1
|
Betancourth-Cundar M, Canoine V, Fusani L, Cadena CD. Does testosterone underly the interplay between male traits and territorial behavior in neotropical poison frogs? Horm Behav 2024; 162:105547. [PMID: 38677262 DOI: 10.1016/j.yhbeh.2024.105547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/24/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
The ability of individual animals to defend a territory as well as various phenotypic and behavioral traits may be targets of sexual selection used by males to evaluate their competitors or by females to choose males. A frequent question in animal behavior is whether male traits and characteristics of their territory are correlated and what are the mechanisms that may mediate such associations when they exist. Because hormones link phenotype to behavior, by studying the role of testosterone in territoriality one may come closer to understanding the mechanisms mediating correlations or lack thereof between characteristics of territories and of males. We evaluated whether variation in characteristics of territories (size and quality) are correlated with variation in morphology, coloration, testosterone, heterozygosity, and calls in two species of poison frogs. The Amazonian frog Allobates aff. trilineatus exhibits male care and defends territories only during the breeding season, while the endangered frog Oophaga lehmanni displays maternal care and defends territories throughout the year. We found that morphological traits (body length, weight, thigh size), call activity, and testosterone levels correlated with size and various indicators of quality of the territory. However, the direction of these correlations (whether positive or negative) and which specific morphological, acoustic traits or testosterone level variables covaried depended on the species. Our findings highlight an endocrine pathway as part of the physiological machinery that may underlie the interplay between male traits and territorial behavior. We were able to identify some male traits related to territory attributes, but whether females choose males based on these traits requires further research.
Collapse
Affiliation(s)
| | - Virginie Canoine
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria
| | - Leonida Fusani
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | | |
Collapse
|
2
|
Nunes PR, Barcelos LC, Oliveira AA, Furlanetto R, Martins FM, Resende EA, Orsatti FL. Muscular Strength Adaptations and Hormonal Responses After Two Different Multiple-Set Protocols of Resistance Training in Postmenopausal Women. J Strength Cond Res 2019; 33:1276-1285. [DOI: 10.1519/jsc.0000000000001788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Krause Neto W, de Assis Silva W, Ciena AP, Anaruma CA, Gama EF. Divergent effects of resistance training and anabolic steroid on the postsynaptic region of different skeletal muscles of aged rats. Exp Gerontol 2017; 98:80-90. [PMID: 28811140 DOI: 10.1016/j.exger.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
This study aimed to analyze the effects of resistance training associated with testosterone administration in the neuromuscular junction (NMJ) postsynaptic region of different skeletal muscle types of aged rats. Wistar rats were divided into: SEI - 20-months-old control, SEF - 24-months-old control, T - 20-months-old with testosterone, S - 20-months-old resistance trained and ST - 20-months-old with resistance training associated with testosterone propionate. All groups were submitted to familiarization and maximum load carrying testing (MLCT). The MLCT was applied before and after the resistance training (RT) period. RT (6-8×/session with progressive loads of 50 to 100%, 3×/week and 120s interval) was performed in ladder climbing for 15weeks. The administration of testosterone propionate was performed 2×/week (10mg/kg/body weight). After euthanize, soleus and plantaris muscles were removed and prepared for histochemistry and cytofluorescence. T, S and ST significantly increased their maximum carrying load capacity compared to SEI and SEF (p<0.05). For soleus postsynaptic region, ST had lower total and stained area than SEF (p<0.05). For plantaris, the postsynaptic component of T was statistically larger than SEI (p<0.05). For soleus histochemistry, T, S and ST groups showed the same magnitude of type I myofibers hypertrophy, thus statistically different from SEI and SEF (p<0.05). The cross-sectional area of the type IIa myofibers of the ST was larger than SEF (p<0.05). The volume density of type I myofibers show to be lower in ST than SEI (p<0.05). As for type IIa myofibers, ST increased Vv [type IIa] compared to SEI and SEF (p<0.05). For plantaris, T significantly hypertrophied type I myofibers compared to SEI and SEF (p<0.05). S and ST demonstrated significant increases of type I myofibers compared to SEI and SEF (p<0.05). As for type IIx myofibers, both S and ST showed myofibers larger than SEI (p<0.05). However, only the ST had significant difference compared to SEF (p<0.05). In conclusion, both therapies, alone or combined, have little effect on the morphology of the NMJ postsynaptic region of distinct muscles. Moreover, the three therapies are potentially stimulating for strength gains and muscle hypertrophy.
