1
|
Pineau A, Martin A, Lepers R, Papaiordanidou M. Influence of stimulation parameters on torque development during the combined application of electrical nerve stimulation and muscle lengthening. J Neurophysiol 2024; 132:1255-1264. [PMID: 39258773 DOI: 10.1152/jn.00136.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
This study investigated the influence of stimulation parameters on torque production when combining a brief muscle lengthening with electrical stimulation. Fifteen volunteers participated in one experimental session where two distinct stimulation modalities were compared: wide-pulse high-frequency (WPHF; pulse duration: 1 ms, frequency: 100 Hz), favoring afferent pathway activation, and narrow-pulse low-frequency (NPLF; pulse duration: 0.05 ms, frequency: 20 Hz), favoring activation of the efferent pathway. Both stimulation modalities were applied to evoke 5-10% of maximal voluntary contraction either in isometric conditions (WPHF and NPLF) or in combination with a muscle lengthening (lengthening condition: WPHF + LEN and NPLF + LEN). The torque-time integral (TTI) during the stimulation trains and the muscle activity after the cessation of the stimulation trains [sustained electromyographic (EMG) activity, normalized to the maximal EMG activity] were assessed and compared between the stimulation modalities and the conditions (2-way ANOVA). An interaction effect was obtained, revealing significant differences in TTI and sustained EMG activity between WPHF + LEN and the other tested conditions (P = 0.048 and P = 0.044, respectively). TTI and sustained EMG activity were higher for WPHF + LEN (228.4 ± 105.3 Nm·s and 0.085 ± 0.070, respectively) compared to WPHF (168.4 ± 72.9 Nm·s; 0.052 ± 0.026), NPLF + LEN (136.4 ± 38.9 Nm·s; 0.031 ± 0.016), and NPLF (125.2 ± 36.1 Nm·s; 0.028 ± 0.015). The increased TTI during the WPHF + LEN condition suggests that the contribution of afferent pathways to the evoked torque can be enhanced with the muscle lengthening superimposition. They highlight the importance of using WPHF stimulation that already solicits Ia afferents, to benefit from the cumulative afferent activation induced by the muscle lengthening to further increase torque production.NEW & NOTEWORTHY The results of the present study highlight the importance of using electrical stimulation modalities that preferentially activate Ia afferents to take advantage of the superimposition of muscle lengthening to further enhance afferent pathways' contribution to evoked torque and, in turn, increase torque production. These results offer the opportunity to improve the efficacy of the wide-pulse high-frequency stimulation modality.
Collapse
Affiliation(s)
- Antoine Pineau
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Romuald Lepers
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, UFR des Sciences du SportUniversité Bourgogne, Dijon, France
| |
Collapse
|
2
|
Arai S, Sasaki A, Tsugaya S, Nomura T, Milosevic M. Inhibition of tibialis anterior spinal reflex circuits using frequency-specific neuromuscular electrical stimulation. Artif Organs 2024; 48:891-901. [PMID: 38436108 DOI: 10.1111/aor.14737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND Neuromuscular electrical stimulation (NMES) can generate muscle contractions and elicit excitability of neural circuits. However, the optimal stimulation frequency for effective neuromodulation remains unclear. METHODS Eleven able-bodied individuals participated in our study to examine the effects of: (1) low-frequency NMES at 25 Hz, (2) high-frequency NMES at 100 Hz; and (3) mixed-frequency NMES at 25 and 100 Hz switched every second. NMES was delivered to the right tibialis anterior (TA) muscle for 1 min in each condition. The order of interventions was pseudorandomized between participants with a washout of at least 15 min between conditions. Spinal reflexes were elicited using single-pulse transcutaneous spinal cord stimulation applied over the lumbar enlargement to evoke responses in multiple lower-limb muscles bilaterally and maximum motor responses (Mmax) were elicited in the TA muscle by stimulating the common peroneal nerve to assess fatigue at the baseline and immediately, 5, 10, and 15 min after each intervention. RESULTS Our results showed that spinal reflexes were significantly inhibited immediately after the mixed-frequency NMES, and for at least 15 min in follow-up. Low-frequency NMES inhibited spinal reflexes 5 min after the intervention, and also persisted for at least 10 min. These effects were present only in the stimulated TA muscle, while other contralateral and ipsilateral muscles were unaffected. Mmax responses were not affected by any intervention. CONCLUSIONS Our results indicate that even a short-duration (1 min) NMES intervention using low- and mixed-frequency NMES could inhibit spinal reflex excitability of the TA muscle without inducing fatigue.
