1
|
Dobashi K, Ichinose M, Fujii N, Fujimoto T, Nishiyasu T. Effects of Pre-Exercise Voluntary Hyperventilation on Metabolic and Cardiovascular Responses During and After Intense Exercise. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2023; 94:1141-1152. [PMID: 36170018 DOI: 10.1080/02701367.2022.2121371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Purpose: We investigated the effects of pre-exercise voluntary hyperventilation and the resultant hypocapnia on metabolic and cardiovascular responses during and after high-intensity exercise. Methods: Ten healthy participants performed a 60-s cycling exercise at a workload of 120% peak oxygen uptake in control (spontaneous breathing), hypocapnia and normocapnia trials. Hypocapnia was induced through 20-min pre-exercise voluntary hyperventilation. In the normocapnia trial, voluntary hyperpnea was performed with CO2 inhalation to prevent hypocapnia. Results: Pre-exercise end-tidal CO2 partial pressure was lower in the hypocapnia trial than the control or normocapnia trial, with similar levels in the control and normocapnia trials. Average V ˙ O 2 during the entire exercise was lower in both the hypocapnia and normocapnia trials than in the control trial (1491 ± 252vs.1662 ± 169vs.1806 ± 149 mL min-1), with the hypocapnia trial exhibiting a greater reduction than the normocapnia trial. Minute ventilation during exercise was lower in the hypocapnia trial than the normocapnia trial. In addition, minute ventilation during the first 10s of the exercise was lower in the normocapnia than the control trial. Pre-exercise hypocapnia also reduced heart rates and arterial blood pressures during the exercise relative to the normocapnia trial, a response that lasted through the subsequent early recovery periods, though end-tidal CO2 partial pressure was similar in the two trials. Conclusions: Our results suggest that pre-exercise hyperpnea and the resultant hypocapnia reduce V ˙ O 2 during high-intensity exercise. Moreover, hypocapnia may contribute to voluntary hyperventilation-mediated cardiovascular responses during the exercise, and this response can persist into the subsequent recovery period, despite the return of arterial CO2 pressure to the normocapnic level.
Collapse
Affiliation(s)
- Kohei Dobashi
- University of Tsukuba
- Japan Society for the Promotion of Science
- Hokkaido University of Education
| | | | | | - Tomomi Fujimoto
- University of Tsukuba
- Niigata University of Health and Welfare
| | | |
Collapse
|
2
|
Combined Effects of Hypocapnic Hyperventilation and Hypoxia on Exercise Performance and Metabolic Responses During the Wingate Anaerobic Test. Int J Sports Physiol Perform 2023; 18:69-76. [PMID: 36521190 DOI: 10.1123/ijspp.2022-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/23/2022]
Abstract
Hypoxia during supramaximal exercise reduces aerobic metabolism with a compensatory increase in anaerobic metabolism without affecting exercise performance. A similar response is elicited by preexercise voluntary hypocapnic hyperventilation, but it remains unclear whether hypocapnic hyperventilation and hypoxia additively reduce aerobic metabolism and increase anaerobic metabolism during supramaximal exercise. To address that issue, 12 healthy subjects (8 males and 4 females) performed the 30-second Wingate anaerobic test (WAnT) after (1) spontaneous breathing in normoxia (control, ∼21% fraction of inspired O2 [FiO2]), (2) voluntary hypocapnic hyperventilation in normoxia (hypocapnia, ∼21% FiO2), (3) spontaneous breathing in hypoxia (hypoxia, ∼11% FiO2), or (4) voluntary hypocapnic hyperventilation in hypoxia (combined, ∼11% FiO2). Mean power output during the 30-second WAnT was similar among the control (561 [133] W), hypocapnia (563 [140] W), hypoxia (558 [131] W), and combined (560 [133] W) trials (P = .778). Oxygen uptake during the 30-second WAnT was lower in the hypocapnia (1523 [318] mL/min), hypoxia (1567 [300] mL/min), and combined (1203 [318] mL/min) trials than in the control (1935 [250] mL/min) trial, and the uptake in the combined trial was lower than in the hypocapnia or hypoxia trial (all P < .001). Oxygen deficit, an index of anaerobic metabolism, was higher in the hypocapnia (38.4 [7.3] mL/kg), hypoxia (37.8 [6.8] mL/kg), and combined (40.7 [6.9] mL/kg) trials than in the control (35.0 [6.8] mL/kg) trial, and the debt was greater in the combined trial than in the hypocapnia or hypoxia trial (all P < .003). Our results suggest that voluntary hypocapnic hyperventilation and hypoxia additively reduce aerobic metabolism and increase anaerobic metabolism without affecting exercise performance during the 30-second WAnT.
Collapse
|
3
|
Ahmadian M, Ghasemi M, Nasrollahi Borujeni N, Afshan S, Fallah M, Ayaseh H, Pahlavan M, Nabavi Chashmi SM, Haeri T, Imani F, Zahedmanesh F, Akbari A, Nasiri K, Dabidi Roshan V. Does wearing a mask while exercising amid COVID-19 pandemic affect hemodynamic and hematologic function among healthy individuals? Implications of mask modality, sex, and exercise intensity. PHYSICIAN SPORTSMED 2022; 50:257-268. [PMID: 33902400 DOI: 10.1080/00913847.2021.1922947] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES We investigated how wearing a mask - and its modality (surgical vs. N95) - affect hemodynamic and hematologic function in males and females across two exercise intensities (submaximal (SUB) and maximal (MAX)). METHODS 144 individuals participated in the present study and were randomly allocated to three mask groups of 48 (N95, SURGICAL, and NO MASK) with two exercise subgroups for each mask group (MAX, n = 24; SUB, n = 24) for both sexes. Participants in each experimental group (N95SUB, N95MAX; SURSUB, SURMAX; SUB, MAX) were assessed for their hemodynamic and hematologic function at baseline and during recovery after exercise. RESULTS No significant differences were noted for either hemodynamic or hematologic function at post-exercise as compared to baseline with regard to mask modality (P > 0.05). Heart rate (HR) for maximal intensity were significantly greater at 1 min post-exercise in N95 as compared to SURGICAL (P < 0.05). No differences were noted for hemodynamic and hematologic function with N95 and SURGICAL compared to NOMASK for either intensity (P > 0.05). Females showed significantly greater HR values at 1 min post-exercise in N95 as compared to NO MASK, but no significant differences were noted for hematological function between sexes (P > 0.05). CONCLUSION Our findings show that wearing a face mask (N95/surgical) while exercising has no detrimental effects on hemodynamic/hematologic function in both males and females, and suggest that wearing a mask, particularly a surgical mask, while exercising during the ongoing pandemic is safe and poses no risk to individual's health. Future studies examining physiological responses to chronic exercise with masks are warranted.
