1
|
Piezo1 Channel Activation Reverses Pulmonary Artery Vasoconstriction in an Early Rat Model of Pulmonary Hypertension: The Role of Ca2+ Influx and Akt-eNOS Pathway. Cells 2022; 11:cells11152349. [PMID: 35954193 PMCID: PMC9367624 DOI: 10.3390/cells11152349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023] Open
Abstract
In intrapulmonary arteries (IPAs), mechanical forces due to blood flow control vessel tone, and these forces change during pulmonary hypertension (PH). Piezo1, a stretch-activated calcium channel, is a sensor of mechanical stress present in both endothelial cells (ECs) and smooth muscle cells (SMCs). The present study investigated the role of Piezo1 on IPA in the chronic hypoxia model of PH. Rats were raised in chronically hypoxic conditions for 1 (1W-CH, early stage) or 3 weeks (3W-CH, late-stage) of PH or in normoxic conditions (Nx). Immunofluorescence labeling and patch-clamping revealed the presence of Piezo1 in both ECs and SMCs. The Piezo1 agonist, Yoda1, induced an IPA contraction in Nx and 3W-CH. Conversely, Yoda1 induced an endothelial nitric oxide (eNOS) dependent relaxation in 1W-CH. In ECs, the Yoda1-mediated intracellular calcium concentration ([Ca2+]i) increase was greater in 1W-CH as compared to Nx. Yoda1 induced an EC hyperpolarization in 1W-CH. The eNOS levels were increased in 1W-CH IPA compared to Nx or 3W-CH PH and Yoda1 activated phosphorylation of Akt (Ser473) and eNOS (Ser1177). Thus, we demonstrated that endothelial Piezo1 contributes to intrapulmonary vascular relaxation by controlling endothelial [Ca2+]i, endothelial-dependent hyperpolarization, and Akt-eNOS pathway activation in the early stage of PH.
Collapse
|
2
|
Abstract
The understanding of the physiology and management of one-lung ventilation (OLV) has advanced over the last two decades. OLV induces an obligatory shunt through the nonventilated lung that causes varying degrees of arterial hypoxemia. Shunt may also occur in the venti lated lung. The optimal mode of ventilation of the dependent lung has not been well defined. The optimal tidal volume, respiratory rate, inspired oxygen concen tration, and positive end-expiratory pressure (PEEP) during OLV are not known. Functional residual capacity (FRC) of the ventilated lung can be lower than during two-lung ventilation, causing atelectasis and arterial hypoxemia. Patients who desaturate might be expected to show improvement in oxygenation with dependent lung PEEP, because of increased FRC and reduced V/Q mismatch. Not all patients have low lung volumes, and not all patients who have low lung volumes will desatu rate. Therefore, prophylactic PEEP is not usually neces sary or appropriate. Because the predominant cause of hypoxemia during OLV is shunt in the nondependent lung, therapies to improve arterial oxygenation during OLV should be primarily directed toward the nondepen dent lung. Partial reinflation of the nondependent lung with O2will reduce the physiological shunt fraction of the lung. Continuous positive airways pressure (CPAP) is an effective prophylactic and therapeutic treatment for hypoxemia. All studies examining CPAP have found it to be effective, provided it is preceded by lung reinflation.
Collapse
Affiliation(s)
| | - Simon C. Body
- Department of Anesthesia, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
3
|
Role of κ—Opioid Receptor in Hypoxic Pulmonary Artery Hypertension and Its Underlying Mechanism. Am J Ther 2013; 20:329-36. [DOI: 10.1097/mjt.0b013e318249a08c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
Pulmonary hypertension is a serious complication of a number of lung and heart diseases that is characterized by peripheral vascular structural remodeling and loss of vascular tone. Nitric oxide can modulate vascular injury and interrupt elevation of pulmonary vascular resistance selectively; however, it can also produce cytotoxic oxygen radicals and exert cytotoxic and antiplatelet effects. The balance between the protective and adverse effects of nitric oxide is determined by the relative amount of nitric oxide and reactive radicals. Nitric oxide has been shown to be clinically effective in the treatment of congenital heart disease, mitrial valvular disease combined with pulmonary hypertension and in orthotropic cardiac transplantation patients. Additionally, new therapeutic modalities for the treatment of pulmonary hypertension, phosphodiesterase inhibitors, natriuretic peptides and aqueous nitric oxide are also effective for treatment of elevated pulmonary vascular resistance.
Collapse
Affiliation(s)
- Ji-Yeon Sim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| |
Collapse
|
6
|
|
7
|
de Frutos S, Nitta CH, Caldwell E, Friedman J, González Bosc LV. Regulation of soluble guanylyl cyclase-alpha1 expression in chronic hypoxia-induced pulmonary hypertension: role of NFATc3 and HuR. Am J Physiol Lung Cell Mol Physiol 2009; 297:L475-86. [PMID: 19592461 DOI: 10.1152/ajplung.00060.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The nitric oxide/soluble guanylyl cyclase (sGC) signal transduction pathway plays an important role in smooth muscle relaxation and phenotypic regulation. However, the transcriptional regulation of sGC gene expression is largely unknown. It has been shown that sGC expression increases in pulmonary arteries from chronic hypoxia-induced pulmonary hypertensive animals. Since the transcription factor NFATc3 is required for the upregulation of the smooth muscle hypertrophic/differentiation marker alpha-actin in pulmonary artery smooth muscle cells from chronically hypoxic mice, we hypothesized that NFATc3 is required for the regulation of sGC-alpha1 expression during chronic hypoxia. Exposure to chronic hypoxia for 2 days induced a decrease in sGC-alpha1 expression in mouse pulmonary arteries. This reduction was independent of NFATc3 but mediated by nuclear accumulation of the mRNA-stabilizing protein human antigen R (HuR). Consistent with our hypothesis, chronic hypoxia (21 days) upregulated pulmonary artery sGC-alpha1 expression, bringing it back to the level of the normoxic controls. This response was prevented in NFATc3 knockout and cyclosporin (calcineurin/NFATc inhibitor)-treated mice. Furthermore, we identified effective binding sites for NFATc in the mouse sGC-alpha1 promoter. Activation of NFATc3 increased sGC-alpha1 promoter activity in human embryonic derived kidney cells, rat aortic-derived smooth muscle cells, and human pulmonary artery smooth muscle cells. Our results suggest that NFATc3 and HuR are important regulators of sGC-alpha1 expression in pulmonary vascular smooth muscle cells during chronic hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Sergio de Frutos
- Vascular Physiology Group, Department of Cell Biology and Physiology, School of Medicine, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | | | |
Collapse
|
8
|
Li LP, Ji L, Santos EA, Dunkle E, Pierchala L, Prasad P. Effect of nitric oxide synthase inhibition on intrarenal oxygenation as evaluated by blood oxygenation level-dependent magnetic resonance imaging. Invest Radiol 2009; 44:67-73. [PMID: 19034027 DOI: 10.1097/rli.0b013e3181900975] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate the feasibility of studying renal effects of nitric oxide synthase inhibition (NOSi) in humans by blood oxygenation level-dependent (BOLD) MRI. Nitric oxide (NO) is known to play a key role in the pathophysiology of hypertension and previous reports suggest reduced bioavailability of NO in the kidneys of hypertensive rats and hence show reduced response to NOSi using BOLD MRI. Ability to perform similar studies in humans could potentially lead to detection of early changes before development of symptoms, and to monitor novel interventions targeted toward improved NO bioavailability. The specific goals for this study were: (1) to examine whether lower doses and dose rate of administration of NOSi such as those previously used in humans can be detected by BOLD MRI in rat kidneys, (2) to compare changes in R2* to direct measures of renal medullary oxygen levels and blood flow using invasive probes (OxyLite/OxyFlo), and (3) to examine for the first time the effect of NOSi on intrarenal oxygenation in humans. MATERIAL AND METHODS In rat kidneys, acute changes in renal tissue oxygenation induced by different doses (2, 4, and 10 mg/kg) of N-nitro-L-arginine methyl ester were studied in 36 Sprague Dawley rats, which were equally divided into BOLD MRI and OxyLite/OxyFlo groups. Similarly in humans, acute changes in renal oxygenation were induced by 2 different NOS inhibitors NG-monomethyl-L-arginine (4.25 mg/kg) in 7 volunteers and N-nitro-L-arginine methyl ester (2 mg/kg and 4 mg/kg) in 6 healthy young volunteers. A multiple gradient echo sequence was used in both rats (TE = 4.4-57.8 milliseconds with 3.6 milliseconds interecho spacing) and humans (TE = 6.4-40.8 milliseconds with a 2.3 milliseconds interecho spacing) to acquire 16 T2*-weighted images. R2* maps were constructed by fitting a single exponential decay to the image data on pixel by pixel basis. R2* measurements in the cortex and medulla were performed by regions of interest analysis. Measurements were performed before and during infusion of NOSi. RESULTS In rats, NOSi decreased medullary pO2 and blood flow in a dose-dependent manner, and BOLD MRI showed an increase in medullary R2* consistent with the invasive pO2 measurements. In humans, BOLD MRI similarly showed an increase in medullary and cortical R2* after NOSi in a dose-dependent manner. In both rats and humans, the R2* values fell back toward baseline before the end of the infusion period. CONCLUSION Comparison of BOLD MRI measurements with those using invasive probes suggests that changes in blood flow are at least partly responsible for observed changes with BOLD MRI. Monitoring changes after NOSi by renal BOLD MRI in vivo in human kidneys are feasible, and preliminary findings are consistent with observations in rat kidneys. Future studies are warranted to fully understand the apparent reversal in R2* changes during the infusion of NOSi.
Collapse
Affiliation(s)
- Lu-Ping Li
- Department of Radiology, Evanston Northwestern Healthcare, Evanston, IL, USA
| | | | | | | | | | | |
Collapse
|
9
|
Dhaliwal JS, Casey DB, Greco AJ, Badejo AM, Gallen TB, Murthy SN, Nossaman BD, Hyman AL, Kadowitz PJ. Rho kinase and Ca2+ entry mediate increased pulmonary and systemic vascular resistance in l-NAME-treated rats. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1306-13. [PMID: 17766587 DOI: 10.1152/ajplung.00189.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The small GTP-binding protein and its downstream effector Rho kinase play an important role in the regulation of vasoconstrictor tone. Rho kinase activation maintains increased pulmonary vascular tone and mediates the vasoconstrictor response to nitric oxide (NO) synthesis inhibition in chronically hypoxic rats and in the ovine fetal lung. However, the role of Rho kinase in mediating pulmonary vasoconstriction after NO synthesis inhibition has not been examined in the intact rat. To address this question, cardiovascular responses to the Rho kinase inhibitor fasudil were studied at baseline and after administration of an NO synthesis inhibitor. In the intact rat, intravenous injections of fasudil cause dose-dependent decreases in systemic arterial pressure, small decreases in pulmonary arterial pressure, and increases in cardiac output. l-NAME caused a significant increase in pulmonary and systemic arterial pressures and a decrease in cardiac output. The intravenous injections of fasudil after l-NAME caused dose-dependent decreases in pulmonary and systemic arterial pressure and increases in cardiac output, and the percent decreases in pulmonary arterial pressure in response to the lower doses of fasudil were greater than decreases in systemic arterial pressure. The Ca++ entry blocker isradipine also decreased pulmonary and systemic arterial pressure in l-NAME-treated rats. Infusion of sodium nitroprusside restored pulmonary arterial pressure to baseline values after administration of l-NAME. These data provide evidence in support of the hypothesis that increases in pulmonary and systemic vascular resistance following l-NAME treatment are mediated by Rho kinase and Ca++ entry through L-type channels, and that responses to l-NAME can be reversed by an NO donor.
