1
|
Solinski HJ, Schmelz M, Rukwied R. Sustained nerve growth factor-induced C-nociceptor sensitization to electrical sinusoidal stimulation in humans. Pain Rep 2024; 9:e1190. [PMID: 39315114 PMCID: PMC11419415 DOI: 10.1097/pr9.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 05/09/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Injection of recombinant human nerve growth factor (rhNGF) evokes acute heat and prolonged "polymodal" (mechanosensitive [CM]) and "silent" (mechanoinsensitive [CMi]) C-nociceptor sensitization. Both nociceptor classes can be activated differentially using slowly depolarizing electrical sinusoidal stimuli. Objectives To explore the temporal profile of nociceptor sensitization to heat and mechanical and electrical stimuli in humans after rhNGF. Methods Recombinant human nerve growth factor (1 µg) and NaCl (0.9%) was injected into human forearm skin (n = 9, 50 µL/injection). Pain ratings (numeric rating scale) to transcutaneous electrical stimuli (1 ms 20 Hz rectangular pulses, 500-ms half-period sine wave [1 Hz] and 4 Hz sine wave pulses [2.5 and 60 seconds]) were assessed at days 3, 21, and 49 after injection, in addition to heat pain thresholds (HPTs, 9 × 9 mm thermode) and mechanical impact pain (4 and 8 m/second). Results Suprathreshold sinusoidal stimulation for specific CM (1 Hz) and combined CM and CMi (4 Hz) activation resulted in enhanced pain from day 3 post rhNGF and lasted throughout 7 weeks. These temporal dynamics contrasted minimum HPTs at day 3 (normalized by day 49) or mechanical impact pain (developing slowly until day 21 before declining depending on stimulus intensity). Correlation analyses of electrical pain indicated diverging kinetics when assessed for CM with or without concomitant CMi activation at days 3 and 21, which converged 7 weeks post rhNGF. Conclusions Exceptionally long sensitization of CM and CMi nociceptors by rhNGF, uncovered by suprathreshold electrical sinusoidal stimulation, indicates a signal transduction-independent long-lasting hyperexcitability of C-nociceptors that clinically may contribute to rhNGF-maintained chronic inflammatory pain.
Collapse
Affiliation(s)
- Hans Jürgen Solinski
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Ständer S, Schmelz M. Skin Innervation. J Invest Dermatol 2024; 144:1716-1723. [PMID: 38402477 DOI: 10.1016/j.jid.2023.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 02/26/2024]
Abstract
All layers and appendages of the skin are densely innervated by afferent and efferent neurons providing sensory information and controlling skin perfusion and sweating. In mice, neuronal functions have been comprehensively linked to unique single-cell expression patterns and to characteristic arborization of nerve endings in skin and dorsal horn, whereas for humans, specific molecular markers for functional classes of afferent neurons are still lacking. Moreover, bidirectional communication between sensory neurons and local skin cells has become of particular interest, resulting in a broader physiological understanding of sensory function but also of trophic functions and immunomodulation in disease states.
Collapse
Affiliation(s)
- Sonja Ständer
- Department of Dermatology and Center for Chronic Pruritus, University Hospital, Münster, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Faculty of Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
3
|
Pakalniskis J, Soares S, Rajan S, Vyshnevska A, Schmelz M, Solinski HJ, Rukwied R, Carr R. Human pain ratings to electrical sinusoids increase with cooling through a cold-induced increase in C-fibre excitability. Pain 2023; 164:1524-1536. [PMID: 36972485 DOI: 10.1097/j.pain.0000000000002849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/01/2022] [Indexed: 03/29/2023]
Abstract
ABSTRACT Low-frequency sinusoidal current applied to human skin evokes local axon reflex flare and burning pain, indicative of C-fibre activation. Because topical cooling works well as a local analgesic, we examined the effect of cooling on human pain ratings to sinusoidal and rectangular profiles of constant current stimulation. Unexpectedly, pain ratings increased upon cooling the skin from 32 to 18°C. To explore this paradoxical observation, the effects of cooling on C-fibre responses to stimulation with sinusoidal and rectangular current profiles were determined in ex vivo segments of mouse sural and pig saphenous nerve. As expected by thermodynamics, the absolute value of electrical charge required to activate C-fibre axons increased with cooling from 32°C to 20°C, irrespective of the stimulus profile used. However, for sinusoidal stimulus profiles, cooling enabled a more effective integration of low-intensity currents over tens of milliseconds resulting in a delayed initiation of action potentials. Our findings indicate that the paradoxical cooling-induced enhancement of electrically evoked pain in people can be explained by an enhancement of C-fibre responsiveness to slow depolarization at lower temperatures. This property may contribute to symptoms of enhanced cold sensitivity, especially cold allodynia, associated with many forms of neuropathic pain.
Collapse
Affiliation(s)
- Julius Pakalniskis
- Department of Experimental Pain Research, Mannheim Centre for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Kutafina E, Becker S, Namer B. Measuring pain and nociception: Through the glasses of a computational scientist. Transdisciplinary overview of methods. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1099282. [PMID: 36926544 PMCID: PMC10013045 DOI: 10.3389/fnetp.2023.1099282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
In a healthy state, pain plays an important role in natural biofeedback loops and helps to detect and prevent potentially harmful stimuli and situations. However, pain can become chronic and as such a pathological condition, losing its informative and adaptive function. Efficient pain treatment remains a largely unmet clinical need. One promising route to improve the characterization of pain, and with that the potential for more effective pain therapies, is the integration of different data modalities through cutting edge computational methods. Using these methods, multiscale, complex, and network models of pain signaling can be created and utilized for the benefit of patients. Such models require collaborative work of experts from different research domains such as medicine, biology, physiology, psychology as well as mathematics and data science. Efficient work of collaborative teams requires developing of a common language and common level of understanding as a prerequisite. One of ways to meet this need is to provide easy to comprehend overviews of certain topics within the pain research domain. Here, we propose such an overview on the topic of pain assessment in humans for computational researchers. Quantifications related to pain are necessary for building computational models. However, as defined by the International Association of the Study of Pain (IASP), pain is a sensory and emotional experience and thus, it cannot be measured and quantified objectively. This results in a need for clear distinctions between nociception, pain and correlates of pain. Therefore, here we review methods to assess pain as a percept and nociception as a biological basis for this percept in humans, with the goal of creating a roadmap of modelling options.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Susanne Becker
- Clinical Psychology, Department of Experimental Psychology, Heinrich Heine University, Düsseldorf, Germany
- Integrative Spinal Research, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
5
|
Kutafina E, Troglio A, de Col R, Röhrig R, Rossmanith P, Namer B. Decoding Neuropathic Pain: Can We Predict Fluctuations of Propagation Speed in Stimulated Peripheral Nerve? Front Comput Neurosci 2022; 16:899584. [PMID: 35966281 PMCID: PMC9366140 DOI: 10.3389/fncom.2022.899584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
To understand neural encoding of neuropathic pain, evoked and resting activity of peripheral human C-fibers are studied via microneurography experiments. Before different spiking patterns can be analyzed, spike sorting is necessary to distinguish the activity of particular fibers of a recorded bundle. Due to single-electrode measurements and high noise contamination, standard methods based on spike shapes are insufficient and need to be enhanced with additional information. Such information can be derived from the activity-dependent slowing of the fiber propagation speed, which in turn can be assessed by introducing continuous "background" 0.125-0.25 Hz electrical stimulation and recording the corresponding responses from the fibers. Each fiber's speed propagation remains almost constant in the absence of spontaneous firing or additional stimulation. This way, the responses to the "background stimulation" can be sorted by fiber. In this article, we model the changes in the propagation speed resulting from the history of fiber activity with polynomial regression. This is done to assess the feasibility of using the developed models to enhance the spike shape-based sorting. In addition to human microneurography data, we use animal in-vitro recordings with a similar stimulation protocol as higher signal-to-noise ratio data example for the models.
Collapse
Affiliation(s)
- Ekaterina Kutafina
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Faculty of Applied Mathematics, AGH University of Science and Technology, Krakow, Poland
| | - Alina Troglio
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Roberto de Col
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Röhrig
- Institute of Medical Informatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Peter Rossmanith
- Theoretical Computer Science, Department of Computer Science, RWTH Aachen University, Aachen, Germany
| | - Barbara Namer
- Junior Research Group Neuroscience, Interdisciplinary Center for Clinical Research Within the Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Physiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
6
|
Herr DW. The Future of Neurotoxicology: A Neuroelectrophysiological Viewpoint. FRONTIERS IN TOXICOLOGY 2021; 3:1. [PMID: 34966904 PMCID: PMC8711081 DOI: 10.3389/ftox.2021.729788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neuroelectrophysiology is an old science, dating to the 18th century when electrical activity in nerves was discovered. Such discoveries have led to a variety of neurophysiological techniques, ranging from basic neuroscience to clinical applications. These clinical applications allow assessment of complex neurological functions such as (but not limited to) sensory perception (vision, hearing, somatosensory function), and muscle function. The ability to use similar techniques in both humans and animal models increases the ability to perform mechanistic research to investigate neurological problems. Good animal to human homology of many neurophysiological systems facilitates interpretation of data to provide cause-effect linkages to epidemiological findings. Mechanistic cellular research to screen for toxicity often includes gaps between cellular and whole animal/person neurophysiological changes, preventing understanding of the complete function of the nervous system. Building Adverse Outcome Pathways (AOPs) will allow us to begin to identify brain regions, timelines, neurotransmitters, etc. that may be Key Events (KE) in the Adverse Outcomes (AO). This requires an integrated strategy, from in vitro to in vivo (and hypothesis generation, testing, revision). Scientists need to determine intermediate levels of nervous system organization that are related to an AO and work both upstream and downstream using mechanistic approaches. Possibly more than any other organ, the brain will require networks of pathways/AOPs to allow sufficient predictive accuracy. Advancements in neurobiological techniques should be incorporated into these AOP-base neurotoxicological assessments, including interactions between many regions of the brain simultaneously. Coupled with advancements in optogenetic manipulation, complex functions of the nervous system (such as acquisition, attention, sensory perception, etc.) can be examined in real time. The integration of neurophysiological changes with changes in gene/protein expression can begin to provide the mechanistic underpinnings for biological changes. Establishment of linkages between changes in cellular physiology and those at the level of the AO will allow construction of biological pathways (AOPs) and allow development of higher throughput assays to test for changes to critical physiological circuits. To allow mechanistic/predictive toxicology of the nervous system to be protective of human populations, neuroelectrophysiology has a critical role in our future.