Collapse
Affiliation(s)
- Mehdi Ahmadian
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Mohammad Ghasemi
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | | | - Samaneh Afshan
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Masoumeh Fallah
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Hamed Ayaseh
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Mohammad Pahlavan
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | | | - Tahereh Haeri
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Fattaneh Imani
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Foruzan Zahedmanesh
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| | - Abolfazl Akbari
- Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Khadijeh Nasiri
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Valiollah Dabidi Roshan
- Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran.,Athletic Performance and Health Research Center, Department of Exercise Physiology, Faculty of Sport Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
4
|
McCartan AJS, Curran DW, Mrsny RJ. Evaluating parameters affecting drug fate at the intramuscular injection site. J Control Release 2021; 336:322-335. [PMID: 34153375 DOI: 10.1016/j.jconrel.2021.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Intramuscular (IM) injections are a well-established method of delivering a variety of therapeutics formulated for parenteral administration. While the wide range of commercial IM pharmaceuticals provide a wealth of pharmacokinetic (PK) information following injection, there remains an inadequate understanding of drug fate at the IM injection site that could dictate these PK outcomes. An improved understanding of injection site events could improve approaches taken by formulation scientists to identify therapeutically effective and consistent drug PK outcomes. Interplay between the typically non-physiological aspects of drug formulations and the homeostatic IM environment may provide insights into the fate of drugs at the IM injection site, leading to predictions of how a drug will behave post-injection in vivo. Immune responses occur by design after e.g. vaccine administration, however immune responses post-injection are not in the scope of this article. Taking cues from existing in vitro modelling technologies, the purpose of this article is to propose "critical parameters" of the IM environment that could be examined in hypothesis-driven studies. Outcomes of such studies might ultimately be useful in predicting and improving in vivo PK performance of IM injected drugs.
Collapse
Affiliation(s)
- Adam J S McCartan
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, Avon BA2 7AY, UK
| | - David W Curran
- CMC Analytical, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, Avon BA2 7AY, UK.
| |
Collapse
|
5
|
Dobashi K, Fujii N, Ichinose M, Fujimoto T, Nishiyasu T. Voluntary hypocapnic hyperventilation lasting 5 min and 20 min similarly reduce aerobic metabolism without affecting power outputs during Wingate anaerobic test. Eur J Sport Sci 2020; 21:1148-1155. [PMID: 32814502 DOI: 10.1080/17461391.2020.1812728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractTwenty minutes of voluntary hypocapnic hyperventilation prior to exercise reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate without affecting exercise performance during the Wingate anaerobic test (WAnT). Thus, pre-exercise hypocapnic hyperventilation may be a useful means of stressing the anaerobic energy system during training, ultimately improving anaerobic exercise performance. However, it remains unclear whether a shorter (e.g., 5 min) pre-exercise hypocapnic hyperventilation is sufficient to reduce the aerobic metabolic rate during high-intensity exercise. We therefore compared the effects of 5-min and 20-min pre-exercise hypocapnic hyperventilation on aerobic metabolism during the 30-s WAnT. Ten healthy young males and one female performed the WAnT following 20 min of spontaneous breathing (control trial) or 5 or 20 min of voluntary hypocapnic hyperventilation. Both the 5-min and 20-min hyperventilation reduced end-tidal CO2 partial pressure (an index of arterial CO2 partial pressure) to ∼23 mmHg, whereas it remained unchanged during the spontaneous breathing. The peak, mean and minimum power outputs during the WAnT did not differ among the three trials. Oxygen uptake during the WAnT was lower in both the 5-min (1493 ± 257 mL min-1) and 20-min (1397 ± 447 mL min-1) hyperventilation trials than during the control trial (1847 ± 286 mL min-1), and was similar in the two hyperventilation trials. These results suggest that 5 min of pre-exercise hypocapnic hyperventilation reduces aerobic metabolism during the 30-s WAnT to a level similar to that seen with the 20-min hyperventilation. Moreover, exercise performance was unaffected, which implies anaerobic metabolism was enhanced.
Collapse
Affiliation(s)
- Kohei Dobashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Masashi Ichinose
- Human Integrative Physiology Laboratory, School of Business Administration, Meiji University, Tokyo, Japan
| | - Tomomi Fujimoto
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.,Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan.,Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Stress Hyperglycemia as Predictive Factor of Recurrence in Children with Febrile Seizures. Brain Sci 2020; 10:brainsci10030131. [PMID: 32120784 PMCID: PMC7139396 DOI: 10.3390/brainsci10030131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/25/2020] [Indexed: 01/04/2023] Open
Abstract
Stress hyperglycemia and hyperlactatemia are commonly referred to as markers of stress severity and poor outcome in children with severe acute illness or febrile seizures. Our prospective study aimed to explore the risk factors for stress hyperglycemia and the predictive value of stress hyperglycemia for febrile seizure recurrence. We evaluated as risk factors for blood glucose level, serum lactate, acid–base status, and the clinical parameters relevant to the severity of the infectious context or to febrile seizure event: fever degree, fever duration, seizure type and aspect, seizure duration, and recurrence. Among 166 febrile seizures events in 128 children, the prevalence of stress hyperglycemia (blood glucose >140 mg/dl) was 16.9%. The comparison of the stress versus non-stress hyperglycemia groups revealed lower pH (median (interquartile range): 7.46 (7.37, 7.53) vs. 7.48 (7.42, 7.53), p = 0.049), higher lactate levels (30.50 mg/dl (15, 36) vs. 19.50 mg/dl (15, 27), p = 0.000), slightly lower HCO3 (20.15 (20.20, 21.45) vs. 21.35 (20, 22.40), p = 0.020) in the stress hyperglycemia group. Multiple logistic regression analysis showed that prolonged febrile seizures (>15 min), recurrent febrile seizure (>1 seizure), focal seizure type, body temperature ≥39.5 °C and higher lactate values were significantly associated with stress hyperglycemia. These findings suggest a particular acute stress reaction in febrile seizures, with stress hyperglycemia playing an important role, particularly in patients with a recurrent seizure pattern. A more complex future approach linking pathogenic mechanisms and genetic traits would be advised and could provide further clues regarding recurrence pattern and individualized treatment.