Collapse
Affiliation(s)
- Suzufumi Arai
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
| | - Atsushi Sasaki
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
| | - Shota Tsugaya
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
| | - Taishin Nomura
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Toyonaka, Japan
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| |
Collapse
|
3
|
Cuadra C, De Boef A, Luong S, Wolf SL, Nichols TR, Lyle MA. Reduced inhibition from quadriceps onto soleus after acute quadriceps fatigue suggests Golgi tendon organ contribution to heteronymous inhibition. Eur J Neurosci 2024; 60:4317-4331. [PMID: 38853295 PMCID: PMC11304518 DOI: 10.1111/ejn.16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Heteronymous inhibition between lower limb muscles is primarily attributed to recurrent inhibitory circuits in humans but could also arise from Golgi tendon organs (GTOs). Distinguishing between recurrent inhibition and mechanical activation of GTOs is challenging because their heteronymous effects are both elicited by stimulation of nerves or a muscle above motor threshold. Here, the unique influence of mechanically activated GTOs was examined by comparing the magnitude of heteronymous inhibition from quadriceps (Q) muscle stimulation onto ongoing soleus electromyographic at five Q stimulation intensities (1.5-2.5× motor threshold) before and after an acute bout of stimulation-induced Q fatigue. Fatigue was used to decrease Q stimulation evoked force (i.e., decreased GTO activation) despite using the same pre-fatigue stimulation currents (i.e., same antidromic recurrent inhibition input). Thus, a decrease in heteronymous inhibition after Q fatigue and a linear relation between stimulation-evoked torque and inhibition both before and after fatigue would support mechanical activation of GTOs as a source of inhibition. A reduction in evoked torque but no change in inhibition would support recurrent inhibition. After fatigue, Q stimulation-evoked knee torque, heteronymous inhibition magnitude and inhibition duration were significantly decreased for all stimulation intensities. In addition, heteronymous inhibition magnitude was linearly related to twitch-evoked knee torque before and after fatigue. These findings support mechanical activation of GTOs as a source of heteronymous inhibition along with recurrent inhibition. The unique patterns of heteronymous inhibition before and after fatigue across participants suggest the relative contribution of GTOs, and recurrent inhibition may vary across persons.
Collapse
Affiliation(s)
- Cristian Cuadra
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago, Chile
| | - Adam De Boef
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sarah Luong
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| | - Steven L Wolf
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Atlanta, Georgia, USA
| | - T Richard Nichols
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mark A Lyle
- Division of Physical Therapy, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Ting JE, Hooper CA, Dalrymple AN, Weber DJ. Tonic Stimulation of Dorsal Root Ganglion Results in Progressive Decline in Recruitment of Aα/β-Fibers in Rats. Neuromodulation 2024:S1094-7159(24)00631-7. [PMID: 39046395 DOI: 10.1016/j.neurom.2024.06.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES In this study, we aimed to characterize the recruitment and maintenance of action potential firing in Aα/β-fibers generated during tonic dorsal root ganglion stimulation (DRGS) applied over a range of clinically relevant stimulation parameters. MATERIALS AND METHODS We delivered electrical stimulation to the L5 dorsal root ganglion and recorded antidromic evoked compound action potentials (ECAPs) in the sciatic nerve during DRGS in Sprague Dawley rats. We measured charge thresholds to elicit ECAPs in Aα/β-fibers during DRGS applied at multiple pulse widths (50, 150, 300, 500 μs) and frequencies (5, 20, 50, 100 Hz). We measured the peak-to-peak amplitudes, latencies, and widths of ECAPs generated during 180 seconds of DRGS, and excitation threshold changes to investigate potential mechanisms of ECAP suppression. RESULTS Tonic DRGS produced ECAPs in Aα/β-fibers at charge thresholds below the motor threshold. Increasing the pulse width of DRGS led to a significant increase in the charge required to elicit ECAPs in Aα/β-fibers, while varying DRGS frequency did not influence ECAP thresholds. Over the course of 180 seconds, ECAP peak-to-peak amplitude decreased progressively in a frequency-dependent manner, where 5- and 100-Hz DRGS resulted in 22% and 87% amplitude reductions, respectively, and ECAP latencies increased from baseline measurements during DRGS at 10, 20, 50, and 100 Hz. Regardless of DRGS frequency, ECAP amplitudes recovered within 120 seconds after turning DRGS off. We determined that ECAP suppression may be attributed to increasing excitation thresholds for individual fibers during DRGS. Following 180 seconds of DRGS, an average of 7.33% increase in stimulation amplitude was required to restore the ECAP to baseline amplitude. CONCLUSIONS DRGS produces a progressive and frequency-dependent reduction in ECAP amplitude that occurs within and above the frequency range used clinically to relieve pain. If DRGS-mediated analgesia relies on Aβ-fiber activation, then the frequency or duty cycle of stimulation should be set to the lowest effective level to maintain sufficient activation of Aβ-fibers.