Collapse
Affiliation(s)
- Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil.
| | - Wellington de Assis Silva
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil
| | - Adriano Polican Ciena
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Carlos Alberto Anaruma
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Eliane Florencio Gama
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Desprat JL, Teulier L, Puijalon S, Dumet A, Romestaing C, Tattersall GJ, Lengagne T, Mondy N. Doping for sex: Bad for mitochondrial performances? Case of testosterone supplemented Hyla arborea during the courtship period. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:74-83. [PMID: 28478209 DOI: 10.1016/j.cbpa.2017.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/20/2017] [Accepted: 04/30/2017] [Indexed: 11/25/2022]
Abstract
Sexual selection has been widely explored from numerous perspectives, including behavior, ecology, and to a lesser extent, energetics. Hormones, and specifically androgens such as testosterone, are known to trigger sexual behaviors. Their effects are therefore of interest during the breeding period. Our work investigates the effect of testosterone on the relationship between cellular bioenergetics and contractile properties of two skeletal muscles involved in sexual selection in tree frogs. Calling and locomotor abilities are considered evidence of good condition in Hyla males, and thus server as proxies for male quality and attractiveness. Therefore, how these behaviors are powered efficiently remains of both physiological and behavioral interest. Most previous research, however, has focused primarily on biomechanics, contractile properties or mitochondrial enzyme activities. Some have tried to establish a relationship between those parameters but to our knowledge, there is no study examining muscle fiber bioenergetics in Hyla arborea. Using chronic testosterone supplementation and through an integrative study combining fiber bioenergetics and contractile properties, we compared sexually dimorphic trunk muscles directly linked to chronic sound production to a hindlimb muscle (i.e. gastrocnemius) that is particularly adapted for explosive movement. As expected, trunk muscle bioenergetics were more affected by testosterone than gastrocnemius muscle. Our study also underlines contrasted energetic capacities between muscles, in line with contractile properties of these two different muscle phenotypes. The discrepancy of both substrate utilization and contractile properties is consistent with the specific role of each muscle and our results are elucidating another integrative example of a muscle force-endurance trade-off.
Collapse
Affiliation(s)
- Julia L Desprat
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Loïc Teulier
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France.
| | - Sara Puijalon
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Adeline Dumet
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Caroline Romestaing
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S3A1, Canada
| | - Thierry Lengagne
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Nathalie Mondy
- Université de Lyon, UMR5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPE, CNRS, 6 rue Raphaël Dubois, 69622 Villeurbanne, France
| |
Collapse
|
5
|
Neiva HP, Marques MC, Barbosa TM, Izquierdo M, Viana JL, Teixeira AM, Marinho DA. The Effects of Different Warm-up Volumes on the 100-m Swimming Performance: A Randomized Crossover Study. J Strength Cond Res 2016; 29:3026-36. [PMID: 26506059 DOI: 10.1519/jsc.0000000000001141] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to compare the effect of 3 different warm-up (WU) volumes on 100-m swimming performance. Eleven male swimmers at the national level completed 3 time trials of 100-m freestyle on separate days and after a standard WU, a short WU (SWU), or a long WU (LWU) in a randomized sequence. All of them replicated some usual sets and drills, and the WU totaled 1,200 m, the SWU totaled 600 m, and the LWU totaled 1,800 m. The swimmers were faster after the WU (59.29 seconds; confidence interval [CI] 95%, 57.98-60.61) and after the SWU (59.38 seconds; CI 95%, 57.92-60.84) compared with the LWU (60.18 seconds; CI 95%, 58.53-61.83). The second 50-m lap after the WU was performed with a higher stroke length (effect size [ES] = 0.77), stroke index (ES = 1.26), and propelling efficiency (ES = 0.78) than that after the SWU. Both WU and SWU resulted in higher pretrial values of blood lactate concentrations [La] compared with LWU (ES = 1.58 and 0.74, respectively), and the testosterone:cortisol levels were increased in WU compared with LWU (ES = 0.86). In addition, the trial after WU caused higher [La] (ES ≥ 0.68) and testosterone:cortisol values compared with the LWU (ES = 0.93). These results suggest that an LWU could impair 100-m freestyle performance. The swimmers showed higher efficiency during the race after a 1200-m WU, suggesting a favorable situation. It highlighted the importance of the [La] and hormonal responses to each particular WU, possibly influencing performance and biomechanical responses during a 100-m race.
