1
|
Alipour N, Fallahnezhad S, Bagheri J, Babaloo H, Tahmasebi F, Sazegar G, Haghir H. Expression of GABA Aα1, GABA B1, and mGluR2 receptors in the lateral geniculate body of male neonates born to diabetic rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:805-811. [PMID: 37396950 PMCID: PMC10311974 DOI: 10.22038/ijbms.2023.69668.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/17/2023] [Indexed: 07/04/2023]
Abstract
Objectives Diabetes during gestation is one of the most common pregnancy complications and has adverse effects on offspring, including a negative impact on the offspring's central nervous system (CNS). Diabetes is a metabolic disease associated with visual impairment. Due to the importance of the lateral geniculate body (LGB) in the visual pathway, the present study examined the effect of maternal diabetes on the expression of gamma-aminobutyric acid (GABAAα1 and GABAB1) and metabotropic Glutamate (mGlu2) receptors in the LGB of male neonates of diabetic rats. Materials and Methods Diabetes was induced in female adult rats by a single intraperitoneal dose of streptozotocin (STZ) 65 (mg/kg). In the Insulin-treated diabetic rats, diabetes was controlled by subcutaneous NPH-insulin injection daily. After mating and delivery, male offspring were killed by carbon dioxide gas inhalation at P0, P7, and P14 (postnatal days 0, 7, and 14). The expression of GABAAα1, GABAB1, and mGluR2 in the LGB of male neonates was determined using the immunohistochemistry (IHC) method. Results The expression of GABAAα1 and GABAB1 was significantly reduced, whereas the expression of mGluR2 was markedly increased in the diabetic group compared with the control and insulin-treated groups at P0, P7, and P14. Conclusion The results of the present study showed that induction of diabetes altered the expression of GABAAα1, GABAB1, and mGluR2 in the LGB of male neonates born to diabetic rats at P0, P7, and P14. Moreover, insulin treatment could reverse these effects of diabetes.
Collapse
Affiliation(s)
- Nasim Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Fallahnezhad
- Nervous System Stem Cell Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Javad Bagheri
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Babaloo
- Regenerative Medicine, Organ Procurement and transplantation Multidisciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Tahmasebi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghasem Sazegar
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Haghir
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetic Research Center (MGRC), School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Augustinaite S, Heggelund P. Short-term Synaptic Depression in the Feedforward Inhibitory Circuit in the Dorsal Lateral Geniculate Nucleus. Neuroscience 2018; 384:76-86. [PMID: 29802882 DOI: 10.1016/j.neuroscience.2018.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
Abstract
Synaptic short-term plasticity (STP) regulates synaptic transmission in an activity-dependent manner and thereby has important roles in the signal processing in the brain. In some synapses, a presynaptic train of action potentials elicits post-synaptic potentials that gradually increase during the train (facilitation), but in other synapses, these potentials gradually decrease (depression). We studied STP in neurons in the visual thalamic relay, the dorsal lateral geniculate nucleus (dLGN). The dLGN contains two types of neurons: excitatory thalamocortical (TC) neurons, which transfer signals from retinal afferents to visual cortex, and local inhibitory interneurons, which form an inhibitory feedforward loop that regulates the thalamocortical signal transmission. The overall STP in the retino-thalamic relay is short-term depression, but the distinct kind and characteristics of the plasticity at the different types of synapses are unknown. We studied STP in the excitatory responses of interneurons to stimulation of retinal afferents, in the inhibitory responses of TC neurons to stimulation of afferents from interneurons, and in the disynaptic inhibitory responses of TC neurons to stimulation of retinal afferents. Moreover, we studied STP at the direct excitatory input to TC neurons from retinal afferents. The STP at all types of the synapses showed short-term depression. This depression can accentuate rapid changes in the stream of signals and thereby promote detectability of significant features in the sensory input. In vision, detection of edges and contours is essential for object perception, and the synaptic short-term depression in the early visual pathway provides important contributions to this detection process.