Collapse
Affiliation(s)
- Jasdeep S Dhaliwal
- Dept. of Pharmacology, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hodyc D, Snorek M, Brtnický T, Herget J. Superoxide dismutase mimetic tempol inhibits hypoxic pulmonary vasoconstriction in rats independently of nitric oxide production. Exp Physiol 2007; 92:945-51. [PMID: 17496002 DOI: 10.1113/expphysiol.2007.037135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV), an important physiological mechanism, is regulated by changes in the production of and interactions among reactive oxygen species (ROS). There is controversy, however, over whether HPV is mediated by an increase or a decrease in ROS production. Also, the role of NO in HPV remains unclear. The aim of this study was to investigate whether the inhibition of HPV by the antioxidant tempol was dependent on the concentration of NO, and how its effect was influenced by increased basal pulmonary vascular tone. In isolated rat lungs, we measured vasoconstrictor responses to acute ventilatory hypoxia before and after administration of tempol during perfusion with or without L-NAME. We found that tempol abolished HPV independently of NO production. When we increased basal vascular tone by K(+)-induced depolarization, we also found that tempol completely inhibited HPV. Our results indicate that inhibition of HPV by the superoxide dismutase mimetic tempol does not depend on either NO production or a decrease in basal vascular tone.
Collapse
Affiliation(s)
- Daniel Hodyc
- Department of Physiology, Charles University, Second Medical School, Prague, Czech Republic.
| | | | | | | |
Collapse
|
11
|
Sureda A, Batle JM, Tauler P, Ferrer MD, Tur JA, Pons A. Vitamin C supplementation influences the antioxidant response and nitric oxide handling of erythrocytes and lymphocytes to diving apnea. Eur J Clin Nutr 2006; 60:838-46. [PMID: 16482080 DOI: 10.1038/sj.ejcn.1602388] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We have investigated the influence of vitamin C diet supplementation on the antioxidant response and nitrite levels in lymphocytes and erythrocytes during diving apnea. SUBJECTS Seven male professional apnea divers participated in a double blind crossover study. Divers were randomly assigned to either vitamin C supplemented or placebo groups. The subjects did not take any other supplements than the ones provided for this study. INTERVENTION One group was supplemented with vitamin C capsules (1 g per day) for 7 days while the other group took a placebo composed of lactose. The usual dietary habits of participants were assessed using a self-reported 7-days 24-h recall before the day of the study. Blood samples were taken under basal conditions, immediately after diving apnea for 4 h and after 1 h of recovery. RESULTS Catalase activity increased in erythrocytes (23%) and superoxide dismutase increased in lymphocytes (35%) during the recovery only in the placebo group. Lymphocyte ascorbate levels increased in the supplemented group after diving (85%) and maintained high at recovery. Plasma nitrite levels increased about twofold in both groups during the recovery. Erythrocyte nitrite levels increased after diving (50%) and about twofold during the recovery in the supplemented group. Nitrite levels and iNOS levels in lymphocytes were higher in the placebo group than in the supplemented during the recovery. Erythrocyte carbonyl derivates were unchanged in all situations. CONCLUSIONS Vitamin C supplementation influenced the antioxidant response and NO handling in erythrocytes and lymphocytes to the oxidative stress induced by hypoxia-reoxygenation.
Collapse
Affiliation(s)
- A Sureda
- Laboratori de Ciències de l'Activitat Física, Departament de Biologia Fonamental i Ciències de la Salut, Universitat de les Illes Balears, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Skovgaard N, Galli G, Abe A, Taylor EW, Wang T. The role of nitric oxide in regulation of the cardiovascular system in reptiles. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:205-14. [PMID: 15982914 DOI: 10.1016/j.cbpb.2005.05.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/20/2005] [Accepted: 05/21/2005] [Indexed: 11/19/2022]
Abstract
The roles that nitric oxide (NO) plays in the cardiovascular system of reptiles are reviewed, with particular emphasis on its effects on central vascular blood flows in the systemic and pulmonary circulations. New data is presented that describes the effects on hemodynamic variables in varanid lizards of exogenously administered NO via the nitric oxide donor sodium nitroprusside (SNP) and inhibition of nitric oxide synthase (NOS) by l-nitroarginine methyl ester (l-NAME). Furthermore, preliminary data on the effects of SNP on hemodynamic variables in the tegu lizard are presented. The findings are compared with previously published data from our laboratory on three other species of reptiles: pythons (), rattlesnakes () and turtles (). These five species of reptiles possess different combinations of division of the heart and structural complexity of the lungs. Comparison of their responses to NO donors and NOS inhibitors may reveal whether the potential contribution of NO to vascular tone correlates with pulmonary complexity and/or with blood pressure. All existing studies on reptiles have clearly established a potential role for NO in regulating vascular tone in the systemic circulation and NO may be important for maintaining basal systemic vascular tone in varanid lizards, pythons and turtles, through a continuous release of NO. In contrast, the pulmonary circulation is less responsive to NO donors or NOS inhibitors, and it was only in pythons and varanid lizards that the lungs responded to SNP. Both species have a functionally separated heart, so it is possible that NO may exert a larger role in species with low pulmonary blood pressures, irrespective of lung complexity.
Collapse
Affiliation(s)
- Nini Skovgaard
- Departamento de Zoologia, Centro de Aguicultura, UNESP, Caixa Postal 199, 13506-907 Rio Claro, Brazil.
| | | | | | | | | |
Collapse
|
13
|
Ruan Z, Koizumi T, Sakai A, Ishizaki T, Kubo K, Shibamoto T, Wang Z. Comparison of cardiopulmonary response to endogenous nitric oxide inhibition in pigs inhabited at three levels of altitude. Eur J Appl Physiol 2005; 94:93-6. [PMID: 15654618 DOI: 10.1007/s00421-004-1290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2004] [Indexed: 10/25/2022]
Abstract
Nitric oxide (NO) plays an important role for the pulmonary circulation in normal and chronic hypoxia. We examined effects of endogenous nitric oxide synthase (NOS) inhibition on pulmonary and systemic vascular resistance in unanesthetized pigs living at three levels of altitude to evaluate the role of NO in adaptation to a hypoxic environment. Unanesthetized male adult pigs in three areas [Matsumoto, Japan (680 m above sea level, n = 5); Xing, China (2,300 m, n = 5); and Maxin, China (3,750 m, n = 5)] were prepared for vascular monitoring. Pulmonary (P(pa)), and systemic artery pressure (P(sa)) were monitored, and pulmonary artery wedge pressure (P(cwp)) and cardiac output (CO) were measured before and after treatment with a non-selective NOS inhibitor, N(w)-nitro-L-argine (NLA; 20 mg/kg). Pulmonary vascular resistance (PVR) and systemic vascular resistance (SVR) were (P(pa)-P(cwp))/CO and P(sa)/CO, respectively. Related to altitude baseline P(pa) was elevated. After NLA administration, P(pa) and P(sa) increased and CO decreased in all animals, resulting in increases in PVR and SVR. However, there were no significant differences in the increase in PVR and SVR in the three groups of pigs. Thus, endogenous NO production contributes to regulate the basal pulmonary vascular tone, but the development of hypoxic pulmonary hypertension appears to be independent of the NO pathway in adult pigs.
Collapse
Affiliation(s)
- Zonghai Ruan
- Department of Internal Medicine, Shinshu University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Ruan Z, Koizumi T, Sakai A, Ishizaki T, Wang Z. Endogenous nitric oxide and pulmonary circulation response to hypoxia in high-altitude adapted Tibetan sheep. Eur J Appl Physiol 2004; 93:190-5. [PMID: 15316790 DOI: 10.1007/s00421-004-1197-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
Nitric oxide (NO) is important for the pulmonary circulation response to acute and chronic hypoxia. We examined effects of endogenous nitric oxide synthase (NOS) inhibition on pulmonary vascular tone in response to hypoxia in Tibetan sheep dwelling at 3,000 m above sea level using a pressure chamber. Unanaesthetized male sheep living at 2,300 m above sea level ( n=7) were prepared for vascular monitoring. Pulmonary artery ( P(pa)), pulmonary artery wedge ( P(cwp)) and systemic artery pressures together with cardiac output (CO) were measured, and pulmonary vascular resistance (PVR) was calculated as ( P(pa)- P(cwp))/CO. A non-selective NOS inhibitor, N(omega)-nitro- l-arginine (NLA; 20 mg kg(-1)), and a selective NOS inhibitor, ONO-1714 (0.1 mg kg(-1)), were used and measurements were made at 0 m, 2,300 m, and 4,500 m, with and without the NOS inhibitors. After NLA, P(pa) increased slightly and CO decreased in animals at baseline (2,300 m). The increased PVR after NLA at 4,500 m was greater than that at 2,300 m ( P<0.05). Selective NOS inhibition increased PVR at baseline, but not at 4,500 m. The enhanced pulmonary vasoconstriction after NO inhibition at basal and hypoxic conditions suggests a modulating role of NOS bioactivity in the pulmonary circulation and that augmented endothelial NOS plays a counterregulatory role in the pulmonary vasoconstrictor response to acute hypoxia in high-altitude adapted Tibetan sheep.