Collapse
Affiliation(s)
- David W. Herr
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, CPHEA/ORD, U.S. Environmental Protection Agency, Washington, NC, United States
| |
Collapse
|
7
|
Bonalume V, Caffino L, Castelnovo LF, Faroni A, Liu S, Hu J, Milanese M, Bonanno G, Sohns K, Hoffmann T, De Col R, Schmelz M, Fumagalli F, Magnaghi V, Carr R. Axonal GABA A stabilizes excitability in unmyelinated sensory axons secondary to NKCC1 activity. J Physiol 2021; 599:4065-4084. [PMID: 34174096 DOI: 10.1113/jp279664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS GABA depolarized sural nerve axons and increased the electrical excitability of C-fibres via GABAA receptor. Axonal excitability responses to GABA increased monotonically with the rate of action potential firing. Action potential activity in unmyelinated C-fibres is coupled to Na-K-Cl cotransporter type 1 (NKCC1) loading of axonal chloride. Activation of axonal GABAA receptor stabilized C-fibre excitability during prolonged low frequency (2.5 Hz) firing. NKCC1 maintains intra-axonal chloride to provide feed-forward stabilization of C-fibre excitability and thus support sustained firing. ABSTRACT GABAA receptor (GABAA R)-mediated depolarization of dorsal root ganglia (DRG) axonal projections in the spinal dorsal horn is implicated in pre-synaptic inhibition. Inhibition, in this case, is predicated on an elevated intra-axonal chloride concentration and a depolarizing GABA response. In the present study, we report that the peripheral axons of DRG neurons are also depolarized by GABA and this results in an increase in the electrical excitability of unmyelinated C-fibre axons. GABAA R agonists increased axonal excitability, whereas GABA excitability responses were blocked by GABAA R antagonists and were absent in mice lacking the GABAA R β3 subunit selectively in DRG neurons (AdvillinCre or snsCre ). Under control conditions, excitability responses to GABA became larger at higher rates of electrical stimulation (0.5-2.5 Hz). However, during Na-K-Cl cotransporter type 1 (NKCC1) blockade, the electrical stimulation rate did not affect GABA response size, suggesting that NKCC1 regulation of axonal chloride is coupled to action potential firing. To examine this, activity-dependent conduction velocity slowing (activity-dependent slowing; ADS) was used to quantify C-fibre excitability loss during a 2.5 Hz challenge. ADS was reduced by GABAA R agonists and exacerbated by either GABAA R antagonists, β3 deletion or NKCC1 blockade. This illustrates that activation of GABAA R stabilizes C-fibre excitability during sustained firing. We posit that NKCC1 acts in a feed-forward manner to maintain an elevated intra-axonal chloride in C-fibres during ongoing firing. The resulting chloride gradient can be utilized by GABAA R to stabilize axonal excitability. The data imply that therapeutic strategies targeting axonal chloride regulation at peripheral loci of pain and itch may curtail aberrant firing in C-fibres.
Collapse
Affiliation(s)
- Veronica Bonalume
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Luca F Castelnovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX, USA
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sheng Liu
- Institute of Pharmacology, Heidelberg University, Mannheim, Germany
| | - Jing Hu
- Institute of Pharmacology, Heidelberg University, Mannheim, Germany
| | - Marco Milanese
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, Università degli Studi di Genova, Genova, Italy
| | - Giambattista Bonanno
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Unit, Università degli Studi di Genova, Genova, Italy
- Ospedale Policlinico San Martino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Genova, Italy
| | - Kyra Sohns
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tal Hoffmann
- Institute for Physiology and Pathophysiology, Friedrich-Alexander University, Erlangen, Germany
| | - Roberto De Col
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Schmelz
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerio Magnaghi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Richard Carr
- Experimental Pain Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Hochstrasser A, Rodriguez B, Söll N, Bostock H, Z'Graggen WJ. Effect of intermittent high-frequency stimulation on muscle velocity recovery cycle recordings. J Neurophysiol 2021; 126:736-742. [PMID: 34288792 DOI: 10.1152/jn.00213.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The technique of multifiber muscle velocity recovery cycle recordings was developed as a diagnostic tool to assess muscle membrane potential changes and ion channel function in vivo. This study was undertaken to assess the impact of intermittent high-frequency stimulation on muscle velocity recovery cycle components and to study whether the changes can be modified by endurance training. We recorded muscle velocity recovery cycles with 1 and 2 conditioning stimuli in the left tibialis anterior muscle in 15 healthy subjects during intermittent 37-Hz stimulation and analyzed its effects on the different phases of supernormality. Recordings were conducted before and after 2-wk endurance training. Training effect was assessed by measuring the difference in endurance time, peak force, and limb circumference. Muscle velocity recovery cycle recordings during intermittent high-frequency stimulation were successfully recorded in 12 subjects. Supernormality for interstimulus intervals shorter than 15 ms (early supernormality) was maximally reduced at the beginning of repetitive stimulation and recovered during stimulation. Supernormality for interstimulus intervals between 50 and 150 ms (late supernormality) showed a delayed decrease and stayed significantly reduced after high-frequency stimulation. Training had no significant effect on any of the measured parameters, but we found that training induced changes in peak force correlated positively with baseline changes of early supernormality. Our results support the hypothesis that early supernormality represents membrane potential, which depolarizes in the beginning of high-frequency stimulation. Late supernormality probably reflects transverse tubular function and shows progressive changes during high-frequency stimulation with delayed normalization.NEW & NOTEWORTHY A conditioning impulse in human muscle fibers induces a prolonged phase of increased velocity (also called supernormality) with two phases related to an early and late afterpotential. We investigated the effects of intermittent 37-Hz stimulation on muscle fiber supernormality and found that the early and late phases of supernormality changed differently, and that the late phase may reflect the ionic interactions responsible for the counter-regulation of muscle fatigue.
Collapse
Affiliation(s)
- Annie Hochstrasser
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Belén Rodriguez
- Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Nicole Söll
- Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Hugh Bostock
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Werner J Z'Graggen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Marshall A, Alam U, Themistocleous A, Calcutt N, Marshall A. Novel and Emerging Electrophysiological Biomarkers of Diabetic Neuropathy and Painful Diabetic Neuropathy. Clin Ther 2021; 43:1441-1456. [PMID: 33906790 DOI: 10.1016/j.clinthera.2021.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes. Small and large peripheral nerve fibers can be involved in DPN. Large nerve fiber damage causes paresthesia, sensory loss, and muscle weakness, and small nerve fiber damage is associated with pain, anesthesia, foot ulcer, and autonomic symptoms. Treatments for DPN and painful DPN (pDPN) pose considerable challenges due to the lack of effective therapies. To meet these challenges, there is a major need to develop biomarkers that can reliably diagnose and monitor progression of nerve damage and, for pDPN, facilitate personalized treatment based on underlying pain mechanisms. METHODS This study involved a comprehensive literature review, incorporating article searches in electronic databases (Google Scholar, PubMed, and OVID) and reference lists of relevant articles with the authors' substantial expertise in DPN. This review considered seminal and novel research and summarizes emerging biomarkers of DPN and pDPN that are based on neurophysiological methods. FINDINGS From the evidence gathered from 145 papers, this submission describes emerging clinical neurophysiological methods with potential to act as biomarkers for the diagnosis and monitoring of DPN as well as putative future roles as predictors of response to antineuropathic pain medication in pDPN. Nerve conduction studies only detect large fiber damage and do not capture pathology or dysfunction of small fibers. Because small nerve fiber damage is prominent in DPN, additional biomarkers of small nerve fiber function are needed. Activation of peripheral nociceptor fibers using laser, heat, or targeted electrical stimuli can generate pain-related evoked potentials, which are an objective neurophysiological measure of damage along the small fiber pathways. Assessment of nerve excitability, which provides a surrogate of axonal properties, may detect alterations in function before abnormalities are detected by nerve conduction studies. Microneurography and rate-dependent depression of the Hoffmann-reflex can be used to dissect underlying pain-generating mechanisms arising from the periphery and spinal cord, respectively. Their role in informing mechanistic-based treatment of pDPN as well as facilitating clinical trials design is discussed. IMPLICATIONS The neurophysiological methods discussed, although currently not practical for use in busy outpatient settings, detect small fiber and early large fiber damage in DPN as well as disclosing dominant pain mechanisms in pDPN. They are suited as diagnostic and predictive biomarkers as well as end points in mechanistic clinical trials of DPN and pDPN.
Collapse
Affiliation(s)
- Anne Marshall
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Uazman Alam
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Andreas Themistocleous
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, California
| | - Andrew Marshall
- Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Clinical Neurophysiology, The Walton Centre, Liverpool, United Kingdom; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
10
|
Early Detection of Diabetic Peripheral Neuropathy: A Focus on Small Nerve Fibres. Diagnostics (Basel) 2021; 11:diagnostics11020165. [PMID: 33498918 PMCID: PMC7911433 DOI: 10.3390/diagnostics11020165] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of both type 1 and 2 diabetes. As a result, neuropathic pain, diabetic foot ulcers and lower-limb amputations impact drastically on quality of life, contributing to the individual, societal, financial and healthcare burden of diabetes. DPN is diagnosed at a late, often pre-ulcerative stage due to a lack of early systematic screening and the endorsement of monofilament testing which identifies advanced neuropathy only. Compared to the success of the diabetic eye and kidney screening programmes there is clearly an unmet need for an objective reliable biomarker for the detection of early DPN. This article critically appraises research and clinical methods for the diagnosis or screening of early DPN. In brief, functional measures are subjective and are difficult to implement due to technical complexity. Moreover, skin biopsy is invasive, expensive and lacks diagnostic laboratory capacity. Indeed, point-of-care nerve conduction tests are convenient and easy to implement however questions are raised regarding their suitability for use in screening due to the lack of small nerve fibre evaluation. Corneal confocal microscopy (CCM) is a rapid, non-invasive, and reproducible technique to quantify small nerve fibre damage and repair which can be conducted alongside retinopathy screening. CCM identifies early sub-clinical DPN, predicts the development and allows staging of DPN severity. Automated quantification of CCM with AI has enabled enhanced unbiased quantification of small nerve fibres and potentially early diagnosis of DPN. Improved screening tools will prevent and reduce the burden of foot ulceration and amputations with the primary aim of reducing the prevalence of this common microvascular complication.
Collapse
|
11
|
Werland F, Hirth M, Rukwied R, Ringkamp M, Turnquist B, Jorum E, Namer B, Schmelz M, Obreja O. Maximum axonal following frequency separates classes of cutaneous unmyelinated nociceptors in the pig. J Physiol 2021; 599:1595-1610. [DOI: 10.1113/jp280269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Fiona Werland
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Michael Hirth
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Roman Rukwied
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Matthias Ringkamp
- Department of Neurosurgery Johns Hopkins University Baltimore MD USA
| | - Brian Turnquist
- Faculty of Mathematics and Computer Science Bethel University MN USA
| | - Ellen Jorum
- Section of Clinical Neurophysiology, Department of Neurology Oslo University Hospital Oslo Norway
- Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Barbara Namer
- IZKF Neuroscience Research Group, University Hospital RWTH Aachen and Department of Physiology and Pathophysiology University of Erlangen‐Nuremberg Erlangen Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| | - Otilia Obreja
- Department of Experimental Pain Research, MCTN Medical Faculty Mannheim Heidelberg University Mannheim Germany
| |
Collapse
|
12
|
De Gregorio C, Contador D, Díaz D, Cárcamo C, Santapau D, Lobos-Gonzalez L, Acosta C, Campero M, Carpio D, Gabriele C, Gaspari M, Aliaga-Tobar V, Maracaja-Coutinho V, Ezquer M, Ezquer F. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther 2020; 11:168. [PMID: 32357914 PMCID: PMC7195803 DOI: 10.1186/s13287-020-01680-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Diabetic polyneuropathy (DPN) is the most common and early developing complication of diabetes mellitus, and the key contributor for foot ulcers development, with no specific therapies available. Different studies have shown that mesenchymal stem cell (MSC) administration is able to ameliorate DPN; however, limited cell survival and safety reasons hinder its transfer from bench to bedside. MSCs secrete a broad range of antioxidant, neuroprotective, angiogenic, and immunomodulatory factors (known as conditioned medium), which are all decreased in the peripheral nerves of diabetic patients. Furthermore, the abundance of these factors can be boosted in vitro by incubating MSCs with a preconditioning stimulus, enhancing their therapeutic efficacy. We hypothesize that systemic administration of conditioned medium derived from preconditioned MSCs could reverse DPN and prevent foot ulcer formation in a mouse model of type II diabetes mellitus. METHODS Diabetic BKS db/db mice were treated with systemic administration of conditioned medium derived from preconditioned human MSCs; conditioned medium derived from non-preconditioned MSCs or vehicle after behavioral signs of DPN was already present. Conditioned medium or vehicle administration was repeated every 2 weeks for a total of four administrations, and several functional and structural parameters characteristic of DPN were evaluated. Finally, a wound was made in the dorsal surface of both feet, and the kinetics of wound closure, re-epithelialization, angiogenesis, and cell proliferation were evaluated. RESULTS Our molecular, electrophysiological, and histological analysis demonstrated that the administration of conditioned medium derived from non-preconditioned MSCs or from preconditioned MSCs to diabetic BKS db/db mice strongly reverts the established DPN, improving thermal and mechanical sensitivity, restoring intraepidermal nerve fiber density, reducing neuron and Schwann cell apoptosis, improving angiogenesis, and reducing chronic inflammation of peripheral nerves. Furthermore, DPN reversion induced by conditioned medium administration enhances the wound healing process by accelerating wound closure, improving the re-epithelialization of the injured skin and increasing blood vessels in the wound bed in a skin injury model that mimics a foot ulcer. CONCLUSIONS Studies conducted indicate that MSC-conditioned medium administration could be a novel cell-free therapeutic approach to reverse the initial stages of DPN, avoiding the risk of lower limb amputation triggered by foot ulcer formation and accelerating the wound healing process in case it occurs.
Collapse
Affiliation(s)
- Cristian De Gregorio
- Center for Regenerative Medicine, School of Medicine Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, Chile
| | - David Contador
- Center for Regenerative Medicine, School of Medicine Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, Chile
| | - Diego Díaz
- Center for Regenerative Medicine, School of Medicine Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, Chile
| | - Constanza Cárcamo
- Center for Regenerative Medicine, School of Medicine Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, Chile
| | - Daniela Santapau
- Center for Regenerative Medicine, School of Medicine Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, Chile
| | - Lorena Lobos-Gonzalez
- Center for Regenerative Medicine, School of Medicine Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, Chile
| | - Cristian Acosta
- Institute of Histology and Embryology of Mendoza (IHEM-CONICET), School of Medicine, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Mario Campero
- Department of Neurology & Neurosurgery, Hospital José Joaquín Aguirre, Universidad de Chile, Santiago, Chile
| | - Daniel Carpio
- Institute of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia, Chile
| | - Caterina Gabriele
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Research Center for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, University of Catanzaro, Catanzaro, Italy
| | - Victor Aliaga-Tobar
- Advanced Center for Chronic Diseases-ACCDiS, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases-ACCDiS, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Marcelo Ezquer
- Center for Regenerative Medicine, School of Medicine Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine Clínica Alemana-Universidad del Desarrollo, Av. Las Condes 12438, Lo Barnechea, Santiago, Chile.
| |
Collapse
|
13
|
Raastad M. The Slow Depolarization Following Individual Spikes in Thin, Unmyelinated Axons in Mammalian Cortex. Front Cell Neurosci 2019; 13:203. [PMID: 31156391 PMCID: PMC6532452 DOI: 10.3389/fncel.2019.00203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
An important goal in neuroscience is to understand how neuronal excitability is controlled. Therefore, Gardner-Medwin's 1972 discovery, that cerebellar parallel fibers were more excitable up to 100 ms after individual action potentials, could have had great impact. If this long-lasting effect were due to intrinsic membrane mechanisms causing a depolarizing after-potential (DAP) this was an important finding. However, that hypothesis met resistance because the use of K+ sensitive electrodes showed that synchronous activation, as commonly used in excitability tests, increased extracellular K+ concentration sufficiently to explain much of the hyperexcitability. It is still controversial because intra-axonal recordings, which could have settled the debate, have not been made from parallel fibers or other axons of similar calibers. If it had not been for the fact that such thin axons are, by far, the most common axon type in cortical areas and control almost all glutamate release, it would be tempting to ignore them until an appropriate intra-axonal recording technique is invented. I will go through the literature that, taken together, supports the hypothesis that a DAP is an intrinsic membrane mechanism in cerebellar parallel fibers and hippocampal Schaffer collaterals. It is most likely due to a well-controlled process that stops the fast repolarization at a membrane potential positive to resting membrane potential, leaving the membrane more excitable for ~100 ms during a slow, passive discharge of the membrane capacitance. The DAP helps reduce failures but can also cause uncontrolled bursting if it is not properly controlled. The voltage at which the fast repolarization stops, and the DAP starts, is close the activation range of both Na+ and Ca2+ voltage activated channels and is therefore essential for neuronal function.
Collapse
Affiliation(s)
- Morten Raastad
- Department of Physiology, School of Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Abstract
Clinical neurophysiologic investigation of pain pathways in humans is based on specific techniques and approaches, since conventional methods of nerve conduction studies and somatosensory evoked potentials do not explore these pathways. The proposed techniques use various types of painful stimuli (thermal, laser, mechanical, or electrical) and various types of assessments (measurement of sensory thresholds, study of nerve fiber excitability, or recording of electromyographic reflexes or cortical potentials). The two main tests used in clinical practice are quantitative sensory testing and pain-related evoked potentials (PREPs). In particular, PREPs offer the possibility of an objective assessment of nociceptive pathways. Three types of PREPs can be distinguished depending on the type of stimulation used to evoke pain: laser-evoked potentials, contact heat evoked potentials, and intraepidermal electrical stimulation evoked potentials (IEEPs). These three techniques investigate both small-diameter peripheral nociceptive afferents (mainly Aδ nerve fibers) and spinothalamic tracts without theoretically being able to differentiate the level of lesion in the case of abnormal results. In routine clinical practice, PREP recording is a reliable method of investigation for objectifying the existence of a peripheral or central lesion or loss of function concerning the nociceptive pathways, but not the existence of pain. Other methods, such as nerve fiber excitability studies using microneurography, more directly reflect the activities of nociceptive axons in response to provoked pain, but without detecting or quantifying the presence of spontaneous pain. These methods are more often used in research or experimental study design. Thus, it should be kept in mind that most of the results of neurophysiologic investigation performed in clinical practice assess small fiber or spinothalamic tract lesions rather than the neuronal mechanisms directly at the origin of pain and they do not provide objective quantification of pain.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Excitabilité Nerveuse et Thérapeutique, Faculté de Médecine de Créteil, Université Paris-Est-Créteil, Hôpital Henri Mondor, Créteil, France; Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
15
|
Ackerley R, Watkins RH. Microneurography as a tool to study the function of individual C-fiber afferents in humans: responses from nociceptors, thermoreceptors, and mechanoreceptors. J Neurophysiol 2018; 120:2834-2846. [PMID: 30256737 DOI: 10.1152/jn.00109.2018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The technique of microneurography-recording neural traffic from nerves in awake humans-has provided us with unrivaled insights into afferent and efferent processes in the peripheral nervous system for over 50 years. We review the use of microneurography to study single C-fiber afferents and provide an overview of the knowledge gained, with views to future investigations. C-fibers have slowly conducting, thin-diameter, unmyelinated axons and make up the majority of the fibers in peripheral nerves (~80%). With the use of microneurography in humans, C-fiber afferents have been differentiated into discrete subclasses that encode specific qualities of stimuli on the skin, and their functional roles have been investigated. Afferent somatosensory information provided by C-fibers underpins various positive and negative affective sensations from the periphery, including mechanical, thermal, and chemical pain (C-nociceptors), temperature (C-thermoreceptors), and positive affective aspects of touch (C-tactile afferents). Insights from microneurographic investigations have revealed the complexity of the C-fiber system, methods for delineating fundamental C-fiber populations in a translational manner, how C-fiber firing can be used to identify nerve deficits in pathological states, and how the responses from C-fibers may be modified to change sensory percepts, including decreasing pain. Understanding these processes may lead to future medical interventions to diagnose and treat C-fiber dysfunction. NEW & NOTEWORTHY The technique of microneurography allows us to directly investigate the functional roles of single C-fiber afferents in awake human beings. Here we outline and discuss the current field of C-fiber research on this heterogeneous population of afferents in healthy subjects, in pathological states, and from a translational perspective. We cover C-fibers encoding touch, temperature, and pain and provide perspectives on the future of C-fiber microneurography investigations in humans.
Collapse
Affiliation(s)
- Rochelle Ackerley
- Aix Marseille University, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives - UMR 7260), Marseille, France.,Department of Physiology, University of Gothenburg , Gothenburg , Sweden
| | | |
Collapse
|
16
|
|
17
|
|
18
|
Z'Graggen WJ, Solà R, Graf NE, Serra J, Bostock H. Sensitivity to ischaemia of single sympathetic nerve fibres innervating the dorsum of the human foot. J Physiol 2017; 595:4467-4473. [PMID: 28378458 DOI: 10.1113/jp274324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Changes in nerve conduction velocity following an impulse (i.e. velocity recovery cycles) reflect after-potentials, and can provide an indication of altered nerve membrane properties. This study used microneurography to assess the effects of ischaemia on single human sympathetic fibres innervating the dorsum of the foot. It was found that velocity recovery cycles can distinguish whether a sympathetic nerve fibre is depolarized or not. The method may be used to detect membrane depolarization of sympathetic nerve fibres in human patients when autonomic neuropathy is suspected. ABSTRACT The aim of this study was to determine whether velocity recovery cycles (VRCs) could detect the effects of ischaemia on sympathetic nerve fibres. VRCs of human sympathetic nerve fibres of the superficial peroneal nerve innervating the dorsum of the foot were recorded by microneurography in seven healthy volunteers. Sympathetic nerve fibres were identified by studying their response to manoeuvres increasing sympathetic outflow and by measuring activity-dependent slowing at 2 Hz stimulation. VRCs were assessed at rest, during 30 min of induced limb ischaemia and during 20 min of recovery after ischaemia. From each VRC was measured the relative refractory period (RRP), the supernormality and the time to peak supernormality (SN@). During ischaemia, RRP increased from the baseline value of 37.4 ± 8.7 ms (mean ± SEM) to 67.1 ± 12.1 ms (P < 0.01) and SN@ increased from 68.6 ± 9.8 ms to 133.8 ± 11.0 ms (P < 0.005). The difference between SN@ and RRP separated ischaemic from non-ischaemic sympathetic nerve fibres. It is concluded that these sympathetic nerve fibres are sensitive to ischaemia, and that VRCs provide a method to study changes of axonal membrane potential of human sympathetic nerve fibres in vivo.
Collapse
Affiliation(s)
- W J Z'Graggen
- Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland.,Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - R Solà
- Neuroscience Technologies, Barcelona, Spain
| | - N E Graf
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - J Serra
- Neuroscience Technologies, Barcelona, Spain
| | - H Bostock
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
| |
Collapse
|
19
|
Cross KP, Robertson RM. Ionic mechanisms maintaining action potential conduction velocity at high firing frequencies in an unmyelinated axon. Physiol Rep 2016; 4:4/10/e12814. [PMID: 27225630 PMCID: PMC4886175 DOI: 10.14814/phy2.12814] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/04/2016] [Indexed: 11/24/2022] Open
Abstract
The descending contralateral movement detector (DCMD) is a high‐performance interneuron in locusts with an axon capable of transmitting action potentials (AP) at more than 500 Hz. We investigated biophysical mechanisms for fidelity of high‐frequency transmission in this axon. We measured conduction velocities (CVs) at room temperature during exposure to 10 mmol/L cadmium, a calcium current antagonist, and found significant reduction in CV with reduction at frequencies >200 Hz of ~10%. Higher temperatures induced greater CV reductions during exposure to cadmium across all frequencies of ~20–30%. Intracellular recordings during 15 min of exposure to cadmium or nickel, also a calcium current antagonist, revealed an increase in the magnitude of the afterhyperpolarization potential (AHP) and the time to recover to baseline after the AHP (Medians for Control: −19.8%; Nickel: 167.2%; Cadmium: 387.2%), that could be due to a T‐type calcium current. However, the removal of extracellular calcium did not mimic divalent cation exposure suggesting calcium currents are not the cause of the AHP increase. Computational modeling showed that the effects of the divalent cations could be modeled with a persistent sodium current which could be blocked by high concentrations of divalent cations. Persistent sodium current shortened the AHP duration in our models and increased CV for high‐frequency APs. We suggest that faithful, high‐frequency axonal conduction in the DCMD is enabled by a mechanism that shortens the AHP duration like a persistent or resurgent sodium current.
Collapse
Affiliation(s)
- Kevin P Cross
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - R Meldrum Robertson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
20
|
Hoffmann T, Kistner K, Nassar M, Reeh PW, Weidner C. Use dependence of peripheral nociceptive conduction in the absence of tetrodotoxin-resistant sodium channel subtypes. J Physiol 2016; 594:5529-41. [PMID: 27105013 DOI: 10.1113/jp272082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This study examines conduction in peripheral nerves and its use dependence in tetrodotoxin-resistant (TTXr) sodium channel (Nav 1.8, Nav 1.9) knockout and wildtype animals. We observed use-dependent decreases of single fibre and compound action potential amplitude in peripheral mouse C-fibres (wildtype). This matches the previously published hypothesis that increased Na/K-pump activity is not the underlying mechanism for use-dependent changes of neural conduction. Knocking out TTXr sodium channels influences use-dependent changes of conductive properties (action potential amplitude, latency, conduction safety) in the order Nav 1.8 KO > Nav 1.9KO > wildtype. This is most likely explained by different subsets of presumably (relatively) Nav 1.7-rich conducting fibres in knockout animals as compared to wildtypes, in combination with reduced per-pulse sodium influx. ABSTRACT Use dependency of peripheral nerves, especially of nociceptors, correlates with receptive properties. Slow inactivation of voltage-gated sodium channels has been discussed to be the underlying mechanism - pointing to a receptive class-related difference of sodium channel equipment. Using electrophysiological recordings of single unmyelinated cutaneous fibres and their compound action potential (AP), we evaluated use-dependent changes in mouse peripheral nerves, and the contribution of the tetrodotoxin-resistant (TTXr) sodium channels Nav 1.8 and Nav 1.9 to these changes. Nerve fibres were electrically stimulated using single or double pulses at 2 Hz. Use-dependent changes of latency, AP amplitude, and duration as well as the fibres' ability to follow the stimulus were evaluated. AP amplitudes substantially diminished in used fibres from C57BL/6 but increased in Nav 1.8 knockout (KO) mice, with Nav 1.9 KO in between. Activity-induced latency slowing was in contrast the most pronounced in Nav 1.8 KOs and the least in wildtype mice. The genotype was also predictive of how long fibres could follow the double pulsed stimulus with wildtype fibres blocking first and Nav 1.8 KO fibres enduring the longest. In contrast, changes in spike duration were less pronounced and displayed no significant tendency. Thus, all major measures of peripheral nerve accommodation (amplitude, latency and durability) depended on genotype. All use-dependent changes appeared in the order NaV 1.8 KO > NaV 1.9 KO > wildtype, which is most likely explained by the relative contribution of Nav 1.7 varying in the same order and the amounts of per-pulse sodium influx expected in the opposite order.
Collapse
Affiliation(s)
- Tal Hoffmann
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany.
| | - Katrin Kistner
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Peter W Reeh
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Weidner
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
21
|
Specific changes in conduction velocity recovery cycles of single nociceptors in a patient with erythromelalgia with the I848T gain-of-function mutation of Nav1.7. Pain 2016; 156:1637-1646. [PMID: 25993546 DOI: 10.1097/j.pain.0000000000000229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Seven patients diagnosed with erythromelalgia (EM) were investigated by microneurography to record from unmyelinated nerve fibers in the peroneal nerve. Two patients had characterized variants of sodium channel Nav1.7 (I848T, I228M), whereas no mutations of coding regions of Navs were found in 5 patients with EM. Irrespective of Nav1.7 mutations, more than 50% of the silent nociceptors in the patients with EM showed spontaneous activity. In the patient with mutation I848T, all nociceptors, but not sympathetic efferents, displayed enhanced early subnormal conduction in the velocity recovery cycles and the expected late subnormality was reversed to supranormal conduction. The larger hyperpolarizing shift of activation might explain the difference to the I228M mutation. Sympathetic fibers that lack Nav1.8 did not show supranormal conduction in the patient carrying the I848T mutation, confirming in human subjects that the presence of Nav1.8 crucially modulates conduction in cells expressing EM mutant channels. The characteristic pattern of changes in conduction velocity observed in the patient with the I848T gain-of function mutation in Nav1.7 could be explained by axonal depolarization and concomitant inactivation of Nav1.7. If this were true, activity-dependent hyperpolarization would reverse inactivation of Nav1.7 and account for the supranormal CV. This mechanism might explain normal pain thresholds under resting conditions.
Collapse
|
22
|
Tigerholm J, Petersson ME, Obreja O, Eberhardt E, Namer B, Weidner C, Lampert A, Carr RW, Schmelz M, Fransén E. C-fiber recovery cycle supernormality depends on ion concentration and ion channel permeability. Biophys J 2016; 108:1057-71. [PMID: 25762318 DOI: 10.1016/j.bpj.2014.12.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/30/2014] [Accepted: 12/17/2014] [Indexed: 12/20/2022] Open
Abstract
Following each action potential, C-fiber nociceptors undergo cyclical changes in excitability, including a period of superexcitability, before recovering their basal excitability state. The increase in superexcitability during this recovery cycle depends upon their immediate firing history of the axon, but also determines the instantaneous firing frequency that encodes pain intensity. To explore the mechanistic underpinnings of the recovery cycle phenomenon a biophysical model of a C-fiber has been developed. The model represents the spatial extent of the axon including its passive properties as well as ion channels and the Na/K-ATPase ion pump. Ionic concentrations were represented inside and outside the membrane. The model was able to replicate the typical transitions in excitability from subnormal to supernormal observed empirically following a conducted action potential. In the model, supernormality depended on the degree of conduction slowing which in turn depends upon the frequency of stimulation, in accordance with experimental findings. In particular, we show that activity-dependent conduction slowing is produced by the accumulation of intraaxonal sodium. We further show that the supernormal phase results from a reduced potassium current Kdr as a result of accumulation of periaxonal potassium in concert with a reduced influx of sodium through Nav1.7 relative to Nav1.8 current. This theoretical prediction was supported by data from an in vitro preparation of small rat dorsal root ganglion somata showing a reduction in the magnitude of tetrodotoxin-sensitive relative to tetrodotoxin -resistant whole cell current. Furthermore, our studies provide support for the role of depolarization in supernormality, as previously suggested, but we suggest that the basic mechanism depends on changes in ionic concentrations inside and outside the axon. The understanding of the mechanisms underlying repetitive discharges in recovery cycles may provide insight into mechanisms of spontaneous activity, which recently has been shown to correlate to a perceived level of pain.
Collapse
Affiliation(s)
- Jenny Tigerholm
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Marcus E Petersson
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Otilia Obreja
- Anaesthesiology, Universitaetsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Esther Eberhardt
- Institute of Physiology and Pathophysiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Namer
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Weidner
- Department of Anesthesiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Institute of Physiology, RWTH Aachen University, Aachen, Germany
| | - Richard W Carr
- Anaesthesiology, Universitaetsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Schmelz
- Anaesthesiology, Universitaetsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Erik Fransén
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
23
|
Mice and rats differ with respect to activity-dependent slowing of conduction velocity in the saphenous peripheral nerve. Neurosci Lett 2015; 592:12-6. [DOI: 10.1016/j.neulet.2015.02.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/23/2022]
|
24
|
Uebner M, Carr RW, Messlinger K, De Col R. Activity-dependent sensory signal processing in mechanically responsive slowly conducting meningeal afferents. J Neurophysiol 2014; 112:3077-85. [DOI: 10.1152/jn.00243.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Activity-dependent processes in slowly conducting afferents have been shown to modulate conduction and receptive properties, but it is not known how the frequency of action potential firing determines the responses of such fibers to mechanical stimulation. We examined the responses of slowly conducting meningeal afferents to mechanical stimuli and the influence of preceding action potential activity. In hemisected rat heads with adhering cranial dura mater, recordings were made from meningeal nerves. Dural receptive fields of mechanically sensitive afferent fibers were stimulated with a custom-made electromechanostimulator. Sinusoidal mechanical stimuli of different stimulus durations and amplitudes were applied to produce either high-frequency (phasic) or low-frequency (tonic) discharges. Most fibers showed slowing of their axonal conduction velocity on electrically evoked activity at ≥2 Hz. In this state, the peak firing frequency of phasic responses to a 250-ms mechanical stimulus was significantly reduced compared with control. In contrast, the frequency of tonic responses induced by mechanical stimuli of >500 ms did not change. In a rare subtype of afferents, which showed conduction velocity speeding during activity, an increase in the phasic responses to mechanical stimuli was observed. Depending on the axonal properties of the afferent fibers, encoding of phasic components of mechanical stimuli is altered according to the immediate firing history. Preceding activity in mechanoreceptors slowing their conduction velocity seems to provide a form of low-pass filtering of action potential discharges predominantly reducing the phasic component. This may improve discrimination between harmless and potentially harmful mechanical stimuli in normal tissue.
Collapse
Affiliation(s)
- Michael Uebner
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; and
| | - Richard W. Carr
- Department of Anaesthesia and Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; and
| | - Roberto De Col
- Department of Anaesthesia and Intensive Care Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
25
|
Pekala D, Baginskas A, Szkudlarek HJ, Raastad M. Components of action potential repolarization in cerebellar parallel fibres. J Physiol 2014; 592:4911-29. [PMID: 25239461 DOI: 10.1113/jphysiol.2014.280719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Repolarization of the presynaptic action potential is essential for transmitter release, excitability and energy expenditure. Little is known about repolarization in thin, unmyelinated axons forming en passant synapses, which represent the most common type of axons in the mammalian brain's grey matter.We used rat cerebellar parallel fibres, an example of typical grey matter axons, to investigate the effects of K(+) channel blockers on repolarization. We show that repolarization is composed of a fast tetraethylammonium (TEA)-sensitive component, determining the width and amplitude of the spike, and a slow margatoxin (MgTX)-sensitive depolarized after-potential (DAP). These two components could be recorded at the granule cell soma as antidromic action potentials and from the axons with a newly developed miniaturized grease-gap method. A considerable proportion of fast repolarization remained in the presence of TEA, MgTX, or both. This residual was abolished by the addition of quinine. The importance of proper control of fast repolarization was demonstrated by somatic recordings of antidromic action potentials. In these experiments, the relatively broad K(+) channel blocker 4-aminopyridine reduced the fast repolarization, resulting in bursts of action potentials forming on top of the DAP. We conclude that repolarization of the action potential in parallel fibres is supported by at least three groups of K(+) channels. Differences in their temporal profiles allow relatively independent control of the spike and the DAP, whereas overlap of their temporal profiles provides robust control of axonal bursting properties.
Collapse
Affiliation(s)
- Dobromila Pekala
- Department of Physiology, Emory University School of Medicine, Atlanta GA, USA
| | - Armantas Baginskas
- Department of Physics, Mathematics and Biophysics, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hanna J Szkudlarek
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Morten Raastad
- Department of Physiology, Emory University School of Medicine, Atlanta GA, USA
| |
Collapse
|
26
|
Petersson ME, Obreja O, Lampert A, Carr RW, Schmelz M, Fransén E. Differential axonal conduction patterns of mechano-sensitive and mechano-insensitive nociceptors--a combined experimental and modelling study. PLoS One 2014; 9:e103556. [PMID: 25136824 PMCID: PMC4138079 DOI: 10.1371/journal.pone.0103556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/02/2014] [Indexed: 02/02/2023] Open
Abstract
Cutaneous pain sensations are mediated largely by C-nociceptors consisting of both mechano-sensitive (CM) and mechano-insensitive (CMi) fibres that can be distinguished from one another according to their characteristic axonal properties. In healthy skin and relative to CMi fibres, CM fibres show a higher initial conduction velocity, less activity-dependent conduction velocity slowing, and less prominent post-spike supernormality. However, after sensitization with nerve growth factor, the electrical signature of CMi fibres changes towards a profile similar to that of CM fibres. Here we take a combined experimental and modelling approach to examine the molecular basis of such alterations to the excitation thresholds. Changes in electrical activation thresholds and activity-dependent slowing were examined in vivo using single-fibre recordings of CM and CMi fibres in domestic pigs following NGF application. Using computational modelling, we investigated which axonal mechanisms contribute most to the electrophysiological differences between the fibre classes. Simulations of axonal conduction suggest that the differences between CMi and CM fibres are strongly influenced by the densities of the delayed rectifier potassium channel (Kdr), the voltage-gated sodium channels NaV1.7 and NaV1.8, and the Na+/K+-ATPase. Specifically, the CM fibre profile required less Kdr and NaV1.8 in combination with more NaV1.7 and Na+/K+-ATPase. The difference between CM and CMi fibres is thus likely to reflect a relative rather than an absolute difference in protein expression. In support of this, it was possible to replicate the experimental reduction of the ADS pattern of CMi nociceptors towards a CM-like pattern following intradermal injection of nerve growth factor by decreasing the contribution of Kdr (by 50%), increasing the Na+/K+-ATPase (by 10%), and reducing the branch length from 2 cm to 1 cm. The findings highlight key molecules that potentially contribute to the NGF-induced switch in nociceptors phenotype, in particular NaV1.7 which has already been identified clinically as a principal contributor to chronic pain states such as inherited erythromelalgia.
Collapse
Affiliation(s)
- Marcus E Petersson
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Otilia Obreja
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Angelika Lampert
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Richard W Carr
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Martin Schmelz
- Dept. of Anaesthesiology, Universitaetsmedizin Mannheim, Univ. of Heidelberg, Mannheim, Germany
| | - Erik Fransén
- School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden; Stockholm Brain Institute, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
27
|
Tigerholm J, Petersson ME, Obreja O, Lampert A, Carr R, Schmelz M, Fransén E. Modeling activity-dependent changes of axonal spike conduction in primary afferent C-nociceptors. J Neurophysiol 2013; 111:1721-35. [PMID: 24371290 DOI: 10.1152/jn.00777.2012] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action potential initiation and conduction along peripheral axons is a dynamic process that displays pronounced activity dependence. In patients with neuropathic pain, differences in the modulation of axonal conduction velocity by activity suggest that this property may provide insight into some of the pathomechanisms. To date, direct recordings of axonal membrane potential have been hampered by the small diameter of the fibers. We have therefore adopted an alternative approach to examine the basis of activity-dependent changes in axonal conduction by constructing a comprehensive mathematical model of human cutaneous C-fibers. Our model reproduced axonal spike propagation at a velocity of 0.69 m/s commensurate with recordings from human C-nociceptors. Activity-dependent slowing (ADS) of axonal propagation velocity was adequately simulated by the model. Interestingly, the property most readily associated with ADS was an increase in the concentration of intra-axonal sodium. This affected the driving potential of sodium currents, thereby producing latency changes comparable to those observed for experimental ADS. The model also adequately reproduced post-action potential excitability changes (i.e., recovery cycles) observed in vivo. We performed a series of control experiments replicating blockade of particular ion channels as well as changing temperature and extracellular ion concentrations. In the absence of direct experimental approaches, the model allows specific hypotheses to be formulated regarding the mechanisms underlying activity-dependent changes in C-fiber conduction. Because ADS might functionally act as a negative feedback to limit trains of nociceptor activity, we envisage that identifying its mechanisms may also direct efforts aimed at alleviating neuronal hyperexcitability in pain patients.
Collapse
Affiliation(s)
- Jenny Tigerholm
- Department of Computational Biology, School of Computer Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
28
|
Hirth M, Rukwied R, Gromann A, Turnquist B, Weinkauf B, Francke K, Albrecht P, Rice F, Hägglöf B, Ringkamp M, Engelhardt M, Schultz C, Schmelz M, Obreja O. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density. Pain 2013; 154:2500-2511. [DOI: 10.1016/j.pain.2013.07.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 01/07/2023]
|
29
|
Ørstavik K, Kleggetveit IP, Jørum E. [Microneurography and research on peripheral neuropathic pain]. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2013; 133:302-5. [PMID: 23381167 DOI: 10.4045/tidsskr.12.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Microneurography is a neurophysiological technique which enables recording from single peripheral nerve fibres in persons who are awake. The method is only used in research. We discuss how microneurography has been used to map nerve-fibre functions under normal circumstances and in chronic pain conditions. METHOD The article is based on a literature search in PubMed and on the authors' own knowledge and experience of the method from their research. RESULTS Microneurography has contributed to the understanding of pain under physiological conditions and in chronic pain conditions, in particular peripheral neuropathic pain. For example, signs of hyperexcitability have been found in peripheral nerve fibres in connection with neuropathies and peripheral neuropathic pain conditions, and the proportion of hyperexcitable nerve fibres has been shown to be greater in neuropathy patients with chronic pain than in neuropathy patients without pain. Findings indicate that so-called CMi nociceptors play an important role in chronic neuropathic pain. INTERPRETATION In the longer term we hope that research using microneurography will help to reveal mechanisms of direct importance for the development of targeted treatment of neuropathic pain.
Collapse
Affiliation(s)
- Kristin Ørstavik
- Nevrologisk avdeling, Klinisk nevrofysiologisk seksjon, Oslo Universitetssykehus, Rikshospitalet, Norway.
| | | | | |
Collapse
|
30
|
Zotova EG, Arezzo JC. NON-INVASIVE EVALUATION OF NERVE CONDUCTION IN SMALL DIAMETER FIBERS IN THE RAT. PHYSIOLOGY JOURNAL 2013; 2013:254789. [PMID: 23580940 PMCID: PMC3620683 DOI: 10.1155/2013/254789] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel non-invasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9-18 m/s (Aδ axons), as well as in a subgroup of unmylinated C fibers conducting at approximately 1-2 m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2 m/s range over a 20-day period following the topical application of capsaicin (ANOVA p<0.03). Increasing the frequency of applied repetitive stimulation over a range of 0.75 Hz to 6.0 Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA p<0.01). This technique offers a unique opportunity for the non-invasive, repeatable, and quantitative assessment of velocity in the subsets of Aδ and C fibers in parallel with evaluation of fast nerve conduction.
Collapse
Affiliation(s)
- Elena G. Zotova
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Joseph C. Arezzo
- Department of Neurology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
31
|
Differential Effects of Low Dose Lidocaine on C-Fiber Classes in Humans. THE JOURNAL OF PAIN 2012. [DOI: 10.1016/j.jpain.2012.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
32
|
BoËRio D, Z'graggen WJ, Tan SV, Guetg A, Ackermann K, Bostock H. Muscle velocity recovery cycles: Effects of repetitive stimulation on two muscles. Muscle Nerve 2012; 46:102-11. [DOI: 10.1002/mus.23267] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Strength-duration time constant in peripheral nerve: no abnormality in multiple sclerosis. Mult Scler Int 2012; 2012:390157. [PMID: 22645684 PMCID: PMC3356942 DOI: 10.1155/2012/390157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/13/2012] [Accepted: 03/20/2012] [Indexed: 11/23/2022] Open
Abstract
Objectives. To investigate the properties of the strength-duration time constant (SDTC) in multiple sclerosis (MS) patients. Methods. The SDTC and rheobase in 16 MS patients and 19 healthy controls were obtained following stimulation of the right median nerve at the wrist. Results. SDTC and rheobase values were 408.3 ± 60.0 μs and 4.0 ± 1.8 mA in MS patients, versus 408.0 ± 62.4 μs and 3.8 ± 2.1 mA in controls. The differences were not significant in SDTC or rheobase values between the patients and controls (P = 0.988 for SDTC and P = 0.722 for rheobase). Conclusion. Our study showed no abnormality in relapsing remitting MS patients in terms of SDTC, which gives some indirect information about peripheral Na+ channel function. This may indicate that alterations in the Na+ channel pattern in central nervous system (CNS) couldnot be shown in the peripheral nervous system (PNS) in the MS patients by SDTC. The opinion that MS can be a kind of channelopathy might be proven by performing other axonal excitability tests or SDTC in progressive forms of MS.
Collapse
|
34
|
Neukom L, Vastani N, Seifert B, Spahn DR, Maurer K. Propofol decreases the axonal excitability in rat primary sensory afferents. Life Sci 2011; 90:343-50. [PMID: 22227474 DOI: 10.1016/j.lfs.2011.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/14/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
AIMS The aim of this present study was to investigate the changes of peripheral sensory nerve excitability produced by propofol. MAIN METHODS In a recently described in vitro model of rodent saphenous nerve we used the technique of threshold tracking (QTRAC®) to measure changes of axonal nerve excitability of Aβ-fibres caused by propofol. Concentrations of 10 μMol, 100 μMol and 1000 μMol were tested. Latency, peak response, strength-duration time constant (τSD) and recovery cycle of the sensory neuronal action potential (SNAP) were recorded. KEY FINDINGS Our results have shown that propofol decreases nerve excitability of rat primary sensory afferents in vitro. Latency increased with increasing concentrations (0μMol: 0.96 ± 0.07ms; 1000μMol 1.10 ± 0.06ms, P<0.01). Also, propofol prolonged the relative refractory period (0μMol: 1.79 ± 1.13ms; 100 μMol: 2.53 ± 1.38ms, P<0.01), and reduced superexcitability (0 μMol: -14.0±4.0%; 100μMol: -9.5 ± 5.5%) and subexcitability (0μMol: 7.5 ± 1.2%; 1000μMol: 3.6 ± 1.2) significantly during the recovery cycle (P<0.01). SIGNIFICANCE Our results have shown that propofol decreases nerve excitability of primary sensory afferents. The technique of threshold tracking revealed that axonal voltage-gated ion channels are significantly affected by propofol and therefore might be at least partially responsible for earlier described analgesic effects.
Collapse
Affiliation(s)
- Lisa Neukom
- Institute of Anesthesiology, University Hospital of Zurich, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats. Pain 2011; 153:42-55. [PMID: 21993185 DOI: 10.1016/j.pain.2011.08.015] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 07/11/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022]
Abstract
C-nociceptors do not normally fire action potentials unless challenged by adequate noxious stimuli. However, in pathological states nociceptors may become hyperexcitable and may generate spontaneous ectopic discharges. The aim of this study was to compare rat neuropathic pain models and to assess their suitability to model the spontaneous C-nociceptor activity found in neuropathic pain patients. Studies were performed in normal rats (n=40), healthy human subjects (n=15), peripheral neuropathic pain patients (n=20), and in five rat neuropathic pain models: nerve crush (n=24), suture (n=14), chronic constriction injury (n=12), STZ-induced diabetic neuropathy (n=56), and ddC-induced neuropathy (n=15). Microneurographic recordings were combined with electrical stimulation to monitor activity in multiple C fibers. Stimulation at 0.25 Hz allowed spontaneous impulses to be identified by fluctuations in baseline latency. Abnormal latency fluctuations could be produced by several mechanisms, and spontaneous activity was most reliably identified by the presence of unexplained latency increases corresponding to two or more additional action potentials. Spontaneous activity was present in a proportion of mechano-insensitive C-nociceptors in the patients and all rat models. The three focal traumatic nerve injury models provided the highest proportion (59.5%), whereas the two polyneuropathy models had fewer (18.6%), and the patients had an intermediate proportion (33.3%). Spontaneously active mechano-sensitive C-nociceptors were not recorded. Microneurographic recordings of spontaneous activity in diseased C-nociceptors may be useful for both short- and long-term drug studies, both in animals and in humans.
Collapse
|
36
|
Bucher D, Goaillard JM. Beyond faithful conduction: short-term dynamics, neuromodulation, and long-term regulation of spike propagation in the axon. Prog Neurobiol 2011; 94:307-46. [PMID: 21708220 PMCID: PMC3156869 DOI: 10.1016/j.pneurobio.2011.06.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 05/27/2011] [Accepted: 06/07/2011] [Indexed: 12/13/2022]
Abstract
Most spiking neurons are divided into functional compartments: a dendritic input region, a soma, a site of action potential initiation, an axon trunk and its collaterals for propagation of action potentials, and distal arborizations and terminals carrying the output synapses. The axon trunk and lower order branches are probably the most neglected and are often assumed to do nothing more than faithfully conducting action potentials. Nevertheless, there are numerous reports of complex membrane properties in non-synaptic axonal regions, owing to the presence of a multitude of different ion channels. Many different types of sodium and potassium channels have been described in axons, as well as calcium transients and hyperpolarization-activated inward currents. The complex time- and voltage-dependence resulting from the properties of ion channels can lead to activity-dependent changes in spike shape and resting potential, affecting the temporal fidelity of spike conduction. Neural coding can be altered by activity-dependent changes in conduction velocity, spike failures, and ectopic spike initiation. This is true under normal physiological conditions, and relevant for a number of neuropathies that lead to abnormal excitability. In addition, a growing number of studies show that the axon trunk can express receptors to glutamate, GABA, acetylcholine or biogenic amines, changing the relative contribution of some channels to axonal excitability and therefore rendering the contribution of this compartment to neural coding conditional on the presence of neuromodulators. Long-term regulatory processes, both during development and in the context of activity-dependent plasticity may also affect axonal properties to an underappreciated extent.
Collapse
Affiliation(s)
- Dirk Bucher
- The Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
37
|
Z'graggen WJ, Troller R, Ackermann KA, Humm AM, Bostock H. Velocity recovery cycles of human muscle action potentials: repeatability and variability. Clin Neurophysiol 2011; 122:2294-9. [PMID: 21555240 DOI: 10.1016/j.clinph.2011.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Velocity recovery cycles (VRCs) of human muscle action potentials have been proposed as a new technique for assessing muscle membrane function in myopathies. This study was undertaken to determine the variability and repeatability of VRC measures such as supernormality, to help guide future clinical use of the method. METHODS To assess repeatability, VRCs with one and two conditioning stimuli were recorded from brachioradialis muscle by direct muscle stimulation in 20 normal volunteers, and the measurements repeated 1 week later. To further assess variability and dependence on electrode separation, age and sex, recordings from an additional 20 normal volunteers were added. RESULTS There was a high intraclass correlation between repeated recordings of early supernormality, indicating excellent reliability of this VRC measure. However, relative refractory period had a smaller coefficient of repeatability in relation to the changes previously described during ischemia. We found no evidence that any of the excitability measures depended on electrode separation, conduction time or apparent velocity. There were also no significant differences between the recordings from men and women, or between the recordings from older (mean 44.9 y) and younger (26.5 y) subjects. CONCLUSIONS VRC measures are sufficiently consistent to be suitable for comparing muscle membrane function both within subjects and between groups. Early supernormality measurements benefit most from within subject comparisons. SIGNIFICANCE These normative data sets provide a firm basis for planning clinical studies.
Collapse
Affiliation(s)
- Werner J Z'graggen
- Department of Neurosurgery, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Feng B, Gebhart GF. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am J Physiol Gastrointest Liver Physiol 2011; 300:G170-80. [PMID: 21071510 PMCID: PMC3025511 DOI: 10.1152/ajpgi.00406.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hypersensitivity in inflammatory/irritable bowel syndrome is contributed to in part by changes in the receptive properties of colorectal afferent endings, likely including mechanically insensitive afferents (MIAs; silent afferents) that have the ability to acquire mechanosensitivity. The proportion and attributes of colorectal MIAs, however, have not previously been characterized. The distal ∼3 cm of colorectum with either pelvic (PN) or lumbar splanchnic (LSN) nerve attached was removed, opened longitudinally, pinned flat in a recording chamber, and perfused with oxygenated Krebs solution. Colorectal receptive endings were located by electrical stimulation and characterized as mechanosensitive or not by blunt probing, mucosal stroking, and circumferential stretch. MIA endings were tested for response to and acquisition of mechanosensitivity by localized exposure to an inflammatory soup (IS). Colorectal afferents were also tested with twin-pulse and repetitive electrical stimulation paradigms. PN MIAs represented 23% of 211 afferents studied, 71% (30/42) of which acquired mechanosensitivity after application of IS to their receptive ending. LSN MIAs represented 33% of 156 afferents studied, only 23% (11/48) of which acquired mechanosensitivity after IS exposure. Mechanosensitive PN endings uniformly exhibited significant twin-pulse slowing whereas LSN endings showed no significant twin-pulse difference. PN MIAs displayed significantly greater activity-dependent slowing than LSN MIAs. In conclusion, significant proportions of MIAs are present in the colorectal innervation; significantly more in the PN than LSN acquire mechanosensitivity in an inflammatory environment. This knowledge contributes to our understanding of the possible roles of MIAs in colon-related disorders like inflammatory/irritable bowel syndrome.
Collapse
Affiliation(s)
- Bin Feng
- Center for Pain Research, Univ. of Pittsburgh, W1402 BST, 200 Lothrop St., Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
39
|
Z'Graggen WJ, Brander L, Tuchscherer D, Scheidegger O, Takala J, Bostock H. Muscle membrane dysfunction in critical illness myopathy assessed by velocity recovery cycles. Clin Neurophysiol 2010; 122:834-41. [PMID: 21044861 DOI: 10.1016/j.clinph.2010.09.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/08/2010] [Accepted: 09/23/2010] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To test the hypothesis that muscle fibers are depolarized in patients with critical illness myopathy by measuring velocity recovery cycles (VRCs) of muscle action potentials. METHODS VRCs were recorded from brachioradialis muscle by direct muscle stimulation in 10 patients in intensive care with evidence of critical illness myopathy (CIM). Two sets of recordings were made, mean 3.9 d apart, and compared with those from 10 age-matched controls. RESULTS Muscle supernormality was reduced in the patients by 50% compared with controls (P<0.002) and relative refractory period was increased by 59% (P<0.01). Supernormality was correlated with plasma potassium levels (R=-0.753, P<0.001), and the slope of this relationship was much steeper than previously reported for non-critically ill patients with renal failure (P<0.01). CONCLUSIONS The abnormal excitability properties indicate that the muscle fibers in CIM were depolarized, and/or that sodium channel inactivation was increased. The heightened sensitivity to potassium is consistent with the hypothesis that an endotoxin reduces sodium channel availability in depolarized muscle fibers. SIGNIFICANCE VRCs provide a practicable means to monitor muscle membrane changes in intensive care and to investigate the pathogenesis of CIM.
Collapse
Affiliation(s)
- W J Z'Graggen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
40
|
Kamavuako EN, Farina D. Time-dependent effects of pre-conditioning activation on muscle fiber conduction velocity and twitch torque. Muscle Nerve 2010; 42:547-55. [DOI: 10.1002/mus.21726] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Z'Graggen WJ, Aregger F, Farese S, Humm AM, Baumann C, Uehlinger DE, Bostock H. Velocity recovery cycles of human muscle action potentials in chronic renal failure. Clin Neurophysiol 2010; 121:874-81. [PMID: 20181515 DOI: 10.1016/j.clinph.2010.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 12/20/2009] [Accepted: 01/08/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To test the hypothesis that muscle fibers are depolarized in patients with chronic renal failure, by measuring velocity recovery cycles of muscle action potentials as indicators of muscle membrane potential. METHODS Velocity recovery cycles were recorded from brachioradialis muscle by direct muscle stimulation in 13 patients, before, immediately after, and 1h after haemodialysis, and compared with those from 10 age-matched controls. RESULTS In the patients, supernormality was reduced by 47%, and relative refractory period increased by 60.5% compared with controls (both P<0.001). Dialysis normalized the supernormality, but an hour later it was again reduced. These changes in supernormality were strongly correlated with the changes in serum potassium levels (P<0.0001). A late component of supernormality, attributed to potassium accumulation in the t-tubule system, was also reduced in the patients but remained abnormally low after dialysis. CONCLUSIONS Muscle membranes in the patients were chronically depolarized by hyperkalemia. Whereas dialysis transiently normalized muscle membrane potential, it was not adequate to normalize t-tubule function. SIGNIFICANCE Chronic muscle membrane depolarization by hyperkalemia may account for some of the functional deficits in uremic myopathy. Consistent normalization of membrane potential by avoiding hyperkalemia may therefore reduce symptoms of 'uremic myopathy'.
