1
|
Marcinkevics Z, Rubins U, Aglinska A, Logina I, Glazunovs D, Grabovskis A. Contactless photoplethysmography for assessment of small fiber neuropathy. Front Physiol 2023; 14:1180288. [PMID: 37727661 PMCID: PMC10505793 DOI: 10.3389/fphys.2023.1180288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/02/2023] [Indexed: 09/21/2023] Open
Abstract
Chronic pain is a prevalent condition affecting approximately one-fifth of the global population, with significant impacts on quality of life and work productivity. Small fiber neuropathies are a common cause of chronic pain, and current diagnostic methods rely on subjective self-assessment or invasive skin biopsies, highlighting the need for objective noninvasive assessment methods. The study aims to develop a modular prototype of a contactless photoplethysmography system with three spectral bands (420, 540, and 800 nm) and evaluate its potential for assessing peripheral neuropathy patients via a skin topical heating test and spectral analyses of cutaneous flowmotions. The foot topical skin heating test was conducted on thirty volunteers, including fifteen healthy subjects and fifteen neuropathic patients. Four cutaneous nerve fiber characterizing parameters were evaluated at different wavelengths, including vasomotor response trend, flare area, flare intensity index, and the spectral power of cutaneous flowmotions. The results show that neuropathic patients had significantly lower vasomotor response (50%), flare area (63%), flare intensity index (19%), and neurogenic component (54%) of cutaneous flowmotions compared to the control group, independent of photoplethysmography spectral band. An absolute value of perfusion was 20%-30% higher in the 420 nm band. Imaging photoplethysmography shows potential as a cost-effective alternative for objective and non-invasive assessment of neuropathic patients, but further research is needed to enhance photoplethysmography signal quality and establish diagnostic criteria.
Collapse
Affiliation(s)
- Zbignevs Marcinkevics
- Department of Human and Animal Physiology, Faculty of Biology, University of Latvia, Riga, Latvia
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia
| | - Uldis Rubins
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia
| | - Alise Aglinska
- Department of Human and Animal Physiology, Faculty of Biology, University of Latvia, Riga, Latvia
| | - Inara Logina
- Department of Neurology and Neurosurgery, Riga Stradins University, Riga, Latvia
| | - Dmitrijs Glazunovs
- Department of Neurology and Neurosurgery, Riga Stradins University, Riga, Latvia
| | - Andris Grabovskis
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Riga, Latvia
| |
Collapse
|
2
|
Abstract
In most cases, tissue injuries lead to inflammation and sensitization. From a neuroscience perspective, this is why one usually hurts when one is injured. Peripheral sensitization is an essential principle in pain science, and it is associated with hyperalgesia, inflammation, and clinical pain conditions, including acute injuries and rheumatological diseases. This editorial explains peripheral sensitization, neurogenic inflammation, and the axon reflex, as well as the role of second messengers and peptidergic C-fibers. J Orthop Sports Phys Ther 2022;52(6):303-306. doi:10.2519/jospt.2022.11202.
Collapse
|
3
|
Verdugo RJ, Matamala JM, Inui K, Kakigi R, Valls-Solé J, Hansson P, Bernhard Nilsen K, Lombardi R, Lauria G, Petropoulos IN, Malik RA, Treede RD, Baumgärtner U, Jara PA, Campero M. Review of techniques useful for the assessment of sensory small fiber neuropathies: Report from an IFCN expert group. Clin Neurophysiol 2022; 136:13-38. [DOI: 10.1016/j.clinph.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/09/2023]
|
4
|
Marcinkevics Z, Aglinska A, Rubins U, Grabovskis A. Remote Photoplethysmography for Evaluation of Cutaneous Sensory Nerve Fiber Function. SENSORS 2021; 21:s21041272. [PMID: 33670087 PMCID: PMC7916836 DOI: 10.3390/s21041272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/23/2022]
Abstract
About 2% of the world’s population suffers from small nerve fiber dysfunction, neuropathy, which can result in severe pain. This condition is caused by damage to the small nerve fibers and its assessment is challenging, due to the lack of simple and objective diagnostic techniques. The present study aimed to develop a contactless photoplethysmography system using simple instrumentation, for objective and non-invasive assessment of small cutaneous sensory nerve fiber function. The approach is based on the use of contactless photoplethysmography for the characterization of skin flowmotions and topical heating evoked vasomotor responses. The feasibility of the technique was evaluated on volunteers (n = 14) using skin topical anesthesia, which is able to produce temporary alterations of cutaneous nerve fibers function. In the treated skin region in comparison to intact skin: neurogenic and endothelial component of flowmotions decreased by ~61% and 41%, the local heating evoked flare area decreased by ~44%, vasomotor response trend peak and nadir were substantially reduced. The results indicate for the potential of the remote photoplethysmography in the assessment of the cutaneous nerve fiber function. It is believed that in the future this technique could be used in the clinics as an affordable alternative to laser Doppler imaging technique.