Collapse
Affiliation(s)
- Zonghai Ruan
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi Matsumoto, 390-8621 Nagano, Japan
| | | | | | | | | |
Collapse
|
15
|
Fike CD, Aschner JL, Zhang Y, Kaplowitz MR. Impaired NO signaling in small pulmonary arteries of chronically hypoxic newborn piglets. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1244-54. [PMID: 14766668 DOI: 10.1152/ajplung.00345.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed studies to determine whether chronic hypoxia impairs nitric oxide (NO) signaling in resistance level pulmonary arteries (PAs) of newborn piglets. Piglets were maintained in room air (control) or hypoxia (11% O2) for either 3 (shorter exposure) or 10 (longer exposure) days. Responses of PAs to a nonselective NO synthase (NOS) antagonist, Nω-nitro-l-arginine methylester (l-NAME), a NOS-2-selective antagonist, aminoguanidine, and 7-nitroindazole, a NOS-1-selective antagonist, were measured. Levels of NOS isoforms and of two proteins involved in NOS signaling, heat shock protein (HSP) 90 and caveolin-1, were assessed in PA homogenates. PAs from all groups constricted to l-NAME but not to aminoguanidine or 7-nitroindazole. The magnitude of constriction to l-NAME was similar for PAs from control and hypoxic piglets of the shorter exposure period but was diminished for PAs from hypoxic compared with control piglets of the longer exposure period. NOS-3, HSP90, and caveolin-1 levels were similar in hypoxic and control PAs. These findings indicate that NOS-3, but not-NOS 2 or NOS-1, is involved with basal NO production in PAs from both control and hypoxic piglets. After 10 days of hypoxia, NO function is impaired in PAs despite preserved levels of NOS-3, HSP90, and caveolin-1. The development of NOS-3 dysfunction in resistance level PAs may contribute to the progression of chronic hypoxia-induced pulmonary hypertension in newborn piglets.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
16
|
Koizumi T, Ruan Z, Sakai A, Ishizaki T, Matsumoto T, Saitou M, Matsuzaki T, Kubo K, Wang Z, Chen Q, Wang X. Contribution of nitric oxide to adaptation of tibetan sheep to high altitude. Respir Physiol Neurobiol 2004; 140:189-96. [PMID: 15134666 DOI: 10.1016/j.resp.2003.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
We examined the effects of endogenous nitric oxide synthase (NOS) inhibition on pulmonary hemodynamics in awake sheep living at low and high altitudes to evaluate the role of NO in adaptation to an hypoxic environment. Unanaesthetized male sheep in three places--Matsumoto, Japan (680 m above sea level), Xing, China (2300 m) and Maxin, China (3750 m)--were prepared for measurements of pulmonary artery (Ppa) and pulmonary vascular resistance (PVR) before and after the NOS inhibition. The non-selective NOS inhibitor, Nw-nitro-l-argine (NLA, 20 mg/kg) was used. Baseline Ppa became elevated with an increase in altitude. After NLA administration, PVR significantly increased in animals of all groups. However, the increase in PVR after NLA in tibetan sheep at 3750 m was significantly higher than those in other groups. We conclude that augmented endogenous NO production may contribute to regulating the pulmonary vascular tone in tibetan sheep (3750 m) adapted to high altitude.
Collapse
Affiliation(s)
- Tomonobu Koizumi
- First Department of Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto 390-8621, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nomura N, Asano M, Saito T, Sasaki S, Suzuki H, Manabe T, Mishima A. Cardiotrophin-1 is a prophylactic against the development of chronic hypoxic pulmonary hypertension in rats. Ann Thorac Surg 2003; 76:237-43. [PMID: 12842549 DOI: 10.1016/s0003-4975(03)00339-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Cardiotrophin-1 (CT-1) reduces arterial blood pressure by activating nitric oxide synthesis. This study attempted to elucidate the effect of CT-1 on pulmonary arteries of pulmonary hypertensive rats. METHODS Pulmonary hypertension was induced in rats in a hypoxic chamber containing 10% to 11% oxygen. Rats kept in the hypoxic environment received either recombinant mouse CT-1 at a concentration of 50 micro g/kg (CT-1+hypoxia group, n = 21) or phosphate-buffered saline (hypoxia group, n = 30) once per day. Control rats housed in room air also received either the equivalent concentration of CT-1 (CT-1+normoxia group, n = 18) or phosphate-buffered saline (normoxia group, n = 39). Pulmonary arterial pressure, pulmonary vasorelaxation, and ventricular hypertrophy were measured. RESULTS The mean pulmonary arterial pressures were as follows (from lowest to highest; p values are relative to the hypoxia group): normoxia group (20.3 +/- 4.0 mm Hg, p < 0.0001), CT-1+normoxia group (21.1 +/- 2.4 mm Hg, p < 0.0001), CT-1+hypoxia group (27.9 +/- 4.1 mm Hg, p = 0.0019), and hypoxia group (33.9 +/- 6.6 mm Hg). The endothelium-dependent vasorelaxation value was largest in the normoxia group (59.5% +/- 17.4%, p < 0.0001), with it decreasing in the other groups in the following order (p values are relative to the hypoxia group): CT-1+normoxia group (52.8% +/- 15.5%, p = 0.0005), CT-1+hypoxia group (42.3% +/- 14.8%, p = 0.0061), and hypoxia group (17.4% +/- 4.8%). Right ventricular hypertrophy was significant only in the hypoxia group. CONCLUSIONS Our results demonstrate that treatment with CT-1 in a chronic hypoxic pulmonary hypertension model protects the endothelial function of the pulmonary artery; decreases pulmonary arterial pressure; and attenuates right ventricular hypertrophy.
Collapse
Affiliation(s)
- Norikazu Nomura
- Department of Cardiovascular Surgery, Regulatory Cell Physiology, Gastroenterological Surgery, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Shirai M, Pearson JT, Shimouchi A, Nagaya N, Tsuchimochi H, Ninomiya I, Mori H. Changes in functional and histological distributions of nitric oxide synthase caused by chronic hypoxia in rat small pulmonary arteries. Br J Pharmacol 2003; 139:899-910. [PMID: 12839863 PMCID: PMC1573911 DOI: 10.1038/sj.bjp.0705312] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Chronic hypoxia (CH) increases lung tissue expression of all types of nitric oxide synthase (NOS) in the rat. However, it remains unknown whether CH-induced changes in functional and histological NOS distributions are correlated in rat small pulmonary arteries. 2. We measured the effects of NOS inhibitors on the internal diameters (ID) of muscular (MPA) and elastic (EPA) pulmonary arteries (100-700 micro m ID) using an X-ray television system on anaesthetized rats. We also conducted NOS immunohistochemical localization on the same vessels. 3. Nonselective NOS inhibitors induced ID reductions in almost all MPA of CH rats (mean reduction, 36+/-3%), as compared to approximately 60% of control rat MPA (mean, 10+/-2%). The inhibitors reduced the ID of almost all EPA with similar mean values (approximately 26%) in both CH and control rats. On the other hand, inducible NOS (iNOS)-selective inhibitors caused ID reductions in approximately 60% of CH rat MPA (mean, 15+/-3%), but did so in only approximately 20% of control rat MPA (mean, 2+/-2%). This inhibition caused only a small reduction (mean, approximately 4%) in both CH and control rat EPA. A neuronal NOS-selective inhibitor had no effect. 4. The percentage of endothelial NOS (eNOS)-positive vessels was approximately 96% in both MPA and EPA from CH rats, whereas it was 51 and 91% in control MPA and EPA, respectively. The percentage for iNOS was approximately 60% in both MPA and EPA from CH rats, but was only approximately 8% in both arteries from control rats. 5. The data indicate that in CH rats, both functional and histological upregulation of eNOS extensively occurs within MPA. iNOS protein increases sporadically among parallel-arranged branches in both MPA and EPA, but its vasodilatory effect is predominantly observed in MPA. Such NOS upregulation may serve to attenuate hypoxic vasoconstriction, which occurs primarily in MPA and inhibit the progress of pulmonary hypertension.
Collapse
Affiliation(s)
- Mikiyasu Shirai
- Department of Cardiac Physiology, National Cardiovascular Centre Research Institute, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Emery CJ, Teng GQ, Liu X, Barer GR. Vasoreactions to acute hypoxia, whole lungs and isolated vessels compared: modulation by NO. Respir Physiol Neurobiol 2003; 134:115-29. [PMID: 12609479 DOI: 10.1016/s1569-9048(02)00213-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We aimed to explain diverse pulmonary vascular responses to hypoxia in different preparations and their modulation by NO. In rats we compared isolated perfused lungs (IPL), small vessels in vitro (PRVs) and in vivo preparations. In IPL and in vivo, acute and chronic nitric oxide synthase (NOS) blockade with L-NAME left normoxic pulmonary artery pressure unchanged but enhanced hypoxic vasoconstriction, hypoxia-induced pulmonary vasoconstriction (HPV). PRVs in vitro, precontracted with PGF(2alpha), showed four tension changes in acute hypoxia: dilatation, contraction, dilatation, contraction. Acute and chronic NOS blockade reduced the first two phases. In non-precontracted PRVs (from other laboratories), NOS inhibition enhanced HPV as in vivo and IPL; attenuation of HPV seems associated with precontraction. Thus reduced NOS activity does not cause pulmonary hypertension but exaggerates HPV. In IPL, prolonged severe hypoxia caused biphasic vasoconstriction separated by dilatation; the time course resembled that seen in PRVs. We suggest that the sequence of events during hypoxia in PRVs can be detected in whole lung preparations.
Collapse
Affiliation(s)
- C J Emery
- Respiratory Medicine, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | | | | | | |
Collapse
|
20
|
Weissmann N, Nollen M, Gerigk B, Ardeschir Ghofrani H, Schermuly RT, Gunther A, Quanz K, Fink L, Hänze J, Rose F, Seeger W, Grimminger F. Downregulation of hypoxic vasoconstriction by chronic hypoxia in rabbits: effects of nitric oxide. Am J Physiol Heart Circ Physiol 2003; 284:H931-8. [PMID: 12433654 DOI: 10.1152/ajpheart.00376.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypoxic pulmonary vasoconstriction (HPV) matches lung perfusion to ventilation for optimizing pulmonary gas exchange. Chronic alveolar hypoxia results in vascular remodeling and pulmonary hypertension. Previous studies have reported conflicting results of the effect of chronic alveolar hypoxia on pulmonary vasoreactivity and the contribution of nitric oxide (NO), which may be related to species and strain differences as well as to the duration of chronic hypoxia. Therefore, we investigated the impact of chronic hypoxia on HPV in rabbits, with a focus on lung NO synthesis. After exposure of the animals to normobaric hypoxia (10% O(2)) for 1 day to 10 wk, vascular reactivity was investigated in ex vivo perfused normoxic ventilated lungs. Chronic hypoxia induced right heart hypertrophy and increased normoxic vascular tone within weeks. The vasoconstrictor response to an acute hypoxic challenge was strongly downregulated within 5 days, whereas the vasoconstrictor response to the thromboxane mimetic U-46619 was maintained. The rapid downregulation of HPV was apparently not linked to changes in the lung vascular NO system, detectable in the exhaled gas and by pharmacological blockage of NO synthesis. Treatment of the animals with long-term inhaled NO reduced right heart hypertrophy and partially maintained the reactivity to acute hypoxia, without any impact on the endogenous NO system being noted. We conclude that chronic hypoxia causes rapid downregulation of acute HPV as a specific event, preceding the development of major pulmonary hypertension and being independent of the lung vascular NO system. Long-term NO inhalation partially maintains the strength of the hypoxic vasoconstrictor response.