Collapse
Affiliation(s)
- Jordyn E Ting
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Charli Ann Hooper
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ashley N Dalrymple
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA; Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Hardy TA, Chadwick MR, Ferguson C, Cross TJ, Taylor BJ. Differential effects of exercise intensity and tolerable duration on exercise-induced diaphragm and expiratory muscle fatigue. J Appl Physiol (1985) 2024; 136:1591-1603. [PMID: 38695354 DOI: 10.1152/japplphysiol.00007.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/16/2024] Open
Abstract
We investigated the effect of exercise intensity and tolerable duration on the development of exercise-induced diaphragm and expiratory muscle fatigue. Ten healthy adults (25 ± 5 yr; 2 females) cycled to intolerance on three separate occasions: 1) 5% below critical power ( 0.05). In conclusion, the magnitude of exercise-induced diaphragm fatigue was greater after longer-duration severe exercise than after shorter-duration severe and heavy exercise. By contrast, the magnitude of exercise-induced expiratory muscle fatigue was unaffected by exercise intensity and tolerable duration.NEW & NOTEWORTHY Exercise-induced respiratory muscle fatigue contributes to limiting exercise tolerance. Accordingly, better understanding the exercise conditions under which respiratory muscle fatigue occurs is warranted. Although heavy-intensity as well as short- and long-duration severe-intensity exercise performed to intolerance elicit diaphragm and expiratory muscle fatigue, we find, for the first time, that the relationship between exercise intensity, exercise duration, and the magnitude of exercise-induced fatigue is different for the diaphragm compared with the expiratory muscles.
Collapse
Affiliation(s)
- Tim A Hardy
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Faculty of Medicine & Health, Leeds Institute of Rheumatic & Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Matt R Chadwick
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Carrie Ferguson
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States
| | - Troy J Cross
- School of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Bryan J Taylor
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Cardiovascular Diseases, Department of Cardiovascular Medicine, Mayo Clinic Florida, Jacksonville, Florida, United States
| |
Collapse
|
6
|
Carroll AS, Park SB, Lin CSY, Taylor MS, Kwok F, Simon NG, Reilly MM, Kiernan MC, Vucic S. Axonal excitability as an early biomarker of nerve involvement in hereditary transthyretin amyloidosis. Clin Neurophysiol 2024; 159:81-95. [PMID: 38377648 DOI: 10.1016/j.clinph.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES The treatment of hereditary transthyretin amyloidosis polyneuropathy (ATTRv-PN) has been revolutionised by genetic therapies, with dramatic improvements in patient outcomes. Whilst the optimal timing of treatment initiation remains unknown, early treatment is desirable. Consequently, the aim of the study was to develop biomarkers of early nerve dysfunction in ATTRv-PN. METHODS Ulnar motor and sensory axonal excitability studies were prospectively undertaken on 22 patients with pathogenic hereditary transthyretin amyloid (ATTRv) gene variants, 12 with large fibre neuropathy (LF+) and 10 without (LF-), with results compared to age- and sex-matched healthy controls. RESULTS In motor axons we identified a continuum of change from healthy controls, to LF- and LF+ ATTRv with progressive reduction in hyperpolarising threshold electrotonus (TEh40(10-20 ms): p = 0.04, TEh40(20-40 ms): p = 0.01 and TEh40(90-10 ms): p = 0.01), suggestive of membrane depolarisation. In sensory axons lower levels of subexcitability were observed on single (SubEx) and double pulse (SubEx2) recovery cycle testing in LF+ (SubEx: p = 0.015, SubEx2: p = 0.015, RC(2-1): p = 0.04) suggesting reduced nodal slow potassium conductance, which promotes sensory hyperexcitability, paraesthesia and pain. There were no differences in sensory or motor excitability parameters when comparing different ATTRv variants. CONCLUSIONS These progressive changes seen across the disease spectrum in ATTRv-PN suggest that axonal excitability has utility to identify early and progressive nerve dysfunction in ATTRv, regardless of genotype. SIGNIFICANCE Axonal excitability is a promising early biomarker of nerve dysfunction in ATTRv-PN.