Collapse
|
7
|
Lomax M, Kapus J, Webb S, Ušaj A. The effect of inspiratory muscle fatigue on acid-base status and performance during race-paced middle-distance swimming. J Sports Sci 2019; 37:1499-1505. [PMID: 30724711 DOI: 10.1080/02640414.2019.1574250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate the effect of pre-induced inspiratory muscle fatigue (IMF) on race-paced swimming and acid-base status. Twenty-one collegiate swimmers performed two discontinuous 400-m race-paced swims on separate days, with (IMF trial) and without (control trial) pre-induced IMF. Swimming characteristics, inspiratory and expiratory mouth pressures, and blood parameters were recorded. IMF and expiratory muscle fatigue (P < 0.05) were evident after both trials and swimming time was slower (P < 0.05) from 150-m following IMF inducement. Pre-induced IMF increased pH before the swim (P < 0.01) and reduced bicarbonate (P < 0.05) and the pressure of carbon dioxide (PCO2) (P < 0.05). pH (P < 0.05), bicarbonate (P < 0.01) and PCO2 (P < 0.05) were lower during swimming in the IMF trial. Blood lactate was similar before both trials (P > 0.05) but was higher (P < 0.01) in the IMF trial after swimming. Pre-induced IMF induced respiratory alkalosis, reduced bicarbonate buffering capacity and slowed swimming speed. Pre-induced and propulsion-induced IMF reflected metabolic acidosis arising from dual role breathing and propulsion muscle fatigue.
Collapse
Affiliation(s)
- Mitch Lomax
- a Department of Sport and Exercise Science , University of Portsmouth , Portsmouth , UK
| | - Jernej Kapus
- b Faculty of Sport , University of Ljubljana , Ljubljana , Slovenia
| | - Samuel Webb
- a Department of Sport and Exercise Science , University of Portsmouth , Portsmouth , UK
| | - Anton Ušaj
- b Faculty of Sport , University of Ljubljana , Ljubljana , Slovenia
| |
Collapse
|
8
|
Slow V˙O 2 kinetics in acute hypoxia are not related to a hyperventilation-induced hypocapnia. Respir Physiol Neurobiol 2018; 251:41-49. [PMID: 29477729 DOI: 10.1016/j.resp.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 11/21/2022]
Abstract
We examined whether slower pulmonary O2 uptake (V˙O2p) kinetics in hypoxia is a consequence of: a) hypoxia alone (lowered arterial O2 pressure), b) hyperventilation-induced hypocapnia (lowered arterial CO2 pressure), or c) a combination of both. Eleven participants performed 3-5 repetitions of step-changes in cycle ergometer power output from 20W to 80% lactate threshold in the following conditions: i) normoxia (CON; room air); ii) hypoxia (HX, inspired O2 = 12%; lowered end-tidal O2 pressure [PETO2] and end-tidal CO2 pressure [PETCO2]); iii) hyperventilation (HV; increased PETO2 and lowered PETCO2); and iv) normocapnic hypoxia (NC-HX; lowered PETO2 and PETCO2 matched to CON). Ventilation was increased (relative to CON) and matched between HX, HV, and NC-HX conditions. During each condition VO2p˙ was measured and phase II V˙O2p kinetics were modeled with a mono-exponential function. The V˙O2p time constant was different (p < 0.05) amongst all conditions: CON, 26 ± 11s; HV, 36 ± 14s; HX, 46 ± 14s; and NC-HX, 52 ± 13s. Hypocapnia may prevent further slowing of V˙O2p kinetics in hypoxic exercise.