Collapse
Affiliation(s)
- Norbert Weissmann
- Department of Internal Medicine, Justus-Liebig-University Giessen, 35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rossi GP, Seccia TM, Nussdorfer GG. Reciprocal regulation of endothelin-1 and nitric oxide: relevance in the physiology and pathology of the cardiovascular system. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 209:241-72. [PMID: 11580202 DOI: 10.1016/s0074-7696(01)09014-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The endothelium plays a crucial role in the regulation of cardiovascular structure and function by releasing several mediators in response to biochemical and physical stimuli. These mediators are grouped into two classes: (1) endothelium-derived constricting factors (EDCFs) and (2) endothelium-derived relaxing factors (EDRFs), the roles of which are considered to be detrimental and beneficial, respectively. Endothelin-1 (ET-1) and nitric oxide (NO) are the prototypes of EDCFs and EDRFs, respectively, and their effects on the cardiovascular system have been studied in depth. Numerous conditions characterized by an impaired availability of NO have been found to be associated with enhanced synthesis of ET-1, and vice versa, thereby suggesting that these two factors have a reciprocal regulation. Experimental studies have provided evidence that ET-1 may exert a bidirectional effect by either enhancing NO production via ETB receptors located in endothelial cells or blunting it via ETA receptors prevalently located in the vascular smooth muscle cells. Conversely, NO was found to inhibit ET-1 synthesis in different cell types. In vitro and in vivo studies have started to unravel the molecular mechanisms involved in this complex interaction. It has been clarified that several factors affect in opposite directions the transcription of preproET-1 and NO-synthase genes, nuclear factor-KB and peroxisome proliferator-activated receptors playing a key role in these regulatory mechanisms. ET-1 and NO interplay seems to have a great relevance in the physiological regulation of vascular tone and blood pressure, as well as in vascular remodeling. Moreover, an imbalance between ET-1 and NO systems may underly the mechanisms involved in the pathogenesis of systemic and pulmonary hypertension and atherosclerosis.
Collapse
Affiliation(s)
- G P Rossi
- Department of Clinical and Experimental Medicine, University Hospital, University of Padua, Italy
| | | | | |
Collapse
|
22
|
Hutchison SJ, Sievers RE, Zhu BQ, Sun YP, Stewart DJ, Parmley WW, Chatterjee K. Secondhand tobacco smoke impairs rabbit pulmonary artery endothelium-dependent relaxation. Chest 2001; 120:2004-12. [PMID: 11742935 DOI: 10.1378/chest.120.6.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
OBJECTIVES To determine whether secondhand smoke (SHS) induces pulmonary artery endothelial dysfunction, and whether dietary L-arginine supplementation is preventive. BACKGROUND SHS causes coronary and peripheral arterial endothelial dysfunction. METHODS The effects of L-arginine supplementation (2.25% solution) and SHS (10 weeks) on pulmonary vascular reactivity were examined in 32 rabbits fed a normal diet. Endothelium-dependent relaxation of precontracted pulmonary artery segments was studied using acetylcholine and calcium ionophore. Endothelium-independent relaxation was studied using nitroglycerin. Endothelial and serum L-arginine levels were measured by chromatography. In eight SHS-exposed and in eight control rats, pulmonary artery nitric oxide synthase (NOS) activity and arginase activity were studied using the titrated arginine to citrulline conversion assay. RESULTS SHS reduced maximal acetylcholine-induced (p = 0.04) and calcium ionophore-induced (p = 0.02) relaxation. L-Arginine increased maximal acetylcholine-induced (p = 0.047) vasodilation. SHS and L-arginine did not influence nitroglycerin-induced relaxation. SHS reduced endothelial L-arginine (p = 0.04) but not serum L-arginine. L-Arginine supplementation increased endothelial (p = 0.007) and serum L-arginine (p < 0.0005). Endothelium-dependent relaxation induced by acetylcholine and calcium ionophore varied directly with endothelial (r = 0.67, r = 0.67) and serum L-arginine (r = 0.43, r = 0.45), respectively. SHS reduced constitutive NOS activity (p = 0.03). CONCLUSIONS SHS reduces pulmonary artery endothelium-dependent relaxation by decreasing NOS activity and possibly by decreasing endothelial arginine content. L-Arginine supplementation increases serum and endothelial L-arginine stores and prevents SHS-induced endothelial dysfunction. L-Arginine may offset the deleterious effect of SHS on pulmonary arteries by substrate loading of the nitric oxide pathway.
Collapse
Affiliation(s)
- S J Hutchison
- Division of CardiologyUniversity of California, San Francisco, San Francisco, CA 94143-0124, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Shirai M, Shimouchi A, Ikeda S, Oya H, Min KY, Kawaguchi AT, Mori H, Ninomiya I. Two-week, but not 1-week, hypoxic exposure enhances nitric oxide-mediated basal tone regulation in rat resistance pulmonary arteries. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:395-8. [PMID: 11492966 DOI: 10.2170/jjphysiol.51.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We measured internal diameter (ID) changes in resistance and conduit pulmonary arteries of 1- and 2-week hypoxic rats and normoxic control rats in response to nitric oxide synthase (NOS) inhibitors in vivo. At 2 weeks of hypoxic exposure, the ID reduction as a result of NOS inhibition was enhanced within the resistance arteries, but not at 1 week of hypoxia.
Collapse
Affiliation(s)
- M Shirai
- National Cardiovascular Center Research Institute, Osaka, 565-8565 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kelly RF. Current strategies in lung preservation. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 136:427-40. [PMID: 11128744 DOI: 10.1067/mlc.2000.110906] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Current methods of lung preservation allow for effective, expeditious transplantation as a treatment for end-stage pulmonary disease. However, the utilization of hypothermia, hyperkalemia, and pulmonary artery distension as a single rapid flush for perfusion is less than ideal. All these interventions result in increased pulmonary vascular resistance and suboptimal preservation of lung function. The ability to preserve lungs for longer time intervals and with less risk of tissue injury would provide significant advantages. There would be a greater likelihood that rare size or blood types could find matches by enlarging the area of organ distribution. Optimal preservation would also improve the perioperative outcomes in regard to primary graft failure and subsequently reduce the later complication of chronic rejection and graft lung dysfunction. Finally, through a better understanding of the mechanisms of lung injury during preservation and by developing means to limit the injury, it would be possible to utilize organs from donors that at this time would not be considered optimal. This would increase the donor pool without compromising the recipient's outcome.
Collapse
Affiliation(s)
- R F Kelly
- Division of Cardiovascular and Thoracic Surgery, University of Minnesota, Minneapolis, USA
| |
Collapse
|
25
|
Abstract
Chronic pulmonary hypertension is a serious complication of a number of chronic lung and heart diseases. In addition to vasoconstriction, its pathogenesis includes injury to the peripheral pulmonary arteries leading to their structural remodeling. Increased pulmonary vascular synthesis of an endogenous vasodilator, nitric oxide (NO), opposes excessive increases of intravascular pressure during acute pulmonary vasoconstriction and chronic pulmonary hypertension, although evidence for reduced NO activity in pulmonary hypertension has also been presented. NO can modulate the degree of vascular injury and subsequent fibroproduction, which both underlie the development of chronic pulmonary hypertension. On one hand, NO can interrupt vascular wall injury by oxygen radicals produced in increased amounts in pulmonary hypertension. NO can also inhibit pulmonary vascular smooth muscle and fibroblast proliferative response to the injury. On the other hand, NO may combine with oxygen radicals to yield peroxynitrite and other related, highly reactive compounds. The oxidants formed in this manner may exert cytotoxic and collagenolytic effects and, therefore, promote the process of reparative vascular remodeling. The balance between the protective and adverse effects of NO is determined by the relative amounts of NO and reactive oxygen species. We speculate that this balance may be shifted toward more severe injury especially during exacerbations of chronic diseases associated with pulmonary hypertension. Targeting these adverse effects of NO-derived radicals on vascular structure represents a potential novel therapeutic approach to pulmonary hypertension in chronic lung diseases.
Collapse
Affiliation(s)
- V Hampl
- Department of Physiology, Charles University Second Medical School, Prague, Czech Republic
| | | |
Collapse
|
26
|
Mundy AL, Dorrington KL. Inhibition of nitric oxide synthesis augments pulmonary oedema in isolated perfused rabbit lung. Br J Anaesth 2000; 85:570-6. [PMID: 11064616 DOI: 10.1093/bja/85.4.570] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role of nitric oxide (NO) in precipitating pulmonary oedema in acute lung injury remains unclear. We have investigated the mechanism of involvement of NO in the maintenance of liquid balance in the isolated rabbit lung. Thirty pairs of lungs were perfused with colloid for up to 6 h, during which pulmonary vascular resistance (PVR) and capillary pressure (PCP) were measured frequently, and time to gain 5 g in weight (t5) was recorded. Four protocols with different perfusate additives were studied: (i) none (control, n = 11); (ii) 10 mmol NG-nitro-L-arginine methyl ester (L-NAME) (n = 6); (iii) 10 mmol L-NAME with 100 mumol lodoxamide, an inhibitor of mast cell degranulation (n = 7); (iv) 10 mmol L-NAME with 10 mumol 8-bromo-3',5'-cyclic guanosine monophosphate (8Br-cGMP), an analogue of cGMP that may reduce vascular permeability by relaxing contractile elements in endothelial cells (n = 6). Neither PVR nor PCP differed between protocols. L-NAME markedly reduced t5 from 248 (27) min (mean (SEM)) in protocol (i) to 144 (5) min in protocol (ii) (P < 0.05). Both lodoxamide (t5 = 178 (7) min) and 8Br-cGMP (t5 = 204 (10) min) substantially corrected the effect of L-NAME (P < 0.005). Results suggest that maintenance of a low permeability by NO may involve mast cell stabilization and endothelial cell relaxation.