Collapse
Affiliation(s)
- Sigita Augustinaite
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, Oslo, Norway.
| | - Paul Heggelund
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, Oslo, Norway.
| |
Collapse
|
3
|
Guido W. Development, form, and function of the mouse visual thalamus. J Neurophysiol 2018; 120:211-225. [PMID: 29641300 PMCID: PMC6093956 DOI: 10.1152/jn.00651.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 12/16/2022] Open
Abstract
The dorsal lateral geniculate nucleus (dLGN) of the thalamus is the exclusive relay of retinal information en route to the visual cortex. Although much of our understanding about dLGN comes from studies done in higher mammals, such as the cat and primate, the mouse as a model organism has moved to the forefront as a tractable experimental platform to examine cell type-specific relations. This review highlights our current knowledge about the development, structure, and function of the mouse dLGN.
Collapse
Affiliation(s)
- William Guido
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, Kentucky
| |
Collapse
|
4
|
The multifaceted role of inhibitory interneurons in the dorsal lateral geniculate nucleus. Vis Neurosci 2017; 34:E017. [DOI: 10.1017/s0952523817000141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractIntrinsic interneurons within the dorsal lateral geniculate nucleus (dLGN) provide a feed-forward inhibitory pathway for afferent visual information originating from the retina. These interneurons are unique because in addition to traditional axodendritic output onto thalamocortical neurons, these interneurons have presynaptic dendrites that form dendrodendritic synapses onto thalamocortical neurons as well. These presynaptic dendrites, termed F2 terminals, are tightly coupled to the retinogeniculate afferents that synapse onto thalamocortical relay neurons. Retinogeniculate stimulation of F2 terminals can occur through the activation of ionotropic and/or metabotropic glutamate receptors. The stimulation of ionotropic glutamate receptors can occur with single stimuli and produces a short-lasting inhibition of the thalamocortical neuron. By contrast, activation of metabotropic glutamate receptors requires tetanic activation and results in longer-lasting inhibition in the thalamocortical neuron. The F2 terminals are predominantly localized to the distal dendrites of interneurons, and the excitation and output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent processors, giving rise to focal inhibition. By contrast, strong transient depolarizations at the soma can initiate a backpropagating calcium-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output, focal versus global, could play an important role in the temporal and spatial roles of inhibition that in turn impacts thalamocortical information processing.
Collapse
|
5
|
Hackett TA, Clause AR, Takahata T, Hackett NJ, Polley DB. Differential maturation of vesicular glutamate and GABA transporter expression in the mouse auditory forebrain during the first weeks of hearing. Brain Struct Funct 2015; 221:2619-73. [PMID: 26159773 DOI: 10.1007/s00429-015-1062-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/07/2015] [Indexed: 02/04/2023]
Abstract
Vesicular transporter proteins are an essential component of the presynaptic machinery that regulates neurotransmitter storage and release. They also provide a key point of control for homeostatic signaling pathways that maintain balanced excitation and inhibition following changes in activity levels, including the onset of sensory experience. To advance understanding of their roles in the developing auditory forebrain, we tracked the expression of the vesicular transporters of glutamate (VGluT1, VGluT2) and GABA (VGAT) in primary auditory cortex (A1) and medial geniculate body (MGB) of developing mice (P7, P11, P14, P21, adult) before and after ear canal opening (~P11-P13). RNA sequencing, in situ hybridization, and immunohistochemistry were combined to track changes in transporter expression and document regional patterns of transcript and protein localization. Overall, vesicular transporter expression changed the most between P7 and P21. The expression patterns and maturational trajectories of each marker varied by brain region, cortical layer, and MGB subdivision. VGluT1 expression was highest in A1, moderate in MGB, and increased with age in both regions. VGluT2 mRNA levels were low in A1 at all ages, but high in MGB, where adult levels were reached by P14. VGluT2 immunoreactivity was prominent in both regions. VGluT1 (+) and VGluT2 (+) transcripts were co-expressed in MGB and A1 somata, but co-localization of immunoreactive puncta was not detected. In A1, VGAT mRNA levels were relatively stable from P7 to adult, while immunoreactivity increased steadily. VGAT (+) transcripts were rare in MGB neurons, whereas VGAT immunoreactivity was robust at all ages. Morphological changes in immunoreactive puncta were found in two regions after ear canal opening. In the ventral MGB, a decrease in VGluT2 puncta density was accompanied by an increase in puncta size. In A1, perisomatic VGAT and VGluT1 terminals became prominent around the neuronal somata. Overall, the observed changes in gene and protein expression, regional architecture, and morphology relate to-and to some extent may enable-the emergence of mature sound-evoked activity patterns. In that regard, the findings of this study expand our understanding of the presynaptic mechanisms that regulate critical period formation associated with experience-dependent refinement of sound processing in auditory forebrain circuits.
Collapse
Affiliation(s)
- Troy A Hackett
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA.
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Toru Takahata
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, 465 21st Avenue South, MRB-3 Suite 7110, Nashville, TN, 37232, USA
| | | | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Ma J, Yao XH, Fu Y, Yu YC. Development of Layer 1 Neurons in the Mouse Neocortex. Cereb Cortex 2014; 24:2604-18. [DOI: 10.1093/cercor/bht114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development. Neural Dev 2013; 8:24. [PMID: 24359973 PMCID: PMC3878090 DOI: 10.1186/1749-8104-8-24] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 12/06/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The dorsal lateral geniculate nucleus (dLGN) of the mouse thalamus has emerged as a powerful experimental system for understanding the refinement of developing sensory connections. Interestingly, many of the basic tenets for such developmental remodeling (for example, pruning of connections to form precise sensory maps) fail to take into account a fundamental aspect of sensory organization, cell-type specific wiring. To date, studies have focused on thalamocortical relay neurons and little is known about the development of retinal connections onto the other principal cell type of dLGN, intrinsic interneurons. Here, we used a transgenic mouse line in which green fluorescent protein (GFP) is expressed within dLGN interneurons (GAD67-GFP), making it possible to visualize them in acutely prepared thalamic slices in order to examine their morphology and functional patterns of connectivity throughout postnatal life. FINDINGS GFP-expressing interneurons were evenly distributed throughout dLGN and had highly complex and widespread dendritic processes that often crossed eye-specific borders. Estimates of retinal convergence derived from excitatory postsynaptic potential (EPSP) amplitude by stimulus intensity plots revealed that unlike relay cells, interneurons recorded throughout the first 5 weeks of life, maintain a large number (approximately eight to ten) of retinal inputs. CONCLUSIONS The lack of pruning onto interneurons suggests that the activity-dependent refinement of retinal connections in dLGN is cell-type specific. The high degree of retinal convergence onto interneurons may be necessary for these cells to provide both widespread and local forms of inhibition in dLGN.
Collapse
|
8
|
Venkataraman Y, Bartlett EL. Postnatal development of synaptic properties of the GABAergic projection from the inferior colliculus to the auditory thalamus. J Neurophysiol 2013; 109:2866-82. [PMID: 23536710 DOI: 10.1152/jn.00021.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The development of auditory temporal processing is important for processing complex sounds as well as for acquiring reading and language skills. Neuronal properties and sound processing change dramatically in auditory cortex neurons after the onset of hearing. However, the development of the auditory thalamus or medial geniculate body (MGB) has not been well studied over this critical time window. Since synaptic inhibition has been shown to be crucial for auditory temporal processing, this study examined the development of a feedforward, GABAergic connection to the MGB from the inferior colliculus (IC), which is also the source of sensory glutamatergic inputs to the MGB. IC-MGB inhibition was studied using whole cell patch-clamp recordings from rat brain slices in current-clamp and voltage-clamp modes at three age groups: a prehearing group [postnatal day (P)7-P9], an immediate posthearing group (P15-P17), and a juvenile group (P22-P32) whose neuronal properties are largely mature. Membrane properties matured substantially across the ages studied. GABAA and GABAB inhibitory postsynaptic potentials were present at all ages and were similar in amplitude. Inhibitory postsynaptic potentials became faster to single shocks, showed less depression to train stimuli at 5 and 10 Hz, and were overall more efficacious in controlling excitability with age. Overall, IC-MGB inhibition becomes faster and more precise during a time period of rapid changes across the auditory system due to the codevelopment of membrane properties and synaptic properties.
Collapse
Affiliation(s)
- Yamini Venkataraman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
9
|
Active action potential propagation but not initiation in thalamic interneuron dendrites. J Neurosci 2012; 31:18289-302. [PMID: 22171033 DOI: 10.1523/jneurosci.4417-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K-based action potentials can evoke calcium transients in dendrites via local active conductances, making the backpropagating action potential a candidate for dendritic neurotransmitter release. In this study, we used high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation rapidly and actively backpropagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid backpropagation into the dendritic arbor depended upon voltage-gated sodium and tetraethylammonium chloride-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then backpropagate with high fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments.
Collapse
|
10
|
Augustinaite S, Yanagawa Y, Heggelund P. Cortical feedback regulation of input to visual cortex: role of intrageniculate interneurons. J Physiol 2011; 589:2963-77. [PMID: 21502287 DOI: 10.1113/jphysiol.2011.205542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurons in the dorsal lateral geniculate nucleus (dLGN) process and transmit visual signals from retina to visual cortex. The processing is dynamically regulated by cortical excitatory feedback to neurons in dLGN, and synaptic short-term plasticity (STP) has an important role in this regulation. It is known that corticogeniculate synapses on thalamocortical (TC) projection-neurons are facilitating, but type and characteristics of STP of synapses on inhibitory interneurons in dLGN are unknown. We studied STP at corticogeniculate synapses on interneurons and compared the results with STP-characteristics of corticogeniculate synapses on TC neurons to gain insights into the dynamics of cortical regulation of processing in dLGN. We studied neurons in thalamic slices from glutamate decarboxylase 67 (GAD67)–green fluorescent protein (GFP) knock-in mice and made whole-cell recordings of responses evoked by electrical paired-pulse and pulse train stimulation of cortical afferents. We found that cortical excitations of interneurons and TC neurons have distinctly different properties. A single pulse evoked larger EPSCs in interneurons than in TC neurons. However, repetitive stimulation induced frequency-dependent depression of interneurons in contrast to the facilitation of TC neurons. Thus, through these differences of STP mechanisms, the balance of cortical excitation of the two types of neurons could change during stimulation from strongest excitation of interneurons to strongest excitation of TC neurons depending on stimulus frequency and duration, and thereby contribute to activity-dependent cortical regulation of thalamocortical transmission between net depression and net facilitation. Studies of postsynaptic response patterns of interneurons to train stimulation demonstrated that cortical input can activate different types of neuronal integration mechanisms that in addition to the STP mechanisms may change the output from dLGN. Lower stimulus intensity, presumably activating few cortical afferents, or moderate frequencies, elicited summation of graded EPSPs reflecting synaptic depression. However, strong activation through higher intensity or frequency, elicited complex response patterns in interneurons caused at least partly by activation of calcium conductances.
Collapse
Affiliation(s)
- Sigita Augustinaite
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, POB 1104 Blindern, N-0317 Oslo, Norway
| | | | | |
Collapse
|
11
|
Xu J, Zou Y, Zhang LH, Wai MSM, Kung HF, Ge ZY, Yew DT. Postmortem MRI Changes of the Brains of the Rats of Different Ages. Int J Neurosci 2009; 118:1039-50. [DOI: 10.1080/00207450701769141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Activity patterns govern synapse-specific AMPA receptor trafficking between deliverable and synaptic pools. Neuron 2009; 62:84-101. [PMID: 19376069 DOI: 10.1016/j.neuron.2009.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 10/30/2008] [Accepted: 03/03/2009] [Indexed: 12/13/2022]
Abstract
In single neurons, glutamatergic synapses receiving distinct afferent inputs may contain AMPA receptors (-Rs) with unique subunit compositions. However, the cellular mechanisms by which differential receptor transport achieves this synaptic diversity remain poorly understood. In lateral geniculate neurons, we show that retinogeniculate and corticogeniculate synapses have distinct AMPA-R subunit compositions. Under basal conditions at both synapses, GluR1-containing AMPA-Rs are transported from an anatomically defined reserve pool to a deliverable pool near the postsynaptic density (PSD), but further incorporate into the PSD or functional synaptic pool only at retinogeniculate synapses. Vision-dependent activity, stimulation mimicking retinal input, or activation of CaMKII or Ras signaling regulated forward GluR1 trafficking from the deliverable pool to the synaptic pool at both synapses, whereas Rap2 signals reverse GluR1 transport at retinogeniculate synapses. These findings suggest that synapse-specific AMPA-R delivery involves constitutive and activity-regulated transport steps between morphological pools, a mechanism that may extend to the site-specific delivery of other membrane protein complexes.
Collapse
|
13
|
Szkudlarek H, Raastad M. Electrical properties of morphologically characterized neurons in the intergeniculate leaflet of the rat thalamus. Neuroscience 2007; 150:309-18. [DOI: 10.1016/j.neuroscience.2007.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/21/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022]
|
14
|
Augustinaite S, Heggelund P. Changes in firing pattern of lateral geniculate neurons caused by membrane potential dependent modulation of retinal input through NMDA receptors. J Physiol 2007; 582:297-315. [PMID: 17495043 PMCID: PMC2075279 DOI: 10.1113/jphysiol.2007.131540] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An optimal visual stimulus flashed on the receptive field of a retinal ganglion cell typically evokes a strong transient response followed by weaker sustained firing. Thalamocortical (TC) neurons in the dorsal lateral geniculate nucleus, which receive their sensory input from retina, respond similarly except that the gain, in particular of the sustained component, changes with level of arousal. Several lines of evidence suggest that retinal input to TC neurons through NMDA receptors plays a key role in generation of the sustained response, but the mechanisms for the state-dependent variation in this component are unclear. We used a slice preparation to study responses of TC neurons evoked by trains of electrical pulses to the retinal afferents at frequencies in the range of visual responses in vivo. Despite synaptic depression, the pharmacologically isolated NMDA component gave a pronounced build-up of depolarization through temporal summation of the NMDA receptor mediated EPSPs. This depolarization could provide sustained firing, the frequency of which depended on the holding potential. We suggest that the variation of sustained response in vivo is caused mainly by the state-dependent modulation of the membrane potential of TC neurons which shifts the NMDA receptor mediated depolarization closer to or further away from the firing threshold. The pharmacologically isolated AMPA receptor EPSPs were rather ineffective in spike generation. However, together with the depolarization evoked by the NMDA component, the AMPA component contributed significantly to spike generation, and was necessary for the precise timing of the generated spikes.
Collapse
Affiliation(s)
- S Augustinaite
- Institute of Basic Medical Sciences, Department of Physiology, University of Oslo, PO Box 1103 Blindern, N-0317 Oslo, Norway
| | | |
Collapse
|
15
|
Perreault MC, Raastad M. Contribution of morphology and membrane resistance to integration of fast synaptic signals in two thalamic cell types. J Physiol 2006; 577:205-20. [PMID: 16959860 PMCID: PMC2000667 DOI: 10.1113/jphysiol.2006.113043] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Thalamocortical cells (TCs) and interneurons (INs) in the lateral geniculate nucleus process visual information from the retina. The TCs have many short dendrites, whereas the INs have fewer and longer dendrites. Because of these morphological differences, it has been suggested that transmission of synaptic signals from dendritic synapses to soma is more efficient in TCs than in INs. However, a higher membrane resistance (R(m)) for the INs could, in theory, compensate for the attenuating effect of their long dendrites and allow distal synaptic inputs to significantly depolarize the soma. Compartmental models were made from biocytin filled TCs (n = 15) and INs (n = 3) and adjusted to fit the current- and voltage-clamp recordings from the individual cells. The confidence limits for the passive electrical parameters were explored by simulating the influence of noise, morphometric errors and non-uniform and active conductances. One of the useful findings was that R(m) was accurately estimated despite realistic levels of active conductance. Simulations to explore the somatic influence of dendritic synapses showed that a small (0.5 nS) excitatory synapse placed at different dendritic positions gave similar somatic potentials in the individual TCs, within the TC population and also between TCs and INs. A linear increase in the conductance of the synapse gave increases in somatic potentials that were more sublinear in INs than TCs. However, when the total synaptic conductance was increased by simultaneously activating many small, spatially distributed synapses, the INs converted the synaptic signals to soma potentials almost as efficiently as the TCs. Thus, INs can transfer fast synaptic signals to soma as efficiently as TCs except when the focal conductance is large.
Collapse
Affiliation(s)
- Marie-Claude Perreault
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, Sognsvannsveien 9, PO Box 1103 Blindern, N-0317, Oslo, Norway.