Collapse
Affiliation(s)
- Antonia S Carroll
- Brain and Mind Centre, Faculty of Medicine and Health, Translational Research Collective University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia; Westmead Amyloidosis Centre, Westmead Hospital, University of Sydney, Sydney, Australia; Centre for Neuromuscular Disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK.
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Cindy S Y Lin
- Brain and Mind Centre, Faculty of Medicine and Health, Translational Research Collective University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Mark S Taylor
- Westmead Amyloidosis Centre, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Fiona Kwok
- Westmead Amyloidosis Centre, Westmead Hospital, University of Sydney, Sydney, Australia
| | - Neil G Simon
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Mary M Reilly
- Centre for Neuromuscular Disease, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew C Kiernan
- Brain and Mind Centre, Faculty of Medicine and Health, Translational Research Collective University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Steve Vucic
- Brain and Nerve Centre, Concord Hospital, University of Sydney, Sydney, Australia
| |
Collapse
|
7
|
Amiez N, Martin A, Gaveau J, Julliand S, Papaxanthis C, Paizis C. Local vibration induces changes in spinal and corticospinal excitability in vibrated and antagonist muscles. J Neurophysiol 2024; 131:379-393. [PMID: 38198664 DOI: 10.1152/jn.00258.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 01/12/2024] Open
Abstract
Local vibration (LV) applied over the muscle tendon constitutes a powerful stimulus to activate the muscle spindle primary (Ia) afferents that project to the spinal level and are conveyed to the cortical level. This study aimed to identify the neuromuscular changes induced by a 30-min LV-inducing illusions of hand extension on the vibrated flexor carpi radialis (FCR) and the antagonist extensor carpi radialis (ECR) muscles. We studied the change of the maximal voluntary isometric contraction (MVIC, experiment 1) for carpal flexion and extension, motor-evoked potentials (MEPs, experiment 2), cervicomedullary motor-evoked potentials (CMEPs, experiment 2), and Hoffmann's reflex (H-reflex, experiment 3) for both muscles at rest. Measurements were performed before (PRE) and at 0, 30, and 60 min after LV protocol. A lasting decrease in strength was only observed for the vibrated muscle. The reduction in CMEPs observed for both muscles seems to support a decrease in alpha motoneurons excitability. In contrast, a slight decrease in MEPs responses was observed only for the vibrated muscle. The MEP/CMEP ratio increase suggested greater cortical excitability after LV for both muscles. In addition, the H-reflex largely decreased for the vibrated and the antagonist muscles. The decrease in the H/CMEP ratio for the vibrated muscle supported both pre- and postsynaptic causes of the decrease in the H-reflex. Finally, LV-inducing illusions of movement reduced alpha motoneurons excitability for both muscles with a concomitant increase in cortical excitability.NEW & NOTEWORTHY Spinal disturbances confound the interpretation of excitability changes in motor areas and compromise the conclusions reached by previous studies using only a corticospinal marker for both vibrated and antagonist muscles. The time course recovery suggests that the H-reflex perturbations for the vibrated muscle do not only depend on changes in alpha motoneurons excitability. Local vibration induces neuromuscular changes in both vibrated and antagonist muscles at the spinal and cortical levels.