Collapse
Affiliation(s)
- Zbignevs Marcinkevics
- Department of Human and Animal Physiology, Faculty of Biology, University of Latvia, Jelgavas St.1, LV-1004 Riga, Latvia
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia; (A.A.); (U.R.); (A.G.)
- Correspondence:
| | - Alise Aglinska
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia; (A.A.); (U.R.); (A.G.)
| | - Uldis Rubins
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia; (A.A.); (U.R.); (A.G.)
| | - Andris Grabovskis
- Biophotonics Laboratory, Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas St. 3, LV-1004 Riga, Latvia; (A.A.); (U.R.); (A.G.)
| |
Collapse
|
5
|
The Input-Output Relation of Primary Nociceptive Neurons is Determined by the Morphology of the Peripheral Nociceptive Terminals. J Neurosci 2020; 40:9346-9363. [PMID: 33115929 DOI: 10.1523/jneurosci.1546-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/22/2022] Open
Abstract
The output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree. The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential (AP) firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here, we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects the input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance (Ra), and location of individual terminals. Moreover, we show that activation of multiple terminals by a capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of the terminals in simulated models of inflammatory or neuropathic hyperexcitability led to a change in the temporal pattern of AP firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathologic conditions, leading to pain hypersensitivity.SIGNIFICANCE STATEMENT Noxious stimuli are detected by terminal endings of primary nociceptive neurons, which are organized into morphologically complex terminal trees. The information from multiple terminals is integrated along the terminal tree, computing the neuronal output, which propagates toward the CNS, thus shaping the pain sensation. Here, we revealed that the structure of the nociceptive terminal tree determines the output of nociceptive neurons. We show that the integration of noxious information depends on the morphology of the terminal trees and how this integration and, consequently, the neuronal output change under pathologic conditions. Our findings help to predict how nociceptive neurons encode noxious stimuli and how this encoding changes in pathologic conditions, leading to pain.
Collapse
|
6
|
Daur N, Zhang Y, Nadim F, Bucher D. Mutual Suppression of Proximal and Distal Axonal Spike Initiation Determines the Output Patterns of a Motor Neuron. Front Cell Neurosci 2019; 13:477. [PMID: 31708748 PMCID: PMC6819512 DOI: 10.3389/fncel.2019.00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal spike initiation at sites far from somatodendritic integration occurs in a range of systems, but its contribution to neuronal output activity is not well understood. We studied the interactions of distal and proximal spike initiation in an unmyelinated motor axon of the stomatogastric nervous system in the lobster, Homarus americanus. The peripheral axons of the pyloric dilator (PD) neurons generate tonic spiking in response to dopamine application. Centrally generated bursting activity and peripheral spike initiation had mutually suppressive effects. The two PD neurons and the electrically coupled oscillatory anterior burster (AB) neuron form the pacemaker ensemble of the pyloric central pattern generator, and antidromic invasion of central compartments by peripherally generated spikes caused spikelets in AB. Antidromic spikes suppressed burst generation in an activity-dependent manner: slower rhythms were diminished or completely disrupted, while fast rhythmic activity remained robust. Suppression of bursting was based on interference with the underlying slow wave oscillations in AB and PD, rather than a direct effect on spike initiation. A simplified multi-compartment circuit model of the pacemaker ensemble replicated this behavior. Antidromic activity disrupted slow wave oscillations by resetting the inward and outward current trajectories in each spike interval. Centrally generated bursting activity in turn suppressed peripheral spike initiation in an activity-dependent manner. Fast bursting eliminated peripheral spike initiation, while slower bursting allowed peripheral spike initiation to continue during the intervals between bursts. The suppression of peripheral spike initiation was associated with a small after-hyperpolarization in the sub-millivolt range. A realistic model of the PD axon replicated this behavior and showed that a sub-millivolt cumulative after-hyperpolarization across bursts was sufficient to eliminate peripheral spike initiation. This effect was based on the dynamic interaction between slow activity-dependent hyperpolarization caused by the Na+/K+-pump and inward rectification through the hyperpolarization-activated inward current, I h . These results demonstrate that interactions between different spike initiation sites based on spike propagation can shift the relative contributions of different types of activity in an activity-dependent manner. Therefore, distal axonal spike initiation can play an important role in shaping neural output, conditional on the relative level of centrally generated activity.