Collapse
Affiliation(s)
- Henrique P Neiva
- 1Department of Sport Sciences, University of Beira Interior, Covilhã, Portugal; 2Research Center in Sport Sciences, Health Sciences and Human Development, CIDESD, Vila Real, Portugal; 3National Institute of Education, Nanyang Technological University, Singapore, Singapore; 4Department of Health Sciences, Public University of Navarre, Navarre, Spain; 5University Institute of Maia, ISMAI, Maia, Portugal; and 6Faculty of Sport Sciences and Physical Education, Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
6
|
Scudese E, Simão R, Senna G, Vingren JL, Willardson JM, Baffi M, Miranda H. Long Rest Interval Promotes Durable Testosterone Responses in High-Intensity Bench Press. J Strength Cond Res 2016; 30:1275-86. [DOI: 10.1519/jsc.0000000000001237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur J Appl Physiol 2010; 110:1243-50. [PMID: 20737165 DOI: 10.1007/s00421-010-1620-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2010] [Indexed: 10/19/2022]
Abstract
This investigation reports the effects of caffeinated chewing gum on fatigue and hormone response during repeated sprint performance with competitive cyclists. Nine male cyclists (mean ± SD, age 24 ± 7 years, VO(2max) 62.5 ± 5.4 mL kg(-1) min(-1)) completed four high-intensity experimental sessions, consisting of four sets of 30 s sprints (5 sprints each set). Caffeine (240 mg) or placebo was administered via chewing gum following the second set of each experimental session. Testosterone and cortisol concentrations were assayed in saliva samples collected at rest and after each set of sprints. Mean power output in the first 10 sprints relative to the last 10 sprints declined by 5.8 ± 4.0% in the placebo and 0.4 ± 7.7% in the caffeine trials, respectively. The reduced fatigue in the caffeine trials equated to a 5.4% (90% confidence limit ±3.6%, effect size 0.25; ±0.16) performance enhancement in favour of caffeine. Salivary testosterone increased rapidly from rest (~53%) and prior to treatments in all trials. Following caffeine treatment, testosterone increased by a further 12 ± 14% (ES 0.50; ± 0.56) relative to the placebo condition. In contrast, cortisol concentrations were not elevated until after the third exercise set; following the caffeine treatment cortisol was reduced by 21 ± 31% (ES -0.30; ± 0.34) relative to placebo. The acute ingestion of caffeine via chewing gum attenuated fatigue during repeated, high-intensity sprint exercise in competitive cyclists. Furthermore, the delayed fatigue was associated with substantially elevated testosterone concentrations and decreased cortisol in the caffeine trials.
Collapse
|
8
|
Burnes LA, Kolker SJ, Danielson JF, Walder RY, Sluka KA. Enhanced muscle fatigue occurs in male but not female ASIC3-/- mice. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1347-55. [PMID: 18305024 DOI: 10.1152/ajpregu.00687.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle fatigue is associated with a number of clinical diseases, including chronic pain conditions. Decreases in extracellular pH activates acid-sensing ion channel 3 (ASIC3), depolarizes muscle, protects against fatigue, and produces pain. We examined whether ASIC3-/- mice were more fatigable than ASIC3+/+ mice in a task-dependent manner. We developed two exercise protocols to measure exercise-induced muscle fatigue: (fatigue task 1, three 1-h runs; fatigue task 2, three 30-min runs). In fatigue task 1, male ASIC3+/+ mice muscle showed less fatigue than male ASIC3-/- mice and female ASIC3+/+ mice. No differences in fatigue were observed in fatigue task 2. We then tested whether the development of muscle fatigue was dependent on sex and modulated by testosterone. Female ASIC3+/+ mice that were ovariectomized and administered testosterone developed less muscle fatigue than female ASIC3+/+ mice and behaved similarly to male ASIC3+/+ mice. However, testosterone was unable to rescue the muscle fatigue responses in ovariectomized ASIC3-/- mice. Plasma levels of testosterone from male ASIC3-/- mice were significantly lower than in male ASIC3+/+ mice and were similar to female ASIC3+/+ mice. Muscle fiber types, measured by counting ATPase-stained whole muscle sections, were similar in calf muscles from male and female ASIC3+/+ mice. These data suggest that both ASIC3 and testosterone are necessary to protect against muscle fatigue in a task-dependent manner. Also, differences in expression of ASIC3 and the development of exercise-induced fatigue could explain the female predominance in clinical syndromes of pain that include muscle fatigue.
Collapse
Affiliation(s)
- Lynn A Burnes
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, Neuroscience Graduate Program, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
Resistance exercise has been shown to elicit a significant acute hormonal response. It appears that this acute response is more critical to tissue growth and remodelling than chronic changes in resting hormonal concentrations, as many studies have not shown a significant change during resistance training despite increases in muscle strength and hypertrophy. Anabolic hormones such as testosterone and the superfamily of growth hormones (GH) have been shown to be elevated during 15-30 minutes of post-resistance exercise providing an adequate stimulus is present. Protocols high in volume, moderate to high in intensity, using short rest intervals and stressing a large muscle mass, tend to produce the greatest acute hormonal elevations (e.g. testosterone, GH and the catabolic hormone cortisol) compared with low-volume, high-intensity protocols using long rest intervals. Other anabolic hormones such as insulin and insulin-like growth factor-1 (IGF-1) are critical to skeletal muscle growth. Insulin is regulated by blood glucose and amino acid levels. However, circulating IGF-1 elevations have been reported following resistance exercise presumably in response to GH-stimulated hepatic secretion. Recent evidence indicates that muscle isoforms of IGF-1 may play a substantial role in tissue remodelling via up-regulation by mechanical signalling (i.e. increased gene expression resulting from stretch and tension to the muscle cytoskeleton leading to greater protein synthesis rates). Acute elevations in catecholamines are critical to optimal force production and energy liberation during resistance exercise. More recent research has shown the importance of acute hormonal elevations and mechanical stimuli for subsequent up- and down-regulation of cytoplasmic steroid receptors needed to mediate the hormonal effects. Other factors such as nutrition, overtraining, detraining and circadian patterns of hormone secretion are critical to examining the hormonal responses and adaptations to resistance training.
Collapse
Affiliation(s)
- William J Kraemer
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, Storrs, 06269, USA.
| | | |
Collapse
|
10
|
Girgenrath M, Marsh RL. Season and testosterone affect contractile properties of fast calling muscles in the gray tree frog Hyla chrysoscelis. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1513-20. [PMID: 12595277 DOI: 10.1152/ajpregu.00243.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In anurans, circulating levels of androgens influence certain secondary sexual characteristics that are expressed only during the breeding season. We studied the contractile properties of external oblique muscles (used to power sound production) in a species of North American gray tree frog, Hyla chrysoscelis, during the breeding season and also in testosterone-treated captive males and females after the breeding season. Compared with the muscles of breeding-season males, the trunk muscles of postbreeding-season males have 50% less mass, 60% longer twitches, and 40% slower shortening velocities. Testosterone levels similar to those found in breeding-season male hylid frogs restore the contractile speed and mass of male trunk muscles and also convert the small slow trunk muscles of females into larger fast-contracting muscles. We conclude that androgens likely play a key role in altering the contractile properties of these muscles in males during the annual cycle, allowing them to operate in the breeding season at the frequencies required to produce the characteristic rapidly pulsed calls of this species. Females as well as nonbreeding-season males do not produce advertising calls, and therefore the slower muscles found in these animals may allow more economic operation of these muscles. The effects of testosterone on female trunk muscles indicate the potential of this hormone in contributing to the sexual dimorphism in size and contractile properties of these muscles, but this dimorphism is likely due to the interaction of more than one hormone.