Collapse
Affiliation(s)
- A L Mundy
- University Laboratory of Physiology, Oxford, UK
| | | |
Collapse
|
27
|
MacLean MR, Herve P, Eddahibi S, Adnot S. 5-hydroxytryptamine and the pulmonary circulation: receptors, transporters and relevance to pulmonary arterial hypertension. Br J Pharmacol 2000; 131:161-8. [PMID: 10991906 PMCID: PMC1572323 DOI: 10.1038/sj.bjp.0703570] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- M R MacLean
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, University of Glasgow, G12 8QQ. UPRES
| | | | | | | |
Collapse
|
28
|
Jones RD, Morice AH. The effect of the nitric oxide synthase inhibitor N-gamma-nitro-L-argine methyl ester on hypoxic pulmonary vasoconstriction. Eur J Pharmacol 2000; 402:111-7. [PMID: 10940364 DOI: 10.1016/s0014-2999(00)00500-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the role of nitric oxide in the regulation of pulmonary arterial tone and hypoxic pulmonary vasoconstriction. Rat pulmonary arteries (n=65, diameter=440+/-12 microm) were loaded to 17.5 mm Hg in a wire myograph and incubated with the nitric oxide synthase inhibitor N-gamma-nitro-L-argine methyl ester (L-NAME; 1, 10 or 100 microM) or distilled water (50 microl) prior to preconstriction with either 100 microM prostaglandin F(2 alpha) followed by acetylcholine (0.1-100 microM) or 5 microM prostaglandin F(2 alpha) followed by hypoxia. Concentrations of L-NAME (10 and 100 microM) which attenuated acetylcholine dilatation, elevated basal tone from 0. 2+/-0.5% to 9.4+/-2.1% (P<0.01) and 18.3+/-3.2% (P<0.001), respectively, potentiated contraction to 5 microM prostaglandin F(2 alpha) from 35.9+/-3.1% to 56.2+/-6.8% (P<0.05) and 66.4+/-5.8% (P<0.001), respectively, but had no significant effect on hypoxic pulmonary vasoconstriction. This suggests basal pulmonary nitric oxide release occurs, as well as in response to agonist-induced contraction, but not hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- R D Jones
- Section of Respiratory Medicine, Academic Department of Medicine, The University of Hull, Castle Hill Hospital, Cottingham, UK.
| | | |
Collapse
|
29
|
Lal H, Yu Q, Ivor Williams K, Woodward B. Hypoxia augments conversion of big-endothelin-1 and endothelin ET(B) receptor-mediated actions in rat lungs. Eur J Pharmacol 2000; 402:101-10. [PMID: 10940363 DOI: 10.1016/s0014-2999(00)00499-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have examined the effect of endothelin-1, sarafotoxin-6C, big-endothelin-1 and other agents on perfused lungs from chronically hypoxic rats. Increases in pulmonary perfusion pressure induced by big-endothelin-1, endothelin-1, phenylephrine and potassium chloride were enhanced in hypoxic lungs, while the constrictor action of sarafotoxin-6C was not increased. When basal pulmonary perfusion pressure was raised, low doses of endothelin-1 and sarafotoxin-6C produced decreases in pulmonary perfusion pressure which were significantly greater in chronically hypoxic lungs, whereas responses to sodium nitroprusside were unchanged. Endothelin ET(B) receptor-mediated bronchoconstrictor responses were also potentiated in hypoxic lungs, whereas responses to carbachol were not. In hypoxic lungs, conversion of big-endothelin-1 to endothelin-1 was significantly increased. These data provide evidence for a generalised increase in vasomotor activity in chronically hypoxic lungs, and a more selective increase in endothelin ET(B) receptor-mediated vasodilator and bronchoconstrictor responses. Hypoxia also augments the conversion of big-endothelin-1 to endothelin-1.
Collapse
Affiliation(s)
- H Lal
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | | | | | | |
Collapse
|
30
|
Crossley DA, Wang T, Altimiras J. Role of nitric oxide in the systemic and pulmonary circulation of anesthetized turtles (Trachemys scripta). THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 286:683-9. [PMID: 10797320 DOI: 10.1002/(sici)1097-010x(20000601)286:7<683::aid-jez2>3.0.co;2-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In reptiles the influence of local vascular factors on blood flow regulation is vaguely understood. The aim of this study was to investigate the role of nitric oxide (NO) on vascular function in anesthetized Trachemys scripta. The experimental protocol consisted of serial injections of sodium nitroprusside (SNP; 25 microg. kg(-1)), L-arginine (185 mg. kg(-1)) and L-NAME (50 mg. kg(-1)). SNP induced a systemic vasodilation (0.05 to 0.02 kPa. min. kg. mL(-1), P = 0.015), with no change in pulmonary vascular resistance (0.07 versus 0.08 kPa. min. kg. mL(-1), P > 0.05). L-Arg had no effect on resistances but increased cardiac output by 17%. L-NAME increased systemic resistance (33% increase; P = 0.01) while pulmonary resistance was unchanged. These effects are consistent with in vivo and in vitro studies on the systemic vasculature of different reptilian species, suggesting that NO has an important role in maintaining systemic vascular tone. The pulmonary vasculature did not respond to NO due to either a lack of an endogenous NO tone or a relaxed state of the pulmonary vasculature. The importance of NO-based mechanisms versus other neuro-humoral modulators in the reptilian circulation remains uncertain. However, as established in prior studies, cholinergic control of the proximal pulmonary artery is the main regulator of pulmonary resistance while systemic resistance depends on a more complex suite of neural, humoral and local effectors that include NO.
Collapse
Affiliation(s)
- D A Crossley
- Center for Respiratory Adaptation, University of Aarhus, DK-8000 Arhus C, Denmark
| | | | | |
Collapse
|
31
|
Güzel NA, Sayan H, Erbas D. Effects of moderate altitude on exhaled nitric oxide, erythrocytes lipid peroxidation and superoxide dismutase levels. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:187-90. [PMID: 10880874 DOI: 10.2170/jjphysiol.50.187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this study was to investigate the effects of staying at a moderate altitude (2,300 m, 7 d) on the levels of plasma nitrite, exhaled nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD). Measurements were obtained from 9 female (mean age 18.3 +/- 2) and 9 male (mean age 19.3 +/- 3.7) cross-country volunteer skiers: before, during (1st day, 7th day) and after staying at a moderate altitude. Exhaled nitric oxide levels were measured only before and after staying at the altitude. Nitrite levels increased throughout the stay at the altitude, while MDA levels decreased. In parallel with the nitrite levels, SOD activities were also found to have increased. Exhaled NO values were decreased after the stay at the moderate altitude. These results show that altitude hypoxia causes decreased in NO levels in the lung but increased systemic NO levels in the blood due to inhibition of erythrocyte lipid peroxidation.
Collapse
Affiliation(s)
- N A Güzel
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey.
| | | | | |
Collapse
|
32
|
Ooi H, Cadogan E, Sweeney M, Howell K, O'Regan RG, McLoughlin P. Chronic hypercapnia inhibits hypoxic pulmonary vascular remodeling. Am J Physiol Heart Circ Physiol 2000; 278:H331-8. [PMID: 10666061 DOI: 10.1152/ajpheart.2000.278.2.h331] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic hypercapnia is commonly found in patients with severe hypoxic lung disease and is associated with a greater elevation of pulmonary arterial pressure than that due to hypoxia alone. We hypothesized that hypercapnia worsens hypoxic pulmonary hypertension by augmenting pulmonary vascular remodeling and hypoxic pulmonary vasoconstriction (HPV). Rats were exposed to chronic hypoxia [inspiratory O(2) fraction (FI(O(2))) = 0.10], chronic hypercapnia (inspiratory CO(2) fraction = 0.10), hypoxia-hypercapnia (FI(O(2)) = 0.10, inspiratory CO(2) fraction = 0.10), or room air. After 1 and 3 wk of exposure, muscularization of resistance blood vessels and hypoxia-induced hematocrit elevation were significantly inhibited in hypoxia-hypercapnia compared with hypoxia alone (P < 0.001, ANOVA). Right ventricular hypertrophy was reduced in hypoxia-hypercapnia compared with hypoxia at 3 wk (P < 0.001, ANOVA). In isolated, ventilated, blood-perfused lungs, basal pulmonary arterial pressure after 1 wk of exposure to hypoxia (20.1 +/- 1.8 mmHg) was significantly (P < 0.01, ANOVA) elevated compared with control conditions (12.1 +/- 0.1 mmHg) but was not altered in hypoxia-hypercapnia (13.5 +/- 0.9 mmHg) or hypercapnia (11.8 +/- 1.3 mmHg). HPV (FI(O(2)) = 0.03) was attenuated in hypoxia, hypoxia-hypercapnia, and hypercapnia compared with control (P < 0.05, ANOVA). Addition of N(omega)-nitro-L-arginine methyl ester (10(-4) M), which augmented HPV in control, hypoxia, and hypercapnia, significantly reduced HPV in hypoxia-hypercapnia. Chronic hypoxia caused impaired endothelium-dependent relaxation in isolated pulmonary arteries, but coexistent hypercapnia partially protected against this effect. These findings suggest that coexistent hypercapnia inhibits hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy, reduces HPV, and protects against hypoxia-induced impairment of endothelial function.
Collapse
Affiliation(s)
- H Ooi
- Department of Medicine and Therapeutics, Mater Misericordiae Hospital, University College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
In pulmonary hypertension (PHT), pulmonary vascular resistance is elevated as a result of increased pulmonary vascular tone and pulmonary vascular remodelling. Certain diet pills, such as the fenfluramines, have been associated with the development of PHT. This class of drugs act as indirect 5-HT receptor agonists and can inhibit 5-HT reuptake and cause the release of 5-HT from platelets. Many pulmonary vasoconstrictors, including 5-HT, activate both Gi- and Gq-linked receptors. Increasing evidence suggests that Gq activation might amplify Gi-linked intracellular pathways to 'uncover' or potentiate vasoconstrictor responses - a phenomenon known as pharmacological synergism, which occurs in the pulmonary circulation. In this review the evidence that 5-HT plays a role in PHT and that pharmacological synergism might contribute to its pathology is discussed.