Collapse
Affiliation(s)
- Nelly Daur
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| | - Yang Zhang
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States.,Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
7
|
Raastad M. The Slow Depolarization Following Individual Spikes in Thin, Unmyelinated Axons in Mammalian Cortex. Front Cell Neurosci 2019; 13:203. [PMID: 31156391 PMCID: PMC6532452 DOI: 10.3389/fncel.2019.00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
An important goal in neuroscience is to understand how neuronal excitability is controlled. Therefore, Gardner-Medwin's 1972 discovery, that cerebellar parallel fibers were more excitable up to 100 ms after individual action potentials, could have had great impact. If this long-lasting effect were due to intrinsic membrane mechanisms causing a depolarizing after-potential (DAP) this was an important finding. However, that hypothesis met resistance because the use of K+ sensitive electrodes showed that synchronous activation, as commonly used in excitability tests, increased extracellular K+ concentration sufficiently to explain much of the hyperexcitability. It is still controversial because intra-axonal recordings, which could have settled the debate, have not been made from parallel fibers or other axons of similar calibers. If it had not been for the fact that such thin axons are, by far, the most common axon type in cortical areas and control almost all glutamate release, it would be tempting to ignore them until an appropriate intra-axonal recording technique is invented. I will go through the literature that, taken together, supports the hypothesis that a DAP is an intrinsic membrane mechanism in cerebellar parallel fibers and hippocampal Schaffer collaterals. It is most likely due to a well-controlled process that stops the fast repolarization at a membrane potential positive to resting membrane potential, leaving the membrane more excitable for ~100 ms during a slow, passive discharge of the membrane capacitance. The DAP helps reduce failures but can also cause uncontrolled bursting if it is not properly controlled. The voltage at which the fast repolarization stops, and the DAP starts, is close the activation range of both Na+ and Ca2+ voltage activated channels and is therefore essential for neuronal function.
Collapse
Affiliation(s)
- Morten Raastad
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
8
|
Garcia-Perez E, Schönberger T, Sumalla M, Stierstorfer B, Solà R, Doods H, Serra J, Gorodetskaya N. Behavioural, morphological and electrophysiological assessment of the effects of type 2 diabetes mellitus on large and small nerve fibres in Zucker diabetic fatty, Zucker lean and Wistar rats. Eur J Pain 2018; 22:1457-1472. [DOI: 10.1002/ejp.1235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - T. Schönberger
- Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss Germany
| | - M. Sumalla
- Neuroscience Technologies; Barcelona Spain
| | - B. Stierstorfer
- Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss Germany
| | - R. Solà
- Neuroscience Technologies; Barcelona Spain
| | - H. Doods
- Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss Germany
| | - J. Serra
- Neuroscience Technologies; Barcelona Spain
| | - N. Gorodetskaya
- Boehringer Ingelheim Pharma GmbH & Co. KG; Biberach an der Riss Germany
| |
Collapse
|
9
|
Lyubashina OA, Panteleev SS, Sokolov AY. Inhibitory effect of high-frequency greater occipital nerve electrical stimulation on trigeminovascular nociceptive processing in rats. J Neural Transm (Vienna) 2016; 124:171-183. [PMID: 27677650 DOI: 10.1007/s00702-016-1626-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Electrical stimulation of the greater occipital nerve (GON) has recently shown promise as an effective non-pharmacological prophylactic therapy for drug-resistant chronic primary headaches, but the neurobiological mechanisms underlying its anticephalgic action are not elucidated. Considering that the spinal trigeminal nucleus (STN) is a key segmental structure playing a prominent role in pathophysiology of headaches, in the present study we evaluated the effects of GON electrical stimulation on ongoing and evoked firing of the dura-sensitive STN neurons. The experiments were carried out on urethane/chloralose-anesthetized, paralyzed and artificially ventilated male Wistar rats. Extracellular recordings were made from 11 neurons within the caudal part of the STN that received convergent input from the ipsilateral facial cutaneous receptive fields, dura mater and GON. In each experiment, five various combinations of the GON stimulation frequency (50, 75, 100 Hz) and intensity (1, 3, 6 V) were tested successively in 10 min interval. At all parameter sets, preconditioning GON stimulation (250 ms train of pulses applied before each recording) produced suppression of both the ongoing activity of the STN neurons and their responses to electrical stimulation of the dura mater. The inhibitory effect depended mostly on the GON stimulation intensity, being maximally pronounced when a stimulus of 6 V was applied. Thus, the GON stimulation-induced inhibition of trigeminovascular nociceptive processing at the level of STN has been demonstrated for the first time. The data obtained can contribute to a deeper understanding of neurophysiological mechanisms underlying the therapeutic efficacy of GON stimulation in primary headaches.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia. .,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, Saint Petersburg, 197022, Russia.