Collapse
Affiliation(s)
- Mahasweta Girgenrath
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
11
|
Lima-Landman MT, Lapa AJ. Gender does not influence neuromuscular properties in dimorphic skeletal muscles of the toad. Comp Biochem Physiol A Mol Integr Physiol 1998; 121:119-26. [PMID: 9883574 DOI: 10.1016/s1095-6433(98)10112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this work was to study gender differences on the physiology of the dimorphic brachial musculature involved in the clasp reflex of the toad (Bufo marinus L.). The neuromuscular transmission, the sensitivity to acetylcholine (ACh) and the cholinesterase activity were compared on the forelimb sternoradialis muscles (SR) from male and female toads. The interosseous muscles of the first finger were used to compare the properties of the nicotinic receptor/ionic channel complex (AChR). All the muscles studied were dimorphic, i.e. significantly smaller in the female than in the male frog in otherwise similar size animals. The SR of either sex contracted to bath application of ACh with similar EC50. In physiological solution the frequency of the miniature end-plate potentials (mepps) was very low (0.1 s-1) and no gender difference was detected. The mepp amplitudes were 0.62 +/- 0.03 and 0.58 +/- 0.03 mV in SR from male and female toads, respectively. To increase exocytosis the muscles were incubated in hypertonic solution (158 mM NaCl). Under this condition mepp frequency was increased by five and seven times and mepp amplitude increased by 1.3 and 1.6 times in SR from male and female toads, respectively. The cholinesterase activity measured by the colorimetric method, did not differ in SR from male and female toads. In muscle fibers dissociated from the dimorphic interosseous muscles of male and female toads, the ionic channel conductance was 43 +/- 5.3 and 44 +/- 4.5 pS, respectively. The mean channel open time was voltage-dependent and not significantly different in preparations from both genders. These observations indicate that neither the ACh-nicotinic receptor interaction, nor the AChR complex kinetics and the nicotinic excitation-contraction coupling or the cholinesterase activity differ in dimorphic muscles from Bufo genders. No gender difference was detected in neuromuscular transmission of the studied muscle. Only a slight increase in mepp frequency and amplitude could be detected when the muscles were incubated in hypertonic solution.
Collapse
Affiliation(s)
- M T Lima-Landman
- Escola Paulista de Medicina, Department of Pharmacology, Natural Products Section, São Paulo, SP, Brazil.
| | | |
Collapse
|
12
|
Ruel T, Kelley D, Tobias M. Facilitation at the sexually differentiated laryngeal synapse of Xenopus laevis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1998; 182:35-42. [PMID: 9447712 PMCID: PMC3493214 DOI: 10.1007/s003590050155] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Under physiological conditions, the laryngeal synapse of male Xenopus laevis exhibits marked facilitation during repetitive nerve stimulation. The male laryngeal synapse is weak and requires facilitation to produce muscle action potentials and ultimately sound. The female laryngeal synapse is strong: muscle contractions are produced to single nerve stimuli. We sought to determine if laryngeal synapses of males and females also differ in their ability to facilitate. To measure facilitation, laryngeal muscle action potentials were suppressed either postsynaptically by bathing the preparation in saline containing curare or presynaptically by bathing the preparation in reduced calcium/elevated magnesium saline. Facilitation of postsynaptic potential amplitude or quantal content in response to paired pulses was measured in male and female larynges: there is no sex difference in paired pulse facilitation. Facilitation in response to trains of stimuli, in curare-blocked preparations, increased and reached plateau values more rapidly in females than in males, although the facilitation between the last and first pulses in the train was the same in the sexes. Thus, the sexually differentiated behavior of this synapse is controlled more by a sex difference in synaptic strength than by a sex difference in the ability to facilitate.
Collapse
|
13
|
Abstract
Recent advances in understanding effects of steroid hormones at the level of individual neurons have been achieved using model systems. Steroid hormone effects on dendritic morphology, synaptic function and ionic conductances have been implicated in the regulation of behavior in both vertebrates and invertebrates. Particularly exciting are studies demonstrating steroid hormone effects on specific synaptic connections and ionic currents. There also has been important progress in understanding the diversity of sites and mechanisms of hormone action, encompassing both genomic and non-genomic effects of steroids on neuronal properties.
Collapse
Affiliation(s)
- J C Weeks
- Institute of Neuroscience, University of Oregon, Eugene 97403-1254, USA.
| | | |
Collapse
|