
Collapse
|
42
|
Effect of gender, age, fatigue and contraction level on electromechanical delay. Clin Neurophysiol 2010; 121:1700-6. [PMID: 20430696 DOI: 10.1016/j.clinph.2009.10.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/28/2009] [Accepted: 10/31/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE The aim of this study was to determine electromechanical delay (EMD) using supramaximal stimuli and to investigate its variation with gender, age, contraction level and fatigue. METHODS Fifteen male and 15 female healthy subjects (aged between 18 and 60) participated in our study. Electromyogram (EMG) recordings were taken from triceps surae muscle. While subjects contracted their muscles voluntarily at specified percentages of maximum voluntary contraction, 10 supramaximal stimuli were applied to the tibial nerve. The time lag between the onset of the EMG response (M-wave) and the onset of force generation was calculated as EMD. RESULTS EMD was found to be 8.5+/-1.3 ms (at rest condition), which is much shorter than those reported in previous studies. Although EMD did not significantly vary with gender (P>0.05), it decreased significantly with escalating muscle contraction level (P<0.05) and increased significantly with advancing age and with fatigue (P<0.05). CONCLUSIONS EMD was found to be considerably shorter than those reported in previous studies, and hence we discuss the possible reasons underlying this difference. We suggest that supramaximal nerve stimulation and high resolution EMG and force recording may have generated this difference. SIGNIFICANCE Current findings suggest that EMD is very sensitive to the method used to determine it. We discuss the reasons for the short EMD value that we have found in the present study.
Collapse
|
43
|
Cellular and whole muscle studies of activity dependent potentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 682:315-42. [PMID: 20824534 DOI: 10.1007/978-1-4419-6366-6_18] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
With a single activation, a skeletal muscle fiber, motor unit or whole muscle will yield a twitch contraction. The twitch is not an "all-or-none" response, but a submaximal response that can vary from one time to another. Prior activation causes myosin regulatory light chain (RLC) phosphorylation, by an enzyme called myosin light chain kinase. This phosphorylation dissipates slowly over the next several minutes due to a slow activity of light chain phosphatase. Phosphorylation of the RLC increases the mobility of the S1 head of myosin, bringing the S1 head in closer proximity to the myosin binding sites on actin. This increased mobility increases the rate of engagement of cross-bridges and increases the rate of force development and contraction magnitude on subsequent twitch or other submaximal contractions. We call this increased contractile response "activity dependent potentiation". With sequential twitches or incompletely fused tetanic contractions, the term staircase is used to describe the progressive increase in amplitude of contraction. If a twitch is elicited after a tetanic contraction, we call the enhanced response posttetanic potentiation. Stretching a muscle fiber to a longer length will also bring the actin filaments close to the myosin heads. This increases the Ca²(+) sensitivity, independent of RLC phosphorylation. At long sarcomere lengths, the impact of RLC phosphorylation is diminished, because Ca²(+) sensitivity is already increased. Similarly, lowering the temperature at which the muscle is tested increases Ca²(+) sensitivity. At low temperatures, staircase and posttetanic potentiation are diminished, but RLC phosphorylation still occurs. Activity dependent potentiation is an important functional modulator of contractile response.
Collapse
|
44
|
Rosser JI, Walsh B, Hogan MC. Effect of physiological levels of caffeine on Ca2+ handling and fatigue development in Xenopus isolated single myofibers. Am J Physiol Regul Integr Comp Physiol 2009; 296:R1512-7. [PMID: 19261915 DOI: 10.1152/ajpregu.90901.2008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to determine whether exposure to exogenous physiological concentrations of caffeine influence contractility, Ca(2+) handling, and fatigue development in isolated single Xenopus laevis skeletal muscle fibers. After isolation, two identical contractile periods (separated by 60-min rest) were conducted in each single myofiber (n = 8) at 20 degrees C. During the first contractile period, four fibers were perfused with a noncaffeinated Ringer solution, while the other four fibers were perfused with a caffeinated (70 microM) Ringer solution. The order was reversed for the second contractile period. The single myofibers were stimulated during each contractile period at increasing frequencies (0.16, 0.20, 0.25, 0.33, 0.50, and 1.0 tetanic contractions/s), with each stimulation frequency lasting 2 min until fatigue ensued, defined in this study as a fall in tension development to 66% of maximum. Tension development and free cytosolic [Ca(2+)] (fura-2 fluorescence spectroscopy) were simultaneously measured. There was no significant difference in the peak force generation, time to fatigue, cytosolic Ca(2+) levels, or relaxation times between the noncaffeinated and caffeinated trials. These results demonstrate that physiological levels of caffeine have no significant effect on Xenopus single myofiber contractility, Ca(2+) handling, and fatigue development, and suggest that any ergogenic effects of physiological levels of caffeine on muscle performance during contractions of moderate to high intensity are likely related to factors extraneous to the muscle fiber.