Collapse
Affiliation(s)
- M R MacLean
- Division of Neuroscience and Biomedical Systems, Institute of Biomedical and Life Sciences, Glasgow University, Glasgow, UK G12 8QQ.
| |
Collapse
|
34
|
Li D, Zhou N, Johns RA. Soluble guanylate cyclase gene expression and localization in rat lung after exposure to hypoxia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L841-7. [PMID: 10516227 DOI: 10.1152/ajplung.1999.277.4.l841] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nitric oxide (NO)-cGMP signal transduction pathway plays an important role in the regulation of pulmonary vascular tone and resistance in pulmonary hypertension. A number of studies have demonstrated that endothelial (e) and inducible nitric oxide synthases (NOS) are upregulated in hypoxia-exposed rat lung. These changes in NOS expression have been found to correlate with the process of pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension, and remodeling is increased in the absence of eNOS. In this study, we examined the expression and localization of soluble guanylate cyclase (sGC), the primary receptor for NO, in hypoxia- and normoxia-treated rat lungs. Male Sprague-Dawley rats were exposed to hypoxia (10% O(2), normobaric) or normoxia for 1, 3, 5, and 21 days. The lungs were used for Western analysis of sGC protein, sGC enzyme activity, immunohistochemistry using antiserum against sGC alpha(1)- and beta(1)-subunits, and nonradioactive in situ hybridization (NRISH) using a digoxigenin-labeled sGC alpha(1)-subunit cRNA probe. Western blot analysis revealed a more than twofold increase of sGC protein alpha(1)-subunit in rat lungs exposed to 3, 5, and 21 days of hypoxia, correlating well with sGC enzyme activity. Immunohistochemistry and NRISH demonstrated increased expression of sGC in the smooth muscle cells of the pulmonary arteries and arterioles in the hypoxic rat lungs when compared with normoxic controls. Based on our results, the upregulation of sGC may play an important role in the regulation of smooth muscle tone and pressure in the pulmonary circulation during chronic hypoxia.
Collapse
Affiliation(s)
- D Li
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia 22906, USA
| | | | | |
Collapse
|
35
|
Cadogan E, Hopkins N, Giles S, Bannigan JG, Moynihan J, McLoughlin P. Enhanced expression of inducible nitric oxide synthase without vasodilator effect in chronically infected lungs. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L616-27. [PMID: 10484470 DOI: 10.1152/ajplung.1999.277.3.l616] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that abnormal ventilation-perfusion matching in chronically infected lungs was in part due to excess nitric oxide (NO) production after upregulation of inducible NO synthase (iNOS) expression. Rats were anesthetized and inoculated intratracheally with Pseudomonas aeruginosa incorporated into agar beads (chronically infected) or with sterile agar beads (placebo inoculated) and killed 10-15 days later. Immunohistochemistry demonstrated increased expression of iNOS and reduced expression of endothelial NOS (eNOS) in chronically infected compared with placebo-inoculated or noninoculated lungs. In isolated lungs from chronically infected rats, NOS inhibition with N(omega)-nitro-L-arginine methyl ester increased the mean perfusion pressure (14.4 +/- 2.7 mmHg) significantly more than in the placebo-inoculated (4.8 +/- 1.0 mmHg) or noninoculated (5.3 +/- 0.8 mmHg) lungs (P < 0.01). Although the chronically infected lungs were more sensitive to NOS inhibition, further evidence suggested that the increased iNOS expression was not associated with enhanced iNOS activity. Selective inhibitors of iNOS did not produce an increase in vascular resistance similar to that produced by nonselective inhibitors. Accumulation of nitrate/nitrite in the perfusate of isolated lungs was unchanged by chronic infection. Thus although iNOS expression was increased in chronic pulmonary infection, iNOS activity in the intact lung was not. Nonetheless, endogenous NO production was essential to maintain normal vascular resistance in these lungs.
Collapse
Affiliation(s)
- E Cadogan
- Department of Human Anatomy and Physiology, University College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
36
|
Lal H, Williams KI, Woodward B. Chronic hypoxia differentially alters the responses of pulmonary arteries and veins to endothelin-1 and other agents. Eur J Pharmacol 1999; 371:11-21. [PMID: 10355589 DOI: 10.1016/s0014-2999(99)00174-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of chronic hypoxia on the responses of rat large pulmonary arteries and veins to vasoactive agents have been examined. Endothelin-1-induced contractions of pulmonary arteries and pulmonary veins were reduced by chronic hypoxia. In contrast, chronic hypoxia augmented sarafotoxin 6c-induced contractile responses in pulmonary veins but not in pulmonary arteries. Chronic hypoxia augmented the constrictor effect of phenylephrine in pulmonary arteries, but not in pulmonary veins. The thromboxane receptor agonist, U46619 (9,11-dideoxy-9alpha,11alpha-epoxy-methanoprostaglandin++ + f2alpha) contracted pulmonary arteries and pulmonary veins, and although maximal responses were not altered in chronically hypoxic preparations, the EC50 value in pulmonary arteries was increased following chronic hypoxia. The relaxant effects of acetylcholine and isoprenaline on pulmonary arteries were potentiated by chronic hypoxia. In contrast, ionomycin-mediated relaxations of pulmonary arteries and pulmonary veins were reduced, while sodium nitroprusside-induced relaxation of pulmonary arteries and veins were not altered by chronic hypoxia. Previous studied have looked primarily at the effects of chronic hypoxia on pulmonary arteries. This data provides evidence that chronic hypoxia also causes selective changes in the reactivity of large pulmonary veins.
Collapse
Affiliation(s)
- H Lal
- Department of Pharmacy and Pharmacology, University of Bath, UK
| | | | | |
Collapse
|
37
|
Sato K, Rodman DM, McMurtry IF. Hypoxia inhibits increased ETB receptor-mediated NO synthesis in hypertensive rat lungs. Am J Physiol Lung Cell Mol Physiol 1999; 276:L571-81. [PMID: 10198355 DOI: 10.1152/ajplung.1999.276.4.l571] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although hypertensive lungs of chronically hypoxic rats express increased levels of nitric oxide (NO) synthases (NOSs) and produce increased amounts of NO-containing compounds (NOx) during normoxic ventilation, the level of NO production during hypoxic exposure is unclear. Because hypoxia inhibits NO synthesis in normotensive lungs, we investigated whether hypoxic ventilation inhibited NO synthesis in isolated hypertensive lungs and chronically hypoxic rats. Measurement of perfusate NOx concentration in hypertensive lungs from male rats exposed to 4 wk of hypobaric hypoxia showed that basal NOx production was reduced during hypoxic (0% O2) vs. normoxic (21% O2) ventilation. Similarly, plasma NOx concentration was lower in chronically hypoxic rats breathing 10% O2 than in those breathing 21% O2. Hypoxic inhibition of lung NOx production was not prevented by supplementary L-arginine or tetrahydrobiopterin and was not mimicked by inhibition of Ca2+ influx. However, it was mimicked by inhibition of constitutive NOS with NG-monomethyl-L-arginine and chelation of intracellular Ca2+. The endothelin type B-receptor antagonist BQ-788 prevented the increases in NOx production associated with normoxic ventilation in both isolated hypertensive lungs and intact chronically hypoxic rats. These results suggest that a reduced supply of the cosubstrate molecular O2 to NOS counteracts an endothelin type B receptor-mediated stimulation of NO synthesis in hypertensive rat lungs. Thus, despite increased NOS protein in the lungs and pulmonary arteries of chronically hypoxic rats, direct hypoxic inhibition of NO production may contribute to the development of pulmonary hypertension.
Collapse
Affiliation(s)
- K Sato
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | |
Collapse
|
38
|
Tyler RC, Muramatsu M, Abman SH, Stelzner TJ, Rodman DM, Bloch KD, McMurtry IF. Variable expression of endothelial NO synthase in three forms of rat pulmonary hypertension. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L297-303. [PMID: 9950892 DOI: 10.1152/ajplung.1999.276.2.l297] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide (NO) synthase (eNOS) mRNA and protein and NO production are increased in hypoxia-induced hypertensive rat lungs, but it is uncertain whether eNOS gene expression and activity are increased in other forms of rat pulmonary hypertension. To investigate these questions, we measured eNOS mRNA and protein, eNOS immunohistochemical localization, perfusate NO product levels, and NO-mediated suppression of resting vascular tone in chronically hypoxic (3-4 wk at barometric pressure of 410 mmHg), monocrotaline-treated (4 wk after 60 mg/kg), and fawn-hooded (6-9 mo old) rats. eNOS mRNA levels (Northern blot) were greater in hypoxic and monocrotaline-treated lungs (130 and 125% of control lungs, respectively; P < 0.05) but not in fawn-hooded lungs. Western blotting indicated that eNOS protein levels increased to 300 +/- 46% of control levels in hypoxic lungs (P < 0.05) but were decreased by 50 +/- 5 and 60 +/- 11%, respectively, in monocrotaline-treated and fawn-hooded lungs (P < 0.05). Immunostaining showed prominent eNOS expression in small neomuscularized arterioles in all groups, whereas perfusate NO product levels increased in chronically hypoxic lungs (3.4 +/- 1.4 microM; P < 0.05) but not in either monocrotaline-treated (0.7 +/- 0.3 microM) or fawn-hooded (0.45 +/- 0.1 microM) lungs vs. normotensive lungs (0.12 +/- 0.07 microM). All hypertensive lungs had increased baseline perfusion pressure in response to nitro-L-arginine but not to the inducible NOS inhibitor aminoguanidine. These results indicate that even though NO activity suppresses resting vascular tone in pulmonary hypertension, there are differences among the groups regarding eNOS gene expression and NO production. A better understanding of eNOS gene expression and activity in these models may provide insights into the regulation of this vasodilator system in various forms of human pulmonary hypertension.
Collapse
Affiliation(s)
- R C Tyler
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Frasch HF, Marshall C, Marshall BE. Endothelin-1 is elevated in monocrotaline pulmonary hypertension. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:L304-10. [PMID: 9950893 DOI: 10.1152/ajplung.1999.276.2.l304] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
These studies document striking pulmonary vasoconstrictor response to nitric oxide synthase (NOS) inhibition in monocrotaline (MCT) pulmonary hypertension in rats. This constriction is caused by elevated endothelin (ET)-1 production acting on ETA receptors. Isolated, red blood cell plus buffer-perfused lungs from rats were studied 3 wk after MCT (60 mg/kg) or saline injection. MCT-injected rats developed pulmonary hypertension, right ventricular hypertrophy, and heightened pulmonary vasoconstriction to ANG II and the NOS inhibitor NG-monomethyl-L-arginine (L-NMMA). In MCT-injected lungs, the magnitude of the pulmonary pressor response to NOS inhibition correlated strongly with the extent of pulmonary hypertension. Pretreatment of isolated MCT-injected lungs with combined ETA (BQ-123) plus ETB (BQ-788) antagonists or ETA antagonist alone prevented the L-NMMA-induced constriction. Addition of ETA antagonist reversed established L-NMMA-induced constriction; ETB antagonist did not. ET-1 concentrations were elevated in MCT-injected lung perfusate compared with sham-injected lung perfusate, but ET-1 levels did not differ before and after NOS inhibition. NOS inhibition enhanced hypoxic pulmonary vasoconstriction in both sham- and MCT-injected lungs, but the enhancement was greater in MCT-injected lungs. Results suggest that in MCT pulmonary hypertension, elevated endogenous ET-1 production acting through ETA receptors causes pulmonary vasoconstriction that is normally masked by endogenous NO production.