Collapse
|
9
|
Lühker O, Berger MM, Pohlmann A, Hotz L, Gruhlke T, Hochreiter M. Changes in acid-base and ion balance during exercise in normoxia and normobaric hypoxia. Eur J Appl Physiol 2017; 117:2251-2261. [PMID: 28914359 PMCID: PMC5640730 DOI: 10.1007/s00421-017-3712-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/01/2022]
Abstract
Purpose Both exercise and hypoxia cause complex changes in acid–base homeostasis. The aim of the present study was to investigate whether during intense physical exercise in normoxia and hypoxia, the modified physicochemical approach offers a better understanding of the changes in acid–base homeostasis than the traditional Henderson–Hasselbalch approach. Methods In this prospective, randomized, crossover trial, 19 healthy males completed an exercise test until voluntary fatigue on a bicycle ergometer on two different study days, once during normoxia and once during normobaric hypoxia (12% oxygen, equivalent to an altitude of 4500 m). Arterial blood gases were sampled during and after the exercise test and analysed according to the modified physicochemical and Henderson–Hasselbalch approach, respectively. Results Peak power output decreased from 287 ± 9 Watts in normoxia to 213 ± 6 Watts in hypoxia (−26%, P < 0.001). Exercise decreased arterial pH to 7.21 ± 0.01 and 7.27 ± 0.02 (P < 0.001) during normoxia and hypoxia, respectively, and increased plasma lactate to 16.8 ± 0.8 and 17.5 ± 0.9 mmol/l (P < 0.001). While the Henderson–Hasselbalch approach identified lactate as main factor responsible for the non-respiratory acidosis, the modified physicochemical approach additionally identified strong ions (i.e. plasma electrolytes, organic acid ions) and non-volatile weak acids (i.e. albumin, phosphate ion species) as important contributors. Conclusions The Henderson–Hasselbalch approach might serve as basis for screening acid–base disturbances, but the modified physicochemical approach offers more detailed insights into the complex changes in acid–base status during exercise in normoxia and hypoxia, respectively. Electronic supplementary material The online version of this article (doi:10.1007/s00421-017-3712-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olaf Lühker
- Department of Anesthesiology, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Anesthesiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.,Department of Anesthesiology, Perioperative and General Critical Care Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexander Pohlmann
- Department of Anesthesiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Lorenz Hotz
- Division of Sports Medicine, Department of Internal Medicine VII, University of Heidelberg, Heidelberg, Germany
| | - Tilmann Gruhlke
- Department of Anesthesiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Marcel Hochreiter
- Department of Anesthesiology, University Hospital Heidelberg, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
10
|
Dobashi K, Fujii N, Watanabe K, Tsuji B, Sasaki Y, Fujimoto T, Tanigawa S, Nishiyasu T. Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. Eur J Appl Physiol 2017; 117:1573-1583. [PMID: 28527012 DOI: 10.1007/s00421-017-3646-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/12/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate the effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. METHODS Ten males performed three 30-s bouts of high-intensity cycling [Ex1 and Ex2: constant-workload at 80% of the power output in the Wingate anaerobic test (WAnT), Ex3: WAnT] interspaced with 4-min recovery periods under normoxic (Control), hypocapnic or hypoxic (2500 m) conditions. Hypocapnia was developed through voluntary hyperventilation for 20 min prior to Ex1 and during each recovery period. RESULTS End-tidal CO2 pressure was lower before each exercise in the hypocapnia than control trials. Oxygen uptake ([Formula: see text]) was lower in the hypocapnia than control trials (822 ± 235 vs. 1645 ± 245 mL min-1; mean ± SD) during Ex1, but not Ex2 or Ex3, without a between-trial difference in the power output during the exercises. Heart rates (HRs) during Ex1 (127 ± 8 vs. 142 ± 10 beats min-1) and subsequent post-exercise recovery periods were lower in the hypocapnia than control trials, without differences during or after Ex2, except at 4 min into the second recovery period. [Formula: see text] did not differ between the control and hypoxia trials throughout. CONCLUSIONS These results suggest that during three 30-s bouts of high-intensity intermittent cycling, (1) hypocapnia reduces the aerobic metabolic rate with a compensatory increase in the anaerobic metabolic rate during the first but not subsequent exercises; (2) HRs during the exercise and post-exercise recovery periods are lowered by hypocapnia, but this effect is diminished with repeated exercise bouts, and (3) moderate hypoxia (2500 m) does not affect the metabolic response during exercise.
Collapse
Affiliation(s)
- Kohei Dobashi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Kazuhito Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Bun Tsuji
- Faculty of Human Culture and Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Yosuke Sasaki
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Tomomi Fujimoto
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Satoru Tanigawa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan.
| |
Collapse
|
11
|
Fujii N, Tsuchiya SI, Tsuji B, Watanabe K, Sasaki Y, Nishiyasu T. Effect of voluntary hypocapnic hyperventilation on the metabolic response during Wingate anaerobic test. Eur J Appl Physiol 2015; 115:1967-74. [PMID: 25944513 DOI: 10.1007/s00421-015-3179-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE We evaluated whether hypocapnia achieved through voluntary hyperventilation diminishes the increases in oxygen uptake elicited by short-term (e.g., ~30 s) all-out exercise without affecting exercise performance. METHODS Nine subjects performed 30-s Wingate anaerobic tests (WAnT) in control and hypocapnia trials on separate days in a counterbalanced manner. During the 20-min rest prior to the 30-s WAnT, the subjects in the hypocapnia trial performed voluntary hyperventilation (minute ventilation = 31 L min(-1)), while the subjects in the control trial continued breathing spontaneously (minute ventilation = 14 L min(-1)). RESULTS The hyperventilation in the hypocapnia trial reduced end-tidal CO2 pressure from 34.8 ± 2.5 mmHg at baseline rest to 19.3 ± 1.0 mmHg immediately before the 30-s WAnT. In the control trial, end-tidal CO2 pressure at baseline rest (35.9 ± 2.5 mmHg) did not differ from that measured immediately before the 30-s WAnT (35.9 ± 3.3 mmHg). Oxygen uptake during the 30-s WAnT was lower in the hypocapnia than the control trial (1.55 ± 0.52 vs. 1.95 ± 0.44 L min(-1)), while the postexercise peak blood lactate concentration was higher in the hypocapnia than control trial (10.4 ± 1.9 vs. 9.6 ± 1.9 mmol L(-1)). In contrast, there was no difference in the 5-s peak (842 ± 111 vs. 850 ± 107 W) or mean (626 ± 74 vs. 639 ± 80 W) power achieved during the 30-s WAnT between the control and hypocapnia trials. CONCLUSIONS These results suggest that during short-period all-out exercise (e.g., 30-s WAnT), hypocapnia induced by voluntary hyperventilation reduces the aerobic metabolic rate without affecting exercise performance. This implies a compensatory elevation in the anaerobic metabolic rate.