Collapse
Affiliation(s)
- Joelle I Rosser
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0623, USA
| | | | | |
Collapse
|
45
|
Hough PA, Ross EZ, Howatson G. Effects of Dynamic and Static Stretching on Vertical Jump Performance and Electromyographic Activity. J Strength Cond Res 2009; 23:507-12. [DOI: 10.1519/jsc.0b013e31818cc65d] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Roots H, Ball G, Talbot-Ponsonby J, King M, McBeath K, Ranatunga KW. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers. J Appl Physiol (1985) 2008; 106:378-84. [PMID: 19057001 PMCID: PMC2644245 DOI: 10.1152/japplphysiol.90883.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 2–3 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20°C (n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (10–30°C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30°C (∼20%) than at 10°C (∼30%); the power output (force × velocity) was >10× higher at 30°C than at 10°C, and power decline during a fatigue run was less at 30°C (∼20–30%) than at 10°C (∼50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue.
Collapse
Affiliation(s)
- H Roots
- Department of Physiology and Pharmacology, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
47
|
Bellinger AM, Mongillo M, Marks AR. Stressed out: the skeletal muscle ryanodine receptor as a target of stress. J Clin Invest 2008; 118:445-53. [PMID: 18246195 DOI: 10.1172/jci34006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Over the past century, understanding the mechanisms underlying muscle fatigue and weakness has been the focus of much investigation. However, the dominant theory in the field, that lactic acidosis causes muscle fatigue, is unlikely to tell the whole story. Recently, dysregulation of sarcoplasmic reticulum (SR) Ca(2+) release has been associated with impaired muscle function induced by a wide range of stressors, from dystrophy to heart failure to muscle fatigue. Here, we address current understandings of the altered regulation of SR Ca(2+) release during chronic stress, focusing on the role of the SR Ca(2+) release channel known as the type 1 ryanodine receptor.
Collapse
Affiliation(s)
- Andrew M Bellinger
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
48
|
Abstract
Impaired calcium release from the sarcoplasmic reticulum (SR) has been identified as a contributor to fatigue in isolated skeletal muscle fibers. The functional importance of this phenomenon can be quantified by the use of agents, such as caffeine, which can increase SR Ca2+release during fatigue. A number of possible mechanisms for impaired calcium release have been proposed. These include reduction in the amplitude of the action potential, potentially caused by extracellular K+accumulation, which may reduce voltage sensor activation but is counteracted by a number of mechanisms in intact animals. Reduced effectiveness of SR Ca2+channel opening is caused by the fall in intracellular ATP and the rise in Mg2+concentrations that occur during fatigue. Reduced Ca2+available for release within the SR can occur if inorganic phosphate enters the SR and precipitates with Ca2+. Further progress requires the development of methods that can identify impaired SR Ca2+release in intact, blood-perfused muscles and that can distinguish between the various mechanisms proposed.
Collapse
|
49
|
Abstract
Repeated, intense use of muscles leads to a decline in performance known as muscle fatigue. Many muscle properties change during fatigue including the action potential, extracellular and intracellular ions, and many intracellular metabolites. A range of mechanisms have been identified that contribute to the decline of performance. The traditional explanation, accumulation of intracellular lactate and hydrogen ions causing impaired function of the contractile proteins, is probably of limited importance in mammals. Alternative explanations that will be considered are the effects of ionic changes on the action potential, failure of SR Ca2+release by various mechanisms, and the effects of reactive oxygen species. Many different activities lead to fatigue, and an important challenge is to identify the various mechanisms that contribute under different circumstances. Most of the mechanistic studies of fatigue are on isolated animal tissues, and another major challenge is to use the knowledge generated in these studies to identify the mechanisms of fatigue in intact animals and particularly in human diseases.
Collapse
|
50
|
Abstract
The functional correlates of fatigue observed in both animals and humans during exercise include a decline in peak force (P0), maximal velocity, and peak power. Establishing the extent to which these deleterious functional changes result from direct effects on the myofilaments is facilitated through understanding the molecular mechanisms of the cross-bridge cycle. With actin-myosin binding, the cross-bridge transitions from a weakly bound low-force state to a strongly bound high-force state. Low pH reduces the number of high-force cross bridges in fast fibers, and the force per cross bridge in both fast and slow fibers. The former is thought to involve a direct inhibition of the forward rate constant for transition to the strong cross-bridge state. In contrast, inorganic phosphate (Pi) is thought to reduce P0 by accelerating the reversal of this step. Both H+ and Pi decrease myofibrillar Ca2+ sensitivity. This effect is particularly important as the amplitude of the Ca2+ transient falls with fatigue. The inhibitory effects of low pH and high Pi on P0 are reduced as temperature increases from 10 to 30 degrees C. However, the H+-induced depression of peak power in the slow fiber type, and Pi inhibition of myofibrillar Ca2+ sensitivity in slow and fast fibers, are greater at high compared with low temperature. Thus the depressive effects of H+ and Pi at in vivo temperatures cannot easily be predicted from data collected below 25 degrees C. In vitro, reactive oxygen species reduce myofibrillar Ca2+ sensitivity; however, the importance of this mechanism during in vivo exercise is unknown.
Collapse
Affiliation(s)
- Robert H Fitts
- Dept. of Biological Sciences, Wehr Life Sciences Bldg., Marquette Univ., P. O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|