Collapse
Affiliation(s)
- H F Frasch
- Center for Anesthesia Research, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, 19104-4283, USA
| | | | | |
Collapse
|
40
|
Fagan KA, Fouty BW, Tyler RC, Morris KG, Hepler LK, Sato K, LeCras TD, Abman SH, Weinberger HD, Huang PL, McMurtry IF, Rodman DM. The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J Clin Invest 1999; 103:291-9. [PMID: 9916141 PMCID: PMC407877 DOI: 10.1172/jci3862] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute hypoxic vasoconstriction and development of hypoxic pulmonary hypertension (PHTN) are unique properties of the pulmonary circulation. The pulmonary endothelium produces vasoactive factors, including nitric oxide (NO), that modify these phenomena. We tested the hypothesis that NO produced by endothelial nitric oxide synthase (eNOS) modulates pulmonary vascular responses to hypoxia using mice with targeted disruption of the eNOS gene (eNOS-/-). Marked PHTN was found in eNOS-/- mice raised in mild hypoxia when compared with either controls or eNOS-/- mice raised in conditions simulating sea level. We found an approximate twofold increase in partially and fully muscularized distal pulmonary arteries in eNOS-/- mice compared with controls. Consistent with vasoconstriction being the primary mechanism of PHTN, however, acute inhalation of 25 ppm NO resulted in normalization of RV pressure in eNOS-/- mice. In addition to studies of eNOS-/- mice, the dose-effect of eNOS was tested using heterozygous eNOS+/- mice. Although the lungs of eNOS+/- mice had 50% of normal eNOS protein, the response to hypoxia was indistinguishable from that of eNOS-/- mice. We conclude that eNOS-derived NO is an important modulator of the pulmonary vascular response to chronic hypoxia and that more than 50% of eNOS expression is required to maintain normal pulmonary vascular tone.
Collapse
Affiliation(s)
- K A Fagan
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Scott WS, Nakayama DK. Escherichia coli lipopolysaccharide downregulates soluble guanylate cyclase in pulmonary artery smooth muscle. J Surg Res 1998; 80:309-14. [PMID: 9878330 DOI: 10.1006/jsre.1998.5442] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The soluble isoform of guanylate cyclase (sGC) is activated by nitric oxide (NO) to form guanosine 3':5'-cyclic monophosphate (cGMP). Cyclic GMP levels cause smooth muscle relaxation and regulate vascular tone to various vascular beds, including the lung. Under conditions of cytokine excess the inducible synthesis of NO may result in cGMP overproduction, generalized vasodilation, and septic shock. In the pulmonary bed the opposite response may occur, pulmonary hypertension. We hypothesized that sGC activity becomes downregulated in the face of Escherichia coli lipopolysaccharide (LPS). We tested the effects of LPS on alpha1-subunit sGC mRNA abundance, Western analysis, and enzyme activity in cultured rat pulmonary artery smooth muscle cells. LPS increased extracellular cGMP production by pulmonary artery smooth muscle cells, with increased levels being first detectable at 3-6 h (10 microg/ml LPS) and exceeding 140 pmol/ml by 24 h (P < 0.05). The response was inhibited by 0.05 mM l-NG-monomethyl-l-arginine (l-NMA) and, in turn, restored by 1 mM l-arginine, indicating a NO synthase-dependent response. Pretreating cells with LPS for >/= 3 h inhibited subsequent cGMP synthesis in response to 10(-4) M SNAP for 60 min. Coincubating cells with 0.05 mM l-NMA also reversed this effect. Soluble GC enzyme activity in cells exposed to basal medium alone measured 0.74 pmol cGMP/ml per minute; activity in cells exposed to 10 microg/ml LPS for 24 h decreased to 0.04 pmol cGMP/ml per minute (P < 0.05). LPS pretreatment decreased sGC mRNA abundance and protein mass, but did not totally eliminate them. It is concluded that LPS affects cGMP synthesis at the level of enzyme activity, enzyme mass, and mRNA abundance. Over the short term (<24 h) LPS causes the synthesis of large amounts of cGMP. As the duration of exposure progresses (>/=3 h), mechanisms come into play that decrease cGMP production significantly and include decreases in mRNA abundance, enzyme mass, and enzyme activity.
Collapse
Affiliation(s)
- W S Scott
- Section of Pediatric Surgery and Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-7210, USA
| | | |
Collapse
|
42
|
Scott WS, Nakayama DK. Sustained nitric oxide exposure decreases soluble guanylate cyclase mRNA and enzyme activity in pulmonary artery smooth muscle. J Surg Res 1998; 79:66-70. [PMID: 9735242 DOI: 10.1006/jsre.1998.5382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The soluble isoform of guanylate cyclase (sGC) is activated by nitric oxide (NO) to form guanoside 3':5'-cyclic monophosphate (cGMP). Cyclic GMP levels cause smooth muscle relaxation and regulate vascular tone to various vascular beds, including the lung. Under conditions of cytokine excess the inducible synthesis of NO may result in cGMP overproduction, generalized vasodilatation, and septic shock. In the pulmonary bed the opposite response, pulmonary hypertension, may occur. We hypothesized that sGC activity decreases in the face of sustained levels of NO. MATERIALS AND METHODS We used the NO-donor S-nitroso-acetyl-D-L-penicillamine to study the effects of NO on sGC mRNA abundance and enzyme activity in cultured rat pulmonary artery smooth muscle cells. RESULTS NO caused a prompt rise in extracellular cGMP production. Pretreating cells with NO for >/=45 min inhibited subsequent cGMP synthesis. NO-pretreated cells recovered the capacity for cGMP synthesis after removal of NO for 120 min. When actinomycin or cycloheximide was added to NO pretreatment, cells retained cGMP synthetic capacity. NO pretreatment decreased sGC mRNA abundance, but did not totally eliminate it. CONCLUSION NO has important regulatory effects on cGMP synthesis at the level of enzyme activity and mRNA abundance. NO causes an immediate synthesis of large amounts of cGMP. With prolongation of exposure (>/=60 min) sGC enzyme activity decreases and cGMP production drops significantly. Soluble GC mRNA abundance also decreases and may result in decreased responsiveness of cells to NO with regard to cGMP production.
Collapse
Affiliation(s)
- W S Scott
- Section of Pediatric Surgery and Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7210, USA
| | | |
Collapse
|
43
|
van Suylen RJ, Smits JF, Daemen MJ. Pulmonary artery remodeling differs in hypoxia- and monocrotaline-induced pulmonary hypertension. Am J Respir Crit Care Med 1998; 157:1423-8. [PMID: 9603118 DOI: 10.1164/ajrccm.157.5.9709050] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the present study we analyzed structural characteristics of muscular pulmonary arteries and arterioles in two classic models of pulmonary hypertension, the rat hypoxia and monocrotaline models. We hypothesized that an increase in medial cross-sectional area would result in reduction of the lumen area and that these parameters would correlate with the increase in pulmonary artery pressure (PAP). Four weeks after a single injection of monocrotaline (MCT) or after 4 wk of hypoxic exposure the rats were killed. Both MCT and chronic hypoxia induced right ventricular hypertrophy. In separate groups of rats both MCT and chronic hypoxia increased PAP. MCT increased the media cross-sectional area of pulmonary arteries with an external diameter between 30-100 microm and 101-200 microm and reduced the lumen area of pulmonary arteries with an external diameter between 101-200 microm. Chronic hypoxia only slightly increased the media cross-sectional area without a change of the lumen area. Both MCT and hypoxia increased the percentage of partly muscularized and muscularized arterioles. The angiotensin-converting enzyme (ACE) inhibitor captopril (0.5 mg/kg/h) had no effect on MCT-induced pulmonary hypertension, right ventricular hypertrophy, and pulmonary artery remodeling. In chronic hypoxic rats it prevented an increase in medial cross-sectional area of pulmonary arteries with an external diameter between 30-100 microm and attenuated the increase in the percentage of muscularized arterioles, without any effect on the PAP. We conclude that MCT, in contrast to chronic hypoxia, induces structural changes of muscular pulmonary arteries with an external diameter between 101-200 microm which may contribute to an increased PAP and right ventricular hypertrophy. These data also suggest that angiotensin II plays a pivotal role in remodeling of pulmonary arteries in hypoxia but not in MCT-induced pulmonary hypertension.
Collapse
Affiliation(s)
- R J van Suylen
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, The Netherlands
| | | | | |
Collapse
|
44
|
Fike CD, Kaplowitz MR, Thomas CJ, Nelin LD. Chronic hypoxia decreases nitric oxide production and endothelial nitric oxide synthase in newborn pig lungs. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L517-26. [PMID: 9575869 DOI: 10.1152/ajplung.1998.274.4.l517] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To examine the effect of chronic hypoxia on nitric oxide (NO) production and the amount of the endothelial isoform of nitric oxide synthase (eNOS) in lungs of newborn piglets, studies were performed using 1- to 3-day-old piglets raised in room air (control) or 10% O2 (chronic hypoxia) for 10-12 days. Exhaled NO output and plasma nitrites and nitrates (collectively termed NOx-) were measured in anesthetized animals. NOx- concentrations were measured in the perfusate of isolated lungs. eNOS amounts were assessed in whole lung homogenates. In the intact piglets, exhaled NO outputs and plasma NOx- were lower in the chronically hypoxic (exhaled NO output = 0.2 +/- 0.1 nmol/min; plasma NOx- = 10.3 +/- 3.7 nmol/ml) than in control animals (exhaled NO output = 0.8 +/- 0.2 nmol/min; plasma NOx- = 22.3 +/- 4.3 nmol/ml). In perfused lungs, the perfusate accumulation of NOx- was lower in chronic hypoxia (1.0 +/- 0.3 nmol/min) than in control (2.6 +/- 0.6 nmol/min) piglets. The amount of whole lung homogenate eNOS from the chronic hypoxia piglets was 40 +/- 8% less than that from the control piglets. The reduced NO production observed in anesthetized animals or perfused lungs of chronically hypoxic newborn piglets is consistent with the finding of reduced lung eNOS protein amounts. Decreased NO production might contribute to the development of chronic hypoxia-induced pulmonary hypertension in newborns.