| | - Sergey S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, Saint Petersburg, 197022, Russia
| | - Alexey Y Sokolov
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.,Department of Neuropharmacology, Valdman Institute of Pharmacology, First Saint-Petersburg Pavlov State Medical University, 6/8 Lev Tolstoy Street, Saint Petersburg, 197022, Russia
| |
Collapse
|
10
|
Lewandowska MK, Radivojević M, Jäckel D, Müller J, Hierlemann AR. Cortical Axons, Isolated in Channels, Display Activity-Dependent Signal Modulation as a Result of Targeted Stimulation. Front Neurosci 2016; 10:83. [PMID: 27013945 PMCID: PMC4779934 DOI: 10.3389/fnins.2016.00083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/19/2016] [Indexed: 12/01/2022] Open
Abstract
Mammalian cortical axons are extremely thin processes that are difficult to study as a result of their small diameter: they are too narrow to patch while intact, and super-resolution microscopy is needed to resolve single axons. We present a method for studying axonal physiology by pairing a high-density microelectrode array with a microfluidic axonal isolation device, and use it to study activity-dependent modulation of axonal signal propagation evoked by stimulation near the soma. Up to three axonal branches from a single neuron, isolated in different channels, were recorded from simultaneously using 10-20 electrodes per channel. The axonal channels amplified spikes such that propagations of individual signals along tens of electrodes could easily be discerned with high signal to noise. Stimulation from 10 up to 160 Hz demonstrated similar qualitative results from all of the cells studied: extracellular action potential characteristics changed drastically in response to stimulation. Spike height decreased, spike width increased, and latency increased, as a result of reduced propagation velocity, as the number of stimulations and the stimulation frequencies increased. Quantitatively, the strength of these changes manifested itself differently in cells at different frequencies of stimulation. Some cells' signal fidelity fell to 80% already at 10 Hz, while others maintained 80% signal fidelity at 80 Hz. Differences in modulation by axonal branches of the same cell were also seen for different stimulation frequencies, starting at 10 Hz. Potassium ion concentration changes altered the behavior of the cells causing propagation failures at lower concentrations and improving signal fidelity at higher concentrations.
Collapse
Affiliation(s)
- Marta K Lewandowska
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich Basel, Switzerland
| | - Miloš Radivojević
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich Basel, Switzerland
| | - David Jäckel
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich Basel, Switzerland
| | - Jan Müller
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich Basel, Switzerland
| | - Andreas R Hierlemann
- Bio Engineering Laboratory, Department of Biosystems Science and Engineering, ETH Zürich Basel, Switzerland
| |
Collapse
|
11
|
Behavioral and electrophysiological abnormalities in two rat models of antiretroviral drug-induced neuropathy. Pain 2015; 156:1729-1736. [DOI: 10.1097/j.pain.0000000000000205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Petersson ME, Obreja O, Lampert A, Carr RW, Schmelz M, Fransén E. Differential axonal conduction patterns of mechano-sensitive and mechano-insensitive nociceptors--a combined experimental and modelling study. PLoS One 2014; 9:e103556. [PMID: 25136824 PMCID: PMC4138079 DOI: 10.1371/journal.pone.0103556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/02/2014] [Indexed: 02/02/2023] Open
Abstract
Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels NaV1.7 and NaV1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less Kdr and NaV1.8 in combination with more NaV1.7 and Na+/K+-ATPase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.
Collapse
Affiliation(s)
- Marcus E Petersson
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Otilia Obreja
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Richard W Carr
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Martin Schmelz
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Erik Fransén
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
13
|
Ørstavik K, Kleggetveit IP, Jørum E. [Microneurography and research on peripheral neuropathic pain]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2013; 133:302-5. [PMID: 23381167 DOI: 10.4045/tidsskr.12.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Microneurography is a neurophysiological technique which enables recording from single peripheral nerve fibres in persons who are awake. The method is only used in research. We discuss how microneurography has been used to map nerve-fibre functions under normal circumstances and in chronic pain conditions. METHOD The article is based on a literature search in PubMed and on the authors' own knowledge and experience of the method from their research. RESULTS Microneurography has contributed to the understanding of pain under physiological conditions and in chronic pain conditions, in particular peripheral neuropathic pain. For example, signs of hyperexcitability have been found in peripheral nerve fibres in connection with neuropathies and peripheral neuropathic pain conditions, and the proportion of hyperexcitable nerve fibres has been shown to be greater in neuropathy patients with chronic pain than in neuropathy patients without pain. Findings indicate that so-called CMi nociceptors play an important role in chronic neuropathic pain. INTERPRETATION In the longer term we hope that research using microneurography will help to reveal mechanisms of direct importance for the development of targeted treatment of neuropathic pain.