Collapse
Affiliation(s)
- W J Z'Graggen
- Department of Neurology, Inselspital, Bern University Hospital and University of Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
42
|
Ringkamp M, Johanek LM, Borzan J, Hartke TV, Wu G, Pogatzki-Zahn EM, Campbell JN, Shim B, Schepers RJ, Meyer RA. Conduction properties distinguish unmyelinated sympathetic efferent fibers and unmyelinated primary afferent fibers in the monkey. PLoS One 2010; 5:e9076. [PMID: 20140089 PMCID: PMC2816714 DOI: 10.1371/journal.pone.0009076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Different classes of unmyelinated nerve fibers appear to exhibit distinct conductive properties. We sought a criterion based on conduction properties for distinguishing sympathetic efferents and unmyelinated, primary afferents in peripheral nerves. METHODOLOGY/PRINCIPAL FINDINGS In anesthetized monkey, centrifugal or centripetal recordings were made from single unmyelinated nerve fibers in the peroneal or sural nerve, and electrical stimuli were applied to either the sciatic nerve or the cutaneous nerve endings, respectively. In centrifugal recordings, electrical stimulation at the sympathetic chain and dorsal root was used to determine the fiber's origin. In centrifugal recordings, sympathetic fibers exhibited absolute speeding of conduction to a single pair of electrical stimuli separated by 50 ms; the second action potential was conducted faster (0.61 0.16%) than the first unconditioned action potential. This was never observed in primary afferents. Following 2 Hz stimulation (3 min), activity-dependent slowing of conduction in the sympathetics (8.6 0.5%) was greater than in one afferent group (6.7 0.5%) but substantially less than in a second afferent group (29.4 1.9%). In centripetal recordings, most mechanically-insensitive fibers also exhibited absolute speeding to twin pulse stimulation. The subset that did not show this absolute speeding was responsive to chemical stimuli (histamine, capsaicin) and likely consists of mechanically-insensitive afferents. During repetitive twin pulse stimulation, mechanosensitive afferents developed speeding, and speeding in sympathetic fibers increased. CONCLUSIONS/SIGNIFICANCE The presence of absolute speeding provides a criterion by which sympathetic efferents can be differentiated from primary afferents. The differences in conduction properties between sympathetics and afferents likely reflect differential expression of voltage-sensitive ion channels.
Collapse
Affiliation(s)
- Matthias Ringkamp
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Caveats when studying motor cortex excitability and the cortical control of movement using transcranial magnetic stimulation. Clin Neurophysiol 2010; 121:121-3. [DOI: 10.1016/j.clinph.2009.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 11/22/2022]
|
44
|
McNulty PA, Burke D. When cold becomes hot. J Physiol 2009; 587:5511. [PMID: 19959546 DOI: 10.1113/jphysiol.2009.183483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Penelope A McNulty
- Prince of Wales Medical Research Institute and University of New SouthWales, Sydney, Australia.
| | | |
Collapse
|
45
|
Campero M, Baumann TK, Bostock H, Ochoa JL. Human cutaneous C fibres activated by cooling, heating and menthol. J Physiol 2009; 587:5633-52. [PMID: 19822550 DOI: 10.1113/jphysiol.2009.176040] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Differential A-fibre block of human peripheral nerves changes the sensation evoked by innocuous cooling (approximately 24 degrees C) of the skin from 'cold' to 'hot' or 'burning', and this has been attributed to activity in unidentified unmyelinated fibres that is normally masked or inhibited by activity in Adelta cold fibres. Application of the TRPM8 agonist menthol to the skin evokes 'burning/stinging' as well as 'cold', and the unpleasant sensations are also enhanced by A-fibre block. In this study we used microneurography to search for C fibres in human skin activated by cooling and menthol, which could be responsible for these phenomena. Afferent C fibres were classified by activity-dependent slowing as Type 1A (polymodal nociceptor), Type 1B (mechanically insensitive nociceptor) or Type 2 (cold sensitive), and their responses to heating and cooling ramps were measured before and after topical application of menthol preparations (2-50%). The only C fibres activated by menthol were the Type 2 fibres, which discharged vigorously with innocuous cooling and were strongly activated and sensitized to cooling by menthol. Unlike an Adelta cold fibre, they continued to discharge at skin temperatures down to 0 degrees C, and most (13/15) were also activated by heating. We propose that the Type 2 C fibres, although resembling Adelta cold fibres in their responses to innocuous cooling and menthol, have a more complex sensory function, colouring with a 'hot-burning' quality the perceptions of low and high temperatures. Their bimodal thermoreceptive properties may help account for several puzzling psychophysical phenomena, such as 'innocuous cold nociception', 'paradoxical heat' and the thermal grill illusion, and also for some neuropathic pains.
Collapse
Affiliation(s)
- M Campero
- Facultad de Medicina, Clinica Alemana-Universidad del Desarrollo, Santiago, Chile.
| | | | | | | |
Collapse
|
46
|
Microneurography in rats: a minimally invasive method to record single C-fiber action potentials from peripheral nerves in vivo. Neurosci Lett 2009; 470:168-74. [PMID: 19800936 DOI: 10.1016/j.neulet.2009.09.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 09/27/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
Abstract
Microneurography is a method suitable for recording intraneural single or multiunit action potentials in conscious subjects. Microneurography has rarely been applied to animal experiments, where more invasive methods, like the teased fiber recording technique, are widely used. We have tested the feasibility of microneurographic recordings from the peripheral nerves of rats. Tungsten microelectrodes were inserted into the sciatic nerve at mid-thigh level. Single or multiunit action potentials evoked by regular electrical stimulation were recorded, digitized and displayed as a raster plot of latencies. The method allows unambiguous recording and recognition of single C-fiber action potentials from an in vivo preparation, with minimal disruption of the nerve being recorded. Multiple C-fibers can be recorded simultaneously for several hours, and if the animal is allowed to recover, repeated recording sessions can be obtained from the same nerve at the same level over a period of weeks or months. Also, single C units can be functionally identified by their changes in latency to natural stimuli, and insensitive units can be recognized as 'silent' nociceptors or sympathetic efferents by their distinctive profiles of activity-dependent slowing during repetitive electrical stimulation, or by the effect on spontaneous efferent activity of a proximal anesthetic block. Moreover, information about the biophysical properties of C axons can be obtained from their latency recovery cycles. Finally, we show that this preparation is potentially suitable for the study of C-fiber behavior in models of neuropathies and nerve lesions, both under resting conditions and in response to drug administration.
Collapse
|
47
|
Z'Graggen WJ, Bostock H. Velocity recovery cycles of human muscle action potentials and their sensitivity to ischemia. Muscle Nerve 2009; 39:616-26. [DOI: 10.1002/mus.21192] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Abstract
Routine motor nerve conduction studies measure latencies, conduction velocities and amplitudes of compound action potentials. These measurements can be very useful in defining the pathology, while they provide little insight into the underlying disease mechanisms. Increasingly, the technique of 'threshold tracking' is being used in research and clinical studies on large myelinated axons. Nerve excitability testing is a non-invasive approach in investigating the pathophysiology of peripheral nerve disorders, which determines the electrical properties of the nerve membrane at the site of stimulation. We have found evidence that in patients with critical illness polyneuropathy peripheral nerves are depolarized. The correlations with serum factors suggest that this membrane depolarization is related to endoneurial hyperkalemia and/or hypoxia. While other mechanisms of depolarization may well be involved, the degree to which potential-sensitive nerve excitability indices are related to serum potassium and bicarbonate suggests that other factors, independent of potassium and acid-base balance, are likely to be of relatively minor significance.
Collapse
|
49
|
Farina D, Falla D. Effect of muscle-fiber velocity recovery function on motor unit action potential properties in voluntary contractions. Muscle Nerve 2008; 37:650-8. [DOI: 10.1002/mus.20948] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
De Col R, Messlinger K, Carr RW. Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges. J Physiol 2007; 586:1089-103. [PMID: 18096592 DOI: 10.1113/jphysiol.2007.145383] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axonal conduction velocity varies according to the level of preceding impulse activity. In unmyelinated axons this typically results in a slowing of conduction velocity and a parallel increase in threshold. It is currently held that Na(+)-K(+)-ATPase-dependent axonal hyperpolarization is responsible for this slowing but this has long been equivocal. We therefore examined conduction velocity changes during repetitive activation of single unmyelinated axons innervating the rat cranial meninges. In direct contradiction to the currently accepted postulate, Na(+)-K(+)-ATPase blockade actually enhanced activity-induced conduction velocity slowing, while the degree of velocity slowing was curtailed in the presence of lidocaine (10-300 microm) and carbamazepine (30-500 microm) but not tetrodotoxin (TTX, 10-80 nm). This suggests that a change in the number of available sodium channels is the most prominent factor responsible for activity-induced changes in conduction velocity in unmyelinated axons. At moderate stimulus frequencies, axonal conduction velocity is determined by an interaction between residual sodium channel inactivation following each impulse and the retrieval of channels from inactivation by a concomitant Na(+)-K(+)-ATPase-mediated hyperpolarization. Since the process is primarily dependent upon sodium channel availability, tracking conduction velocity provides a means of accessing relative changes in the excitability of nociceptive neurons.
Collapse
Affiliation(s)
- Roberto De Col
- Institute for Physiology and Pathophysiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | |
Collapse
|