| | | |
Collapse
|
16
|
Smith SL, Otis TS. Pattern-dependent, simultaneous plasticity differentially transforms the input-output relationship of a feedforward circuit. Proc Natl Acad Sci U S A 2005; 102:14901-6. [PMID: 16199519 PMCID: PMC1253560 DOI: 10.1073/pnas.0505028102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Memories are believed to be encoded by changes in the synaptic connections between neurons. Although many forms of synaptic plasticity have been identified, it remains unknown how such changes affect local circuits. Feedforward inhibitory networks are a common type of local circuitry and occur when principal neurons and their afferent inhibitory interneurons receive the same input. Using slices of cerebellar cortex, we explored how synaptic plasticity at multiple sites within a feedforward inhibitory network consisting of parallel fibers, interneurons, and Purkinje neurons alters the output of this circuit. We found that stimuli resembling baseline activity potentiated feedforward excitatory and simultaneously depressed feedforward inhibitory pathways. In contrast, stimuli resembling sensory-evoked patterns of firing potentiated both types of feedforward connections. These distinct forms of ensemble plasticity change the way Purkinje neurons subsequently respond to inputs. Such concerted changes in the circuitry of cerebellar cortex may contribute to certain forms of sensorimotor learning.
Collapse
Affiliation(s)
- Spencer Lavere Smith
- Department of Neurobiology, School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
17
|
Zhu Y, Stornetta RL, Zhu JJ. Chandelier cells control excessive cortical excitation: characteristics of whisker-evoked synaptic responses of layer 2/3 nonpyramidal and pyramidal neurons. J Neurosci 2004; 24:5101-8. [PMID: 15175379 PMCID: PMC6729194 DOI: 10.1523/jneurosci.0544-04.2004] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chandelier cells form inhibitory axo-axonic synapses on pyramidal neurons with their characteristic candlestick-like axonal terminals. The functional role of chandelier cells is still unclear, although the preferential loss of this cell type at epileptic loci suggests a role in epilepsy. Here we report an examination of whisker- and spontaneous activity-evoked responses in chandelier cells and other fast-spiking nonpyramidal neurons and regular-spiking pyramidal neurons in layer 2/3 of the barrel cortex. Fast-spiking nonpyramidal neurons, including chandelier cells, basket cells, neurogliaform cells, double bouquet cells, net basket cells, bitufted cells, and regular-spiking pyramidal neurons all respond to stimulation of multiple whiskers on the contralateral face. Whisker stimulation, however, evokes small, delayed EPSPs preceded by an earlier IPSP and no action potentials in chandelier cells, different from other nonpyramidal and pyramidal neurons. In addition, chandelier cells display a larger receptive field with lower acuity than other fast-spiking nonpyramidal neurons and pyramidal neurons. Notably, simultaneous dual whole-cell in vivo recordings show that chandelier cells, which rarely fire action potentials spontaneously, fire more robustly than other types of cortical neurons when the overall cortical excitation increases. Thus, chandelier cells may not process fast ascending sensory information but instead may be reserved to prevent excessive excitatory activity in neuronal networks.
Collapse
Affiliation(s)
- Yinghua Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
18
|
Zhu Y, Zhu JJ. Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J Neurosci 2004; 24:1272-9. [PMID: 14960597 PMCID: PMC6730332 DOI: 10.1523/jneurosci.4805-03.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ascending sensory inputs arriving in layer 1 of the neocortex carry crucial signals for detecting salient information; but how the inputs are processed in layer 1 is unknown. Using a whole-cell in vivo recording technique targeting nonpyramidal neurons in layer 1 and tuft dendrites of layer 5 pyramidal neurons in layers 1-2, we examined the processing of these ascending sensory inputs in the barrel cortex. Here, we show that local circuit and deeper-layer-projecting neurons in layer 1, as well as tuft dendrites and somata of layer 5 pyramidal neurons, respond to multiple whiskers (6-15) with robust EPSPs. Remarkably, the latency for primary whisker-evoked responses is as short as approximately 5-7 msec in layer 1 neurons and tuft dendrites of layer 5 pyramidal neurons. In addition, the latency for primary whisker-evoked responses in tuft dendrites of layer 5 pyramidal neurons is approximately 1 msec shorter than that in somata. These results indicate that ascending sensory inputs arrive in layers 1 and 4 concurrently, which provides a neural mechanism for rapid integration and coincident detection of salient sensory information.
Collapse
Affiliation(s)
- Yinghua Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
19
|
Steriade M. Presynaptic dendrites of thalamic local-circuit neurons and sculpting inhibition during activated states. J Physiol 2003; 546:1. [PMID: 12509473 PMCID: PMC2342482 DOI: 10.1113/jphysiol.2002.033969] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mircea Steriade
- Laboratory of Neurophysiology, Faculty of Medicine, Laval University, Quebec, Canada.
| |
Collapse
|