Collapse
Affiliation(s)
- Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Ibaraki, 305-8574, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Burtscher M, Gatterer H, Faulhaber M, Burtscher J. Acetazolamide pre-treatment before ascending to high altitudes: when to start? Int J Clin Exp Med 2014; 7:4378-4383. [PMID: 25550957 PMCID: PMC4276215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023]
Abstract
Hypoxia is the main responsible factor initiating the symptoms of acute mountain sickness (AMS) in susceptible individuals. Measures that improve oxygenation and/or hasten acclimatization like pre-treatment with acetazolamide will prevent the development of AMS. We hypothesized that pre-treatment with acetazolamide the day before arrival at high altitude would elicit improved oxygenation compared to placebo not until the second day of high-altitude exposure. Fifteen study participants were randomly assigned in a double blind fashion to receive placebo or acetazolamide (2 × 125 mg) before (10 hours and 1 hour) exposure to high altitude (Monte Rosa plateau, 3480 m). Beside AMS scoring, heart rate, minute ventilation, and blood gas analyses were performed during rest and submaximal exercise at low altitude and on day 1, 2 and 3 at high altitude. From low altitude to day 1 at high altitude changes of pH (7.41 ± 0.01 vs. 7.48 ± 0.04) and HCO3 (24.0 ± 0.46 vs. 24.6 ± 2.6 mmol/L) within the placebo group differed significantly from those within the acetazolamide group (7.41 ± 0.01 vs. 7.41 ± 0.02; 23.6 ± 0.38 vs. 20.7 ± 1.8 mmol/L) (P < 0.05). AMS incidence tended to be lower with acetazolamide (P < 0.1). From low altitude to day 2 at high altitude changes of paO2 within the placebo group (75.3 ± 5.4 vs. 40.5 ± 3.4 mmHg) differed significantly from those within the acetazolamide group (76.5 ± 4.5 vs. 48.2 ± 4.9 mmHg) (P < 0.05). In conclusion, pre-treatment with low-dose acetazolamide on the day before ascending to high altitude tended to reduce AMS incidence on the first day at high altitude but improved oxygen availability to tissues not until the second day of exposure. Therefore, it is suggested that the beginning of pre-treatment with low-dose acetazolamide at least two days before arrival at high altitude, in contrast to usual recommendations, would be of greater beneficial effect on AMS development.
Collapse
Affiliation(s)
- Martin Burtscher
- Department of Sport Science, Medical Section, University of InnsbruckAustria
| | - Hannes Gatterer
- Department of Sport Science, Medical Section, University of InnsbruckAustria
| | - Martin Faulhaber
- Department of Sport Science, Medical Section, University of InnsbruckAustria
| | | |
Collapse
|
13
|
Raper JA, Love LK, Paterson DH, Peters SJ, Heigenhauser GJF, Kowalchuk JM. Effect of high-fat and high-carbohydrate diets on pulmonary O2 uptake kinetics during the transition to moderate-intensity exercise. J Appl Physiol (1985) 2014; 117:1371-9. [PMID: 25277736 DOI: 10.1152/japplphysiol.00456.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial pyruvate dehydrogenase (PDH) regulates the delivery of carbohydrate-derived substrate to the mitochondrial tricarboxylic acid cycle and electron transport chain. PDH activity at rest and its activation during exercise is attenuated following high-fat (HFAT) compared with high-carbohydrate (HCHO) diets. Given the reliance on carbohydrate-derived substrate early in transitions to exercise, this study examined the effects of HFAT and HCHO on phase II pulmonary O2 uptake (V̇o2 p) kinetics during transitions into the moderate-intensity (MOD) exercise domain. Eight active adult men underwent dietary manipulations consisting of 6 days of HFAT (73% fat, 22% protein, 5% carbohydrate) followed immediately by 6 days of HCHO (10% fat, 10% protein, 80% carbohydrate); each dietary phase was preceded by a glycogen depletion protocol. Participants performed three MOD transitions from a 20 W cycling baseline to work rate equivalent to 80% of estimated lactate threshold on days 5 and 6 of each diet. Steady-state V̇o2 p was greater (P < 0.05), and respiratory exchange ratio and carbohydrate oxidation rates were lower (P < 0.05) during HFAT. The phase II V̇o2 p time constant (τV̇o2 p) [HFAT 40 ± 16, HCHO 32 ± 19 s (mean ± SD)] and V̇o2 p gain (HFAT 10.3 ± 0.8, HCHO 9.4 ± 0.7 ml·min(-1·)W(-1)) were greater (P < 0.05) in HFAT. The overall adjustment (effective time constant) of muscle deoxygenation (Δ[HHb]) was not different between diets (HFAT 24 ± 4 s, HCHO 23 ± 4 s), which coupled with a slower τV̇o2 p, indicates a slowed microvascular blood flow response. These results suggest that the slower V̇o2 p kinetics associated with HFAT are consistent with inhibition and slower activation of PDH, a lower rate of pyruvate production, and/or attenuated microvascular blood flow and O2 delivery.
Collapse
Affiliation(s)
- J A Raper
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - L K Love
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - D H Paterson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - S J Peters
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St. Catharines, Ontario, Canada
| | - G J F Heigenhauser
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada; and
| | - J M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada; School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada;
| |
Collapse
|
14
|
Abstract
This paper describes the interactions between ventilation and acid-base balance under a variety of conditions including rest, exercise, altitude, pregnancy, and various muscle, respiratory, cardiac, and renal pathologies. We introduce the physicochemical approach to assessing acid-base status and demonstrate how this approach can be used to quantify the origins of acid-base disorders using examples from the literature. The relationships between chemoreceptor and metaboreceptor control of ventilation and acid-base balance summarized here for adults, youth, and in various pathological conditions. There is a dynamic interplay between disturbances in acid-base balance, that is, exercise, that affect ventilation as well as imposed or pathological disturbances of ventilation that affect acid-base balance. Interactions between ventilation and acid-base balance are highlighted for moderate- to high-intensity exercise, altitude, induced acidosis and alkalosis, pregnancy, obesity, and some pathological conditions. In many situations, complete acid-base data are lacking, indicating a need for further research aimed at elucidating mechanistic bases for relationships between alterations in acid-base state and the ventilatory responses.
Collapse
Affiliation(s)
- Michael I Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
15
|
Chin LMK, Heigenhauser GJF, Paterson DH, Kowalchuk JM. Effect of voluntary hyperventilation with supplemental CO2on pulmonary O2uptake and leg blood flow kinetics during moderate-intensity exercise. Exp Physiol 2013; 98:1668-82. [DOI: 10.1113/expphysiol.2013.074021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Chin LMK, Heigenhauser GJF, Paterson DH, Kowalchuk JM. Pulmonary O2 uptake and leg blood flow kinetics during moderate exercise are slowed by hyperventilation-induced hypocapnic alkalosis. J Appl Physiol (1985) 2010; 108:1641-50. [PMID: 20339012 PMCID: PMC2886676 DOI: 10.1152/japplphysiol.01346.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/23/2010] [Indexed: 11/22/2022] Open
Abstract
The effect of hyperventilation-induced hypocapnic alkalosis (Hypo) on the adjustment of pulmonary O2 uptake (VO2p) and leg femoral conduit artery ("bulk") blood flow (LBF) during moderate-intensity exercise (Mod) was examined in eight young male adults. Subjects completed four to six repetitions of alternate-leg knee-extension exercise during normal breathing [Con; end-tidal partial pressure of CO2 (PetCO2) approximately 40 mmHg] and sustained hyperventilation (Hypo; PetCO2 approximately 20 mmHg). Increases in work rate were made instantaneously from baseline (3 W) to Mod (80% estimated lactate threshold). VO2p was measured breath by breath by mass spectrometry and volume turbine, and LBF (calculated from mean femoral artery blood velocity and femoral artery diameter) was measured simultaneously by Doppler ultrasound. Concentration changes of deoxy (Delta[HHb])-, oxy (Delta[O2Hb])-, and total hemoglobin-myoglobin (Delta[HbTot]) of the vastus lateralis muscle were measured continuously by near-infrared spectroscopy (NIRS). The kinetics of VO2p, LBF, and Delta[HHb] were modeled using a monoexponential equation by nonlinear regression. The time constants for the phase 2 VO2p (Hypo, 49+/-26 s; Con, 28+/-8 s) and LBF (Hypo, 46+/-16 s; Con, 23+/-6 s) were greater (P<0.05) in Hypo compared with Con. However, the mean response time for the overall Delta[HHb] response was not different between conditions (Hypo, 23+/-5 s; Con, 24+/-3 s), whereas the Delta[HHb] amplitude was greater (P<0.05) in Hypo (8.05+/-7.47 a.u.) compared with Con (6.69+/-6.31 a.u.). Combined, these results suggest that hyperventilation-induced hypocapnic alkalosis is associated with slower convective (i.e., slowed femoral artery and microvascular blood flow) and diffusive (i.e., greater fractional O2 extraction for a given DeltaVO2p) O2 delivery, which may contribute to the hyperventilation-induced slowing of VO2p (and muscle O2 utilization) kinetics.
Collapse
Affiliation(s)
- Lisa M K Chin
- Canadian Centre for Activity and Aging, School of Kinesiology, Department of Physiology and Pharmacology, Arthur and Sonia Labatt Health Sciences Bldg., Rm. 411C, The University of Western Ontario, London, ON, Canada N6A 5B9
| | | | | | | |
Collapse
|
17
|
Chin LMK, Heigenhauser GJF, Paterson DH, Kowalchuk JM. Effect of hyperventilation and prior heavy exercise on O2 uptake and muscle deoxygenation kinetics during transitions to moderate exercise. Eur J Appl Physiol 2009; 108:913-25. [DOI: 10.1007/s00421-009-1293-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2009] [Indexed: 11/24/2022]
|
18
|
Gnaegi A, Feihl F, Boulat O, Waeber B, Liaudet L. Moderate hypercapnia exerts beneficial effects on splanchnic energy metabolism during endotoxemia. Intensive Care Med 2009; 35:1297-304. [PMID: 19373455 DOI: 10.1007/s00134-009-1488-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 03/22/2009] [Indexed: 02/07/2023]
Abstract
PURPOSE Low tidal volume ventilation and permissive hypercapnia are required in patients with sepsis complicated by ARDS. The effects of hypercapnia on tissue oxidative metabolism in this setting are unknown. We therefore determined the effects of moderate hypercapnia on markers of systemic and splanchnic oxidative metabolism in an animal model of endotoxemia. METHODS Anesthetized rats maintained at a PaCO(2) of 30, 40 or 60 mmHg were challenged with endotoxin. A control group (PaCO(2) 40 mmHg) received isotonic saline. Hemodynamic variables, arterial lactate, pyruvate, and ketone bodies were measured at baseline and after 4 h. Tissue adenosine triphosphate (ATP) and lactate were measured in the small intestine and the liver after 4 h. RESULTS Endotoxin resulted in low cardiac output, increased lactate/pyruvate ratio and decreased ketone body ratio. These changes were not influenced by hypercapnia, but were more severe with hypocapnia. In the liver, ATP decreased and lactate increased independently from PaCO(2) after endotoxin. In contrast, the drop of ATP and the rise in lactate triggered by endotoxin in the intestine were prevented by hypercapnia. CONCLUSIONS During endotoxemia in rats, moderate hypercapnia prevents the deterioration of tissue energetics in the intestine.
Collapse
Affiliation(s)
- Alex Gnaegi
- Division of Clinical Pathophysiology and Medical Teaching, Faculty of Biology and Medicine, University Hospital Center, CHUV-BH 08-621, 1011, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Brown PI, Sharpe GR, Johnson MA. Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea. Eur J Appl Physiol 2008; 104:111-7. [DOI: 10.1007/s00421-008-0794-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2008] [Indexed: 12/01/2022]
|
20
|
Ferreira JCB, Rolim NPL, Bartholomeu JB, Gobatto CA, Kokubun E, Brum PC. Maximal lactate steady state in running mice: effect of exercise training. Clin Exp Pharmacol Physiol 2007; 34:760-5. [PMID: 17600553 DOI: 10.1111/j.1440-1681.2007.04635.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Maximal lactate steady state (MLSS) corresponds to the highest blood lactate concentration (MLSSc) and workload (MLSSw) that can be maintained over time without continual blood lactate accumulation and is considered an important marker of endurance exercise capacity. The present study was undertaken to determine MLSSw and MLSSc in running mice. In addition, we provide an exercise training protocol for mice based on MLSSw. 2. Maximal lactate steady state was determined by blood sampling during multiple sessions of constant-load exercise varying from 9 to 21 m/min in adult male C57BL/6J mice. The constant-load test lasted at least 21 min. The blood lactate concentration was analysed at rest and then at 7 min intervals during exercise. 3. The MLSSw was found to be 15.1 +/- 0.7 m/min and corresponded to 60 +/- 2% of maximal speed achieved during the incremental exercise testing. Intra- and interobserver variability of MLSSc showed reproducible findings. Exercise training was performed at MLSSw over a period of 8 weeks for 1 h/day and 5 days/week. Exercise training led to resting bradycardia (21%) and increased running performance (28%). Of interest, the MLSSw of trained mice was significantly higher than that in sedentary littermates (19.0 +/- 0.5 vs 14.2 +/- 0.5 m/min; P = 0.05), whereas MLSSc remained unchanged (3.0 mmol/L). 4. Altogether, we provide a valid and reliable protocol to improve endurance exercise capacity in mice performed at highest workload with predominant aerobic metabolism based on MLSS assessment.
Collapse
Affiliation(s)
- Julio C B Ferreira
- School of Physical Education and Sport, Department of Biodynamics, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
21
|
Chin LMK, Leigh RJ, Heigenhauser GJF, Rossiter HB, Paterson DH, Kowalchuk JM. Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise. J Physiol 2007; 583:351-64. [PMID: 17584832 PMCID: PMC2277242 DOI: 10.1113/jphysiol.2007.132837] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The effect of voluntary hyperventilation-induced hypocapnic alkalosis (RALK) on pulmonary O2 uptake (VO2) kinetics and muscle deoxygenation was examined in young male adults (n=8) during moderate-intensity exercise. Subjects performed five repetitions of a step-transition in work rate from 20 W cycling to a work rate corresponding to 90% of the estimated lactate threshold during control (CON; PET,CO2, approximately 40 mmHg) and during hyperventilation (RALK; PET,CO2, approximately 20 mmHg). was measured breath-by-breath and relative concentration changes in muscle deoxy- (DeltaHHb), oxy- (DeltaO2Hb) and total (DeltaHbtot) haemoglobin were measured continuously using near-infrared (NIR) spectroscopy (Hamamatsu, NIRO 300). The time constant for the fundamental, phase 2, VO2 response (tau VO2) was greater (P<0.05) in RALK (48+/-11 s) than CON (31+/-9 s), while tauHHb was similar between conditions (RALK, 12+/-4 s; CON, 11+/-4 s). The DeltaHb(tot) was lower (P<0.05) in RALK than CON, prior to (RALK, -3+/-5 micromol l(-1); CON, -1+/-4 micromol l(-1)) and at the end (RALK, 1+/-6 micromol l(-1); CON, 5+/-5 micromol l(-1)) of moderate-intensity exercise. Although slower adaptation of during RALK may be related to an attenuated activation of PDH (and other enzymes) and provision of oxidizable substrate to the mitochondria (i.e. metabolic inertia), the present findings also suggest a role for a reduction in local muscle perfusion and O2 delivery.
Collapse
Affiliation(s)
- Lisa M K Chin
- Canadian Centre for Activity and Aging, School of Kinesiology, Faculty of Health Sciences, Department of Physiology and Pharmacology, HSB 411C, University of Western Ontario, London, Ontario, Canada N6A 5B9
| | | | | | | | | | | |
Collapse
|
22
|
Forbes SC, Kowalchuk JM, Thompson RT, Marsh GD. Effects of hyperventilation on phosphocreatine kinetics and muscle deoxygenation during moderate-intensity plantar flexion exercise. J Appl Physiol (1985) 2007; 102:1565-73. [PMID: 17218429 DOI: 10.1152/japplphysiol.00895.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of controlled voluntary hyperventilation (Hyp) on phosphocreatine (PCr) kinetics and muscle deoxygenation were examined during moderate-intensity plantar flexion exercise. Male subjects ( n = 7) performed trials consisting of 20-min rest, 6-min exercise, and 10-min recovery in control [Con; end-tidal Pco2(PetCO2) ∼ 33 mmHg] and Hyp (PetCO2∼17 mmHg) conditions. Phosphorus-31 magnetic resonance and near-infrared spectroscopy were used simultaneously to monitor intramuscular acid-base status, high-energy phosphates, and muscle oxygenation. Resting intracellular hydrogen ion concentration ([H+]i) was lower ( P < 0.05) in Hyp [90 nM (SD 3)] than Con [96 nM (SD 4)]; however, at end exercise, [H+]iwas greater ( P < 0.05) in Hyp [128 nM (SD 19)] than Con [120 nM (SD 17)]. At rest, [PCr] was not different between Con [36 mM (SD 2)] and Hyp [36 mM (SD 1)]. The time constant (τ) of PCr breakdown during transition from rest to exercise was greater ( P < 0.05) in Hyp [39 s (SD 22)] than Con [32 s (SD 22)], and the PCr amplitude was greater ( P < 0.05) in Hyp [26% (SD 4)] than Con [22% (SD 6)]. The deoxyhemoglobin and/or deoxymyoglobin (HHb) τ was similar between Hyp [13 s (SD 8)] and Con [10 s (SD 3)]; however, the amplitude was increased ( P < 0.05) in Hyp [40 arbitrary units (au) (SD 23)] compared with Con [26 au (SD 17)]. In conclusion, our results indicate that Hyp-induced hypocapnia enhanced substrate-level phosphorylation during moderate-intensity exercise. In addition, the increased amplitude of the HHb response suggests a reduced local muscle perfusion in Hyp compared with Con.
Collapse
Affiliation(s)
- S C Forbes
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Berger NJA, McNaughton LR, Keatley S, Wilkerson DP, Jones AM. Sodium Bicarbonate Ingestion Alters the Slow but Not the Fast Phase of V˙O2 Kinetics. Med Sci Sports Exerc 2006; 38:1909-17. [PMID: 17095923 DOI: 10.1249/01.mss.0000233791.85916.33] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The influence of metabolic alkalosis (ALK) on pulmonary O2 uptake (pVO2) kinetics during high-intensity cycle exercise is controversial. The purpose of this study was to examine the influence of ALK induced by sodium bicarbonate (NaHCO3) ingestion on pVO2 kinetics, using a sufficient number of repeat-step transitions to provide high confidence in the results obtained. METHODS Seven healthy males completed step tests to a work rate requiring 80% pVO2max on six separate occasions: three times after ingestion of 0.3 g x kg(-1) body mass NaHCO3 in 1 L of fluid, and three times after ingestion of a placebo (CON). Blood samples were taken to assess changes in acid-base balance, and pVO2 was measured breath-by-breath. RESULTS NaHCO3 ingestion significantly increased blood pH and [bicarbonate] both before and during exercise relative to the control condition (P < 0.001). The time constant of the phase II pVO2 response was not different between conditions (CON: 29 +/- 6 vs ALK: 32 +/- 7 s; P = 0.21). However, the onset of the pVO2 slow component was delayed by NaHCO3 ingestion (CON: 120 +/- 19 vs ALK: 147 +/- 34 s; P < 0.01), resulting in a significantly reduced end-exercise pVO2 (CON: 2.88 +/- 0.19 vs ALK: 2.79 +/- 0.23 L x min(-1); P < 0.05). CONCLUSIONS Metabolic alkalosis has no effect on phase II pVO2 kinetics but alters the pVO2 slow-component response, possibly as a result of the effects of NaHCO3 ingestion on muscle pH.
Collapse
Affiliation(s)
- Nicolas J A Berger
- Department of Exercise and Sport Science, Manchester Metropolitan University, Hassall Road, Alsager, UK
| | | | | | | | | |
Collapse
|
24
|
Kato T, Tsukanaka A, Harada T, Kosaka M, Matsui N. Effect of hypercapnia on changes in blood pH, plasma lactate and ammonia due to exercise. Eur J Appl Physiol 2005; 95:400-8. [PMID: 16193339 DOI: 10.1007/s00421-005-0046-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
The present study examined the effects of hypercapnia on changes in blood pH, plasma lactate and ammonia due to exhaustive exercise. Six male subjects underwent exercise of increasing intensity until exhaustion: (1) breathing air = MAX (maximal exercise), or (2) under hypercapnia (HC: 21% O(2), 6% CO(2)) that had been maintained from 60 min before to 30 min after exercise = HC; and (3) exercise of the same intensity as HC in air = SUB (submaximal exercise). Arterialized blood was drawn from a superficial vein. Blood pH in HC was significantly lower than in MAX or SUB at rest, at the end of exercise and throughout recovery (P<0.05). Plasma lactate and ammonia concentration in HC was significantly lower than in MAX (P<0.05), and similar to that in SUB at the end of exercise and throughout recovery. Respiratory acidosis resulting from hypercapnia shifted the linear lactate to blood pH relationship during exhaustive exercise below that at normocapnia (P<0.001). The reduced slope of linear blood pH to ammonia relationship under hypercapnia (P<0.001) is attributed to lactic acidosis that is less, due to the lesser work intensity at the end of exhaustion, than that of normocapnia. From these results we conclude that (1) hypercapnia-induced respiratory acidosis promoted the decrease in blood pH due to lactate production throughout recovery; (2) plasma lactate concentration at maximal exercise was lowered under hypercapnia; (3) plasma ammonia concentration at maximal exercise was reduced, probably due to a less intense lactic acidosis.
Collapse
Affiliation(s)
- Takahide Kato
- Laboratory for Exercise Physiology and Biomechanics, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi, 470-0393, Japan.
| | | | | | | | | |
Collapse
|
25
|
Tsuchiya Y, Shimizu T, Tazawa T, Shibuya N, Nakamura K, Yamamoto M. Changes in Plasma Lactate and Pyruvate Concentrations after Taking a Bath in Hot Deep Seawater. TOHOKU J EXP MED 2003; 201:201-11. [PMID: 14690012 DOI: 10.1620/tjem.201.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The use of deep seawater (DSW) in thalassotherapy has begun in Japan. To clarify the health effects of DSW on the human body, we investigated the changes in plasma lactate and pyruvate concentrations, or subjective judgment scores, after bathing at rest in 9 healthy young men. Subjects were immersed for 10 minutes in DSW, surface seawater (SSW), and tap water (TW) heated to 42 degrees C. Plasma samples were collected before bathing, immediately after bathing, and 60 minutes after bathing. The scores were obtained by an oral comprehension test. In the DSW bathing, plasma lactate and pyruvate concentrations showed no significant changes immediately after bathing or 60 minutes after bathing. In contrast, subjects who bathed in SSW showed a significant decrease in lactate concentrations 60 minutes after bathing compared with immediately after bathing. Subjects who bathed in TW showed a significant increase in lactate concentrations immediately after bathing compared with before bathing, and they showed a significant decrease in lactate and pyruvate concentrations 60 minutes after bathing. We found no significant change in the thermal sensation score in the DSW bathing, though significant differences were found between before and immediately after bathing in the SSW and TW groups. Moreover, the score decreased significantly 60 minutes after bathing compared to immediately after bathing in the TW bathing. Higher concentrations of salts contained DSW such as sodium, nitrate-nitrogen, phosphate-phosphorus, and silicate-silicon may have a good influence on human health. Although additional studies are needed to support our findings, DSW is the mildest water to the human body among the three kinds of water, since no significant changes in the items measured were found only in DSW.
Collapse
Affiliation(s)
- Yasuo Tsuchiya
- Department of Community Preventive Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.
| | | | | | | | | | | |
Collapse
|