Collapse
Affiliation(s)
- Kristin Ørstavik
- Nevrologisk avdeling, Klinisk nevrofysiologisk seksjon, Oslo Universitetssykehus, Rikshospitalet, Norway.
| | | | | |
Collapse
|
14
|
Kleggetveit IP, Namer B, Schmidt R, Helås T, Rückel M, Ørstavik K, Schmelz M, Jørum E. High spontaneous activity of C-nociceptors in painful polyneuropathy. Pain 2012; 153:2040-2047. [DOI: 10.1016/j.pain.2012.05.017] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 05/07/2012] [Accepted: 05/15/2012] [Indexed: 02/07/2023]
|
15
|
Double spikes to single electrical stimulation correlates to spontaneous activity of nociceptors in painful neuropathy patients. Pain 2012; 153:391-398. [DOI: 10.1016/j.pain.2011.10.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 09/29/2011] [Accepted: 10/28/2011] [Indexed: 11/21/2022]
|
16
|
Sun W, Miao B, Wang XC, Duan JH, Wang WT, Kuang F, Xie RG, Xing JL, Xu H, Song XJ, Luo C, Hu SJ. Reduced conduction failure of the main axon of polymodal nociceptive C-fibres contributes to painful diabetic neuropathy in rats. ACTA ACUST UNITED AC 2012; 135:359-75. [PMID: 22271663 DOI: 10.1093/brain/awr345] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Painful diabetic neuropathy is a common complication of diabetes mellitus and can affect many aspects of life and severely limit patients' daily functions. Signals of painful diabetic neuropathy are believed to originate in the peripheral nervous system. However, its peripheral mechanism of hyperalgesia has remained elusive. Numerous studies have accumulated that polymodal nociceptive C-fibres play a crucial role in the generation and conduction of pain signals and sensitization of which following injury or inflammation leads to marked hyperalgesia. Traditionally, the number of nociceptive primary afferent firings is believed to be determined at the free nerve endings, while the extended main axon of unmyelinated C-fibres only involves the reliable and faithful propagation of firing series to the central terminals. We challenged this classic view by showing that conduction of action potential can fail to occur in response to repetitive activity when they travel down the main axon of polymodal nociceptive C-fibres. Quantitative analysis of conduction failure revealed that the degree of conduction failure displays a frequency-dependent manner. Local administration of low threshold, rapidly activating potassium current blocker, α-dendrotoxin (0.5 nM) and persistent sodium current blocker, low doses of tetrodotoxin (<100 nM) on the main axon of C-fibres can reciprocally regulate the degree of conduction failure, confirming that conduction failure did occur along the main axon of polymodal nociceptive C-fibres. Following streptozotocin-induced diabetes, a subset of polymodal nociceptive C-fibres exhibited high-firing-frequency to suprathreshold mechanical stimulation, which account for about one-third of the whole population of polymodal nociceptive C-fibres tested. These high-firing-frequency polymodal nociceptive C-fibres in rats with diabetes displayed a marked reduction of conduction failure. Delivery of low concentrations of tetrodotoxin and Nav1.8 selective blocker, A-803467 on the main axon of C-fibres was found to markedly enhance the conduction failure in a dose-dependent manner in diabetic rats. Upregulated expression of sodium channel subunits Nav1.7 and Nav1.8 in both small dorsal root ganglion neurons and peripheral C-fibres as well as enhanced transient and persistent sodium current and increased excitability in small dorsal root ganglion neurons from diabetic rats might underlie the reduced conduction failure in the diabetic high-firing-frequency polymodal nociceptive C-fibres. This study shed new light on the functional capability in the pain signals processing for the main axon of polymodal nociceptive C-fibres and revealed a novel mechanism underlying diabetic hyperalgesia.
Collapse
Affiliation(s)
- Wei Sun
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats. Pain 2011; 153:42-55. [PMID: 21993185 DOI: 10.1016/j.pain.2011.08.015] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/11/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022]
Abstract
C-nociceptors do not normally fire action potentials unless challenged by adequate noxious stimuli. However, in pathological states nociceptors may become hyperexcitable and may generate spontaneous ectopic discharges. The aim of this study was to compare rat neuropathic pain models and to assess their suitability to model the spontaneous C-nociceptor activity found in neuropathic pain patients. Studies were performed in normal rats (n=40), healthy human subjects (n=15), peripheral neuropathic pain patients (n=20), and in five rat neuropathic pain models: nerve crush (n=24), suture (n=14), chronic constriction injury (n=12), STZ-induced diabetic neuropathy (n=56), and ddC-induced neuropathy (n=15). Microneurographic recordings were combined with electrical stimulation to monitor activity in multiple C fibers. Stimulation at 0.25 Hz allowed spontaneous impulses to be identified by fluctuations in baseline latency. Abnormal latency fluctuations could be produced by several mechanisms, and spontaneous activity was most reliably identified by the presence of unexplained latency increases corresponding to two or more additional action potentials. Spontaneous activity was present in a proportion of mechano-insensitive C-nociceptors in the patients and all rat models. The three focal traumatic nerve injury models provided the highest proportion (59.5%), whereas the two polyneuropathy models had fewer (18.6%), and the patients had an intermediate proportion (33.3%). Spontaneously active mechano-sensitive C-nociceptors were not recorded. Microneurographic recordings of spontaneous activity in diseased C-nociceptors may be useful for both short- and long-term drug studies, both in animals and in humans.
Collapse
|
18
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
19
|
Serra J, Solà R, Aleu J, Quiles C, Navarro X, Bostock H. Double and triple spikes in C-nociceptors in neuropathic pain states: An additional peripheral mechanism of hyperalgesia. Pain 2011; 152:343-353. [DOI: 10.1016/j.pain.2010.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 09/20/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
|
20
|
Estimating nerve excitation thresholds to cutaneous electrical stimulation by finite element modeling combined with a stochastic branching nerve fiber model. Med Biol Eng Comput 2011; 49:385-95. [DOI: 10.1007/s11517-010-0725-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 12/21/2010] [Indexed: 10/18/2022]
|
21
|
The human vasodilator axon reflex - an exclusively peripheral phenomenon? Pain 2010; 149:71-75. [PMID: 20138429 DOI: 10.1016/j.pain.2010.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 12/01/2009] [Accepted: 01/13/2010] [Indexed: 11/23/2022]
Abstract
The effect of regional anesthesia of the brachial plexus on the size and intensity of the histamine-induced axon reflex flare (neurogenic inflammation) of the forearm and the upper arm was compared to that of the contralateral arm as control in humans. No changes in the axon reflex could be assessed. Thus the lateral spread of the axon reflex flare must be transmitted by peripheral nerve branches not affected by the anesthesia in the axilla. This excludes the existence of physiologically relevant amounts of proximal branchpoints, DRG neurons with multiple peripheral axons or spinal interneurons transmitting action potentials between peripheral C-afferents involved in the axon reflex flare. Mechanoinsensitive C-fibres are known to be activated by histamine and to be responsible for the neuropeptide release in the skin inducing the axon reflex flare. Reports on those proximal connections can therefore obviously not extend to mechanoinsensitive C-fibres and do not explain the origin of neurogenic inflammation in humans without prior sensitization.
Collapse
|
22
|
Microneurography in rats: a minimally invasive method to record single C-fiber action potentials from peripheral nerves in vivo. Neurosci Lett 2009; 470:168-74. [PMID: 19800936 DOI: 10.1016/j.neulet.2009.09.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 09/27/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Collapse
|
23
|
Namer B, Handwerker HO. Translational nociceptor research as guide to human pain perceptions and pathophysiology. Exp Brain Res 2009; 196:163-72. [PMID: 19350229 DOI: 10.1007/s00221-009-1777-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 03/17/2009] [Indexed: 01/12/2023]
Abstract
Microneurography is a method for recording single unit action potentials with microelectrodes from the nerves of awake cooperating humans. Although this method is now in use since almost 40 years, its potency has been strengthened by the recent technical developments. A great progress was the discovery that different functional groups of nociceptors are characterized by a distinctly different post-excitatory slowing of their conduction velocities. Microneurography is now powerful enough to analyze the nerve activity pattern of enigmatic sensations such as pruritus. Furthermore, it is the only method providing direct insight in the changes which human nerves undergo with aging. Recently, reliable recordings from patients suffering from painful neuropathies came into reach. It has been shown that different types of neuropathies are characterized by different patterns of abnormal nociceptor functions. Although some of them are characterized by abnormal spontaneous activity in C-nociceptors, others show mainly signs of denervation. Microneurography is, therefore, a tool for translational studies on human nociceptor functions by linking direct animal studies on experimental neuropathies with human diseases.
Collapse
Affiliation(s)
- Barbara Namer
- Department of Physiology and Pathophysiology, Institut für Physiologie und Pathophysiologie, University of Erlangen/Nuernberg, Universitätsstr. 17, 91054 Erlangen, Germany
| | | |
Collapse
|
24
|
Dusch M, Schley M, Obreja O, Forsch E, Schmelz M, Rukwied R. Comparison of electrically induced flare response patterns in human and pig skin. Inflamm Res 2009; 58:639-48. [DOI: 10.1007/s00011-009-0029-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022] Open
|
25
|
Baginskas A, Palani D, Chiu K, Raastad M. The H-current secures action potential transmission at high frequencies in rat cerebellar parallel fibers. Eur J Neurosci 2008; 29:87-96. [PMID: 19087162 DOI: 10.1111/j.1460-9568.2008.06566.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most axons in the mammalian brain are unmyelinated and thin with pre-synaptic specializations (boutons) along their entire paths. The parallel fibers in the cerebellum are examples of such axons. Unlike most thin axons they have only one branch point. The granule cell soma, where they originate, can fire bursts of action potentials with spike intervals of about 2 ms. An important question is whether the axons are able to propagate spikes with similarly short intervals. By using extracellular single-unit and population-recording methods we showed that parallel fibers faithfully conduct spikes at high frequencies over long distances. However, when adding 20 microm ZD7288 or 1 mm Cs(+), or reducing the temperature from 35 to 24 degrees C, the action potentials often failed even when successfully initiated. Ba(2+)(1 mm), which blocks Kir channels, did not reproduce these effects. The conduction velocity was reduced by ZD7288 but not by Ba(2+). This suggests that the parallel fibers have an H-current that is active at rest and that is important for their frequency-following properties. Interestingly, failures occurred only when the action potential had to traverse the axonal branch point, suggesting that the branch point is the weakest point in these axons.
Collapse
Affiliation(s)
- Armantas Baginskas
- Institute for Biomedical Research, Laboratory of Neurophysiology, Kaunas University of Medicine, Kaunas, Lithuania
| | | | | | | |
Collapse
|
26
|
De Col R, Messlinger K, Carr RW. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J Physiol 2007; 586:1089-103. [PMID: 18096592 DOI: 10.1113/jphysiol.2007.145383] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.
Collapse
Affiliation(s)
- Roberto De Col
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|
27
|
Handwerker HO. Chapter 3 Nociceptors: neurogenic inflammation. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:23-33. [PMID: 18808825 DOI: 10.1016/s0072-9752(06)80007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
28
|
Goldfinger MD. Rallian "equivalent" cylinders reconsidered: comparisons with literal compartments. J Integr Neurosci 2005; 4:227-63. [PMID: 15988799 DOI: 10.1142/s0219635205000781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Accepted: 03/15/2005] [Indexed: 11/18/2022] Open
Abstract
In Rall's "equivalent" cylinder morphological-to-electrical transformation, neuronal arborizations are reduced to single unbranched core-conductors. The conventional assumption that such an "equivalent" reconstructs the electrical properties of the fibers it represents was tested directly; electrical properties and responses of "equivalent" cylinders were compared with those of their literal branch constituents for fibers with a single symmetrical bifurcation. The numerical solution methods were validated independently by their accurate reconstruction of the responses of an analog circuit configured with compartmental architecture to solve the cable equation for passive fibers with a symmetrical bifurcation. In passive fibers, "equivalent" cylinders misestimated the spatial distribution of voltage amplitudes and steady-state input resistance, partly due to the lack of axial current bifurcation. In active fibers with a single propagating action potential, the spatial distributions of point-to-point conduction velocity values (measured in meters/second) for a literal branch point differed significantly from those of their "equivalent" cylinders. "Equivalent" cylinders also underestimated the diameter-dependent delay in propagation through the branch point and branches, due to the larger "equivalent" diameter. Corrections to the "equivalent" cylinder did not reconcile differences between "equivalent" and literal models. However, "equivalent" and literal branch fibers had the same (a) steady-state resistance "looking into" an isolated symmetrical branch point and (b) geometry-independent point-to-point propagation velocity when measured in space constants per millisecond except within +/-1 space constant from the geometrical inhomogeneity. In summary, Rall's "equivalent" cylinders did not accurately reconstruct all passive or active electrophysiological properties and responses of their literal compartments. For the modeling of individual neurons, the requirement of single-branch resolution is discussed.
Collapse
Affiliation(s)
- M D Goldfinger
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, Ohio 45435, USA.
| |
Collapse
|
29
|
Bostock H, Campero M, Serra J, Ochoa JL. Temperature-dependent double spikes in C-nociceptors of neuropathic pain patients. Brain 2005; 128:2154-63. [PMID: 15947060 DOI: 10.1093/brain/awh552] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Five patients with small-fibre neuropathy characterized by temperature-dependent spontaneous pain, hyperalgesia/allodynia and signs of neurogenic inflammation were studied clinically and thermographically, and by microneurography. Thermography revealed hyperthermia confined to painful and hyperalgesic skin of distal extremities, in absence of sympathetic vasomotor denervation. Quantitative sensory testing documented either reduced thresholds or increased suprathreshold magnitude for heat pain. Microneurography identified 13 primary cutaneous C-nociceptors generating abnormal impulses in response to electrical stimuli and, in one patient, nociceptors firing spontaneously. All five patients showed examples of double spikes, in which a single brief electrical stimulus occasionally or regularly evoked two impulses. In one case, a second impulse occurred at one of three different delays. In all five patients, warming of the skin increased the probability of a second impulse occurring. Impulse doubling has previously been reported as occurring rarely in normal subjects and is attributable to unfiltering of multiple orthodromic impulses due to unidirectional conduction failure at branch points. A higher incidence of double firing in neuropathic pain patients is probably due to a reduced safety factor for conduction in the terminal arborizations of their C-nociceptors. These observations show that unidirectional conduction block provides a peripheral mechanism of temperature-dependent nociceptor hyperactivity in small-fibre neuropathy that may contribute to hyperalgesia.
Collapse
|
30
|
Abstract
A renewed interest in the characteristics and neural basis of corneal and conjunctival sensations is developing in recent years due to the high incidence of discomfort and altered sensitivity of the cornea following refractive surgery, use of contact lenses and dry eyes. Corneal nerves are functionally heterogeneous: about 20% respond exclusively to noxious mechanical forces (mechano-nociceptors); 70% are additionally excited by extreme temperatures, exogenous irritant chemicals and endogenous inflammatory mediators (polymodal nociceptors), and 10% are cold-sensitive and increase their discharge with moderate cooling of the cornea (cold receptors). Each of these types of sensory fibres contributes distinctly to corneal sensations. Mechano-nociceptors mediate, sharp acute pain produced by touching of the cornea. Polymodal nociceptors elicit the sustained irritation and pain that accompany corneal wounding; cold receptors evoke cooling sensations. Depending on the relative activation by the stimulus of each subpopulation of corneal sensory fibres, different subqualities of irritation and pain sensations are evoked. Corneal sensations can be explored experimentally in humans with a gas esthesiometer that applies controlled mechanical, chemical and thermal stimuli to the corneal surface. When the cornea is wounded, corneal nerves are excited and eventually severed in a variable degree and local inflammation is produced. Activated corneal nerves release neuropeptides (SP, CGRP) that contribute to the inflammatory reaction (neurogenic inflammation). They also become sensitized by local inflammatory mediators, such as prostaglandins or bradykinin and thus exhibit spontaneous activity, lowered threshold and enhanced responses to new stimuli. This leads to spontaneous pain and hyperalgesia. Nerves destroyed by injury soon start to regenerate and form microneuromas that exhibit abnormal responsiveness and spontaneous discharges, due to an altered expression of ion channel proteins in the soma and in regenerating nerve terminals. Presumably, this altered excitability is the origin of the lowered sensitivity and the spontaneous pain, dry eye sensations and other disaesthesias reported in patients following refractive surgery.
Collapse
Affiliation(s)
- Carlos Belmonte
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Apdo correos 18, 03550 San Juan de Alicante, Spain.
| | | | | |
Collapse
|
31
|
Coleman GT, Mahns DA, Zhang HQ, Rowe MJ. Impulse propagation over tactile and kinaesthetic sensory axons to central target neurones of the cuneate nucleus in cat. J Physiol 2003; 550:553-62. [PMID: 12766249 PMCID: PMC2343049 DOI: 10.1113/jphysiol.2002.037002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Paired, simultaneous recordings were made in anaesthetized cats from the peripheral and central axons of individual tactile and kinaesthetic sensory fibres. The aim was to determine whether failure of spike propagation occurred at any of the three major axonal branch points in the path to their cuneate target neurones, and whether propagation failure may contribute, along with synaptic transmission failures, to limitations in transmission security observed for the cuneate synaptic relay. No evidence for propagation failure was found at the two major axonal branch points prior to the cuneate nucleus, namely, the T-junction at the dorsal root ganglion, and the major branch point near the cord entry point, even for the highest impulse rates (approximately 400 impulses s(-1)) at which these fibres could be driven. However, at the highest impulse rates there was evidence at the central, intra-cuneate recording site of switching between two states in the terminal axonal spike configuration. This appears to reflect a sporadic propagation failure into one of the terminal branches of the sensory axon. In conclusion, it appears that central impulse propagation over group II sensory axons occurs with complete security through branch points within the dorsal root ganglion and at the spinal cord entry zone. However, at high rates of afferent drive, terminal axonal propagation failure may contribute to the observed decline in transmission security within the cuneate synaptic relay.
Collapse
Affiliation(s)
- G T Coleman
- School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|