Collapse
Affiliation(s)
- C D Fike
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
45
|
Hyman AL, Hao Q, Tower A, Kadowitz PJ, Champion HC, Gumusel B, Lippton H. Novel catheterization technique for the in vivo measurement of pulmonary vascular responses in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H1218-29. [PMID: 9575925 DOI: 10.1152/ajpheart.1998.274.4.h1218] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel cardiac catheterization technique was devised to investigate the pulmonary arterial pressure-blood flow relationship in intact spontaneously breathing rats (ISBR) under physiological conditions with constant left atrial pressure and controlled blood flow within the normal range. Observations using this new technique in vivo were contrasted with data derived with isolated perfused rat lungs in vitro. Unlike results in in vitro isolated perfused rat lungs, the pressure-flow curves in vivo were curvilinear, with pulmonary artery pressure increasing more rapidly at low pulmonary blood flows of 4-8 ml/min and less rapidly at higher flow rates. Pressure-flow curves were reproducible and were not altered by 1-1.5 h of arrested perfusion, cyclooxygenase blockade, or perfusion with aortic or mixed venous blood. In contrast to results in in vitro isolated perfused rat lungs, NG-nitro-L-arginine methyl ester (L-NAME) increased pulmonary arterial pressure at all but the lowest flow rates with a slight effect on the curvilinear pressure-flow relationship. L-NAME reversed pulmonary vasodilator responses to acetylcholine and bradykinin and enhanced the pulmonary vasodilator response to nitroglycerin. The present data suggest that actively induced pulmonary hypertension is under greater control by endothelium-derived relaxing factor (EDRF). Unlike previous results in in vitro perfused rat lungs, results in ISBR demonstrate that the pulmonary vasodilator response to adrenomedullin-(13-52) is not mediated by calcitonin gene-related peptide receptors, which are not coupled to the release of EDRF. These results indicate that this novel technique may provide a useful model for the study of the pulmonary circulation in the intact chest rat.
Collapse
Affiliation(s)
- A L Hyman
- Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
MacLean MR, McCulloch KM. Influence of applied tension and nitric oxide on responses to endothelins in rat pulmonary resistance arteries: effect of chronic hypoxia. Br J Pharmacol 1998; 123:991-9. [PMID: 9535030 PMCID: PMC1565238 DOI: 10.1038/sj.bjp.0701682] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. The effect of basal tension (transmural tensions 235 +/- 29 mg wt (low tension: equivalent to approximately 16 mmHg) and 305 +/- 34 mg wt (high tension: equivalent to 35 mmHg)) on rat pulmonary resistance artery responses to endothelin-1 (ET-1) and the selective ET(B)-receptor agonist sarafotoxin S6c (S6c) were studied. The effects of nitric oxide synthase inhibition with N(omega)-nitro-L-arginine methylester (L-NAME, 100 microM) on ET receptor-induced responses, as well as vasodilator responses to acetylcholine (ACh) and S6c, were also investigated. Changes with development of pulmonary hypertension, induced by two weeks of chronic hypoxia, were determined. 2. Control rat preparations showed greatest sensitivity for ET-1 when put under low tension (pEC50: 8.1 +/- 0.1) compared with at the higher tension (pEC50: 7.7 +/- 0.1) and there were significant increases in maximum contractile responses to S6c (approximately 80%) and noradrenaline (approximately 60%) when put under high tension. 3. In control pulmonary resistance arteries, both ET-1 and S6c produced potent vasoconstrictor responses. S6c was 12 fold more potent than ET-1 in vessels set at low tension (S6c pEC50: 9.2 +/- 0.1) and 200 fold more potent than ET-1 when the vessels were set at high tension (S6c pEC50: 9.0 +/- 0.1). Chronic hypoxia did not change the potencies of ET-1 and S6c but did significantly increase the maximum contractile response to ET-1 by 60% (at low tension) and 130% (at high tension). 4. In control rat vessels, L-NAME itself caused small increases in vascular tone (5-8 mg wt tension) in 33-56% of vessels. In the chronic hypoxic rats, in vessels set at high tension, L-NAME-induced tone was evident in 88% of vessels and had increased to 26.9 +/- 6.6 mg wt tension. Vasodilatation to sodium nitroprusside, in non-preconstricted vessels, was small in control rat vessels (2-6 mg wt tension) but increased significantly to 22.5 +/- 8.0 mg wt tension in chronic hypoxic vessels set at the higher tensions. Together, these results indicate an increase in endogenous tone in the vessels from the chronic hypoxic rats which is normally attenuated by nitric oxide production. 5. L-NAME increased the sensitivity to S6c 10 fold (low tension) and 6 fold (high tension) only in chronic hypoxic rat pulmonary resistance arteries. It had no effect on responses to ET-1 in any vessel studied. 6. Vasodilatation of pre-contracted vessels by ACh was markedly greater in the pulmonary resistance arteries from the chronic hypoxic rats (pIC50: 7.12 +/- 0.19, maximum: 72.1 +/- 0.2.0%) compared to their age-matched controls (pIC50: 5.77 +/- 0.15, maximum: 28.2 +/- 2.0%). There was also a 2.5 fold increase in maximum vasodilatation induced by ACh. 7. These results demonstrate that control rat preparations showed greatest sensitivity for ET-1 when set at the lower tension, equivalent to the pressure expected in vivo (approximately 16 mmHg). Pulmonary hypertension due to chronic hypoxia potentiated the maximum response to ET-1. Pulmonary resistance arteries from control animals exhibited little endogenous tone, but exposure to chronic hypoxia increased endogenous inherent tone which is normally attenuated by nitric oxide. Endogenous nitric oxide production may increase in pulmonary resistance arteries from chronic hypoxic rats and attenuate contractile responses to ET(B2) receptor stimulation. Relaxation to ACh was increased in pulmonary resistance arteries from chronic hypoxic rats.
Collapse
Affiliation(s)
- M R MacLean
- Division of Neuroscience and Biomedical Systems, Institute of Biological and Life Sciences, Glasgow University
| | | |
Collapse
|
47
|
Chen X, Andersen H, Barker P. Kuhn's theory of scientific revolutions and cognitive psychology. PHILOSOPHICAL PSYCHOLOGY 1998. [DOI: 10.1080/09515089808573246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Zhang L. Adaptation of pharmacomechanical coupling of vascular smooth muscle to chronic hypoxia. Comp Biochem Physiol A Mol Integr Physiol 1998; 119:661-7. [PMID: 9683404 DOI: 10.1016/s1095-6433(98)01002-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hypoxia is one of the most common stresses that affect an organism's homeostasis. Although much is known of the mechanisms of the cellular and biochemical responses to acute hypoxia, relatively little is known of the mechanisms of the responses to prolonged or chronic hypoxia. Chronic hypoxia suppresses vascular smooth muscle contractility in many vascular beds. While the endothelium is likely to play a role, part of the mechanisms underlying chronic hypoxic-induced changes in vascular responses resides in the changes in receptor-mediated excitation-contraction coupling and/or signal transduction in the vascular smooth muscle. Recent studies have demonstrated that chronic hypoxia attenuates both receptor-second messenger and second messenger-contraction coupling efficiencies in the vascular smooth muscle. This suppression of pharmacomechanical coupling is likely to represent one of the adaptive mechanisms of vascular smooth muscle and to play an important role in an adjustment of vascular tone and blood flow under the stress of moderate chronic hypoxia.
Collapse
Affiliation(s)
- L Zhang
- Department of Pharmacology, Loma Linda University School of Medicine, California 92350, USA.
| |
Collapse
|
49
|
Sumino H, Sato K, Sakamaki T, Masuda H, Nakamura T, Kanda T, Nagai R. Decreased basal production of nitric oxide in patients with heart disease. Chest 1998; 113:317-22. [PMID: 9498945 DOI: 10.1378/chest.113.2.317] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES The pathophysiologic role of nitric oxide (NO) released in the lung is not well understood. To determine whether the production of endogenous NO is correlated with any hemodynamic parameters, we measured the amount of NO released from the lung tissue of patients with heart disease. METHODS Twenty patients (14 with ischemic heart disease, 4 with dilated cardiomyopathy, and 2 with mitral stenosis) and 16 normal control subjects were enrolled in the study. We measured exhaled air samples by using a method developed in our laboratory. The NO release rate from the lungs was calculated from the amount of exhaled NO and the duration of the exhalation. RESULTS The rate of NO release was significantly lower in the patients with moderate-to-severe heart failure (New York Heart Association [NYHA] II or III) than in those with mild heart failure (NYHA I) or in normal control subjects. The rate of NO release was positively correlated with the cardiac index (r=0.50, p<0.05), and was negatively correlated with either the systemic (r= -0.58, p<0.01) or pulmonary vascular resistance (r=-0.45, p<0.05). In the patients with moderate-to-severe heart failure, the amount of NO released and the oxygen tension in the pulmonary artery were significantly lower compared with those parameters in patients with mild heart failure. CONCLUSIONS Results suggest that the basal production of endogenous NO in the lung tissue of patients with heart failure is impaired, perhaps leading to the elevated pulmonary vascular tone seen in patients with moderate-to-severe heart failure.
Collapse
Affiliation(s)
- H Sumino
- Second Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Kharitonov SA, Cailes JB, Black CM, du Bois RM, Barnes PJ. Decreased nitric oxide in the exhaled air of patients with systemic sclerosis with pulmonary hypertension. Thorax 1997; 52:1051-5. [PMID: 9516898 PMCID: PMC1758461 DOI: 10.1136/thx.52.12.1051] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Systemic sclerosis (SSc) may be complicated by pulmonary hypertension (PHT), which can occur both in the setting of fibrosing alveolitis or as lone pulmonary vascular disease. Nitric oxide (NO) is a powerful vasodilator and is produced by various cells in the respiratory tract including pulmonary vascular endothelial cells and can be measured in expired air. A study was undertaken to test the hypothesis that exhaled NO levels would be decreased in patients with SSc with PHT and to assess the utility of this measurement in discriminating between patients with and without PHT, regardless of concurrent fibrosing alveolitis. METHODS Exhaled NO was measured with a chemiluminescence analyser in 23 patients with SSc (six with PHT, 17 subjects without) and in 67 normal individuals. Doppler echocardiography was used to assess pulmonary artery pressure in subjects with SSc, and lung function tests were performed at the same visit as NO measurements. Thin section CT scans were analysed for the presence of abnormality consistent with fibrosing alveolitis. RESULTS Patients with SSc with PHT had a greater reduction in arterial oxygen tension (PaO2) and carbon monoxide gas transfer (TLCO) than patients with SSc without PHT. Exhaled NO was significantly higher in patients with SSc without PHT than in normal individuals, and was significantly decreased in patients with SSc with PHT (mean (SD) 20 (6) ppb) compared with 149 (19) ppb in those with SSc without PHT (mean difference 129 (95% CI 112 to 146) ppb) and 80 (7) ppb in normal individuals (mean difference 60 (95% CI 54 to 66) ppb). CONCLUSION Exhaled NO is decreased in patients with SSc with PHT compared with both normal individuals and patients with SSc without PHT.
Collapse
Affiliation(s)
- S A Kharitonov
- Department of Thoracic Medicine, National Heart and Lung Institute, Imperial School of Medicine, Royal Brompton Hospital, London, UK
| | | | | | | | | |
Collapse
|