Collapse
Affiliation(s)
- Nicolas Amiez
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Alain Martin
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Jérémie Gaveau
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Sophie Julliand
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Charalambos Papaxanthis
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
| | - Christos Paizis
- Inserm UMR 1093-CAPS, UFR des Sciences du Sport, Institut National de la Santé et de la Recherche Médicale: UMR 1093, Université de Bourgogne, Dijon, France
- Centre d'Expertise de la Performance, UFR des Sciences du Sport, Université de Bourgogne, Dijon, France
| |
Collapse
|
8
|
Papavasileiou A, Xenofondos A, Baudry S, Lapole T, Amiridis IG, Metaxiotis D, Tsatalas T, Patikas DA. Protocols Targeting Afferent Pathways via Neuromuscular Electrical Stimulation for the Plantar Flexors: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:2347. [PMID: 36850945 PMCID: PMC9967278 DOI: 10.3390/s23042347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
This systematic review documents the protocol characteristics of studies that used neuromuscular electrical stimulation protocols (NMES) on the plantar flexors [through triceps surae (TS) or tibial nerve (TN) stimulation] to stimulate afferent pathways. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement, was registered to PROSPERO (ID: CRD42022345194) and was funded by the Greek General Secretariat for Research and Technology (ERA-NET NEURON JTC 2020). Included were original research articles on healthy adults, with NMES interventions applied on TN or TS or both. Four databases (Cochrane Library, PubMed, Scopus, and Web of Science) were systematically searched, in addition to a manual search using the citations of included studies. Quality assessment was conducted on 32 eligible studies by estimating the risk of bias with the checklist of the Effective Public Health Practice Project Quality Assessment Tool. Eighty-seven protocols were analyzed, with descriptive statistics. Compared to TS, TN stimulation has been reported in a wider range of frequencies (5-100, vs. 20-200 Hz) and normalization methods for the contraction intensity. The pulse duration ranged from 0.2 to 1 ms for both TS and TN protocols. It is concluded that with increasing popularity of NMES protocols in intervention and rehabilitation, future studies may use a wider range of stimulation attributes, to stimulate motor neurons via afferent pathways, but, on the other hand, additional studies may explore new protocols, targeting for more optimal effectiveness. Furthermore, future studies should consider methodological issues, such as stimulation efficacy (e.g., positioning over the motor point) and reporting of level of discomfort during the application of NMES protocols to reduce the inherent variability of the results.
Collapse
Affiliation(s)
- Anastasia Papavasileiou
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | - Anthi Xenofondos
- Physical Education and Sports Sciences, Frederick University, 1036 Nicosia, Cyprus
| | - Stéphane Baudry
- Laboratory of Applied Biology, Research Unit in Applied Neurophysiology (LABNeuro), Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Thomas Lapole
- Université Jean Monnet Saint-Etienne, Lyon 1, Université Savoie Mont-Blanc, Laboratoire Interuniversitaire de Biologie de la Motricité, F-42023 Saint-Etienne, France
| | - Ioannis G. Amiridis
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| | | | - Themistoklis Tsatalas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Dimitrios A. Patikas
- Laboratory of Neuromechanics, School of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62110 Serres, Greece
| |
Collapse
|
9
|
Grosprêtre S, Eon P, Marcel-Millet P. Virtual reality does not fool the brain only: spinal excitability changes during virtually simulated falling. J Neurophysiol 2023; 129:368-379. [PMID: 36515975 DOI: 10.1152/jn.00383.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Virtual reality (VR) is known to induce substantial activation of brain's motor regions. It remains unclear to what extent virtual reality can trigger the sensorimotor system, and more particularly, whether it can affect lower nervous levels. In this study, we aimed to assess whether VR simulation of challenging and stressful postural situations (Richie's plank experience) could interfere with spinal excitability of postural muscles in 15 healthy young participants. The H-reflex of the triceps surae muscles was elicited with electrical nerve stimulation while participants were standing and wearing a VR headset. Participants went through several conditions, during which stimulations were evoked: standing still (noVR), standing in VR on the ground (groundVR), standing on the edge of a building (plankVR), and falling from the building (fallingVR). Myoelectrical activity of the triceps surae muscles was measured throughout the experiment. Leg and head movements were also measured by means of accelerometers to account for body oscillations. First, no differences in head rotations and myoelectrical activity were to be noted between conditions. Second, triceps H-reflex (HMAX/MMAX) was not affected from noVR to groundVR and plankVR. The most significant finding was a drastic decrease in H-reflex during falling (-47 ± 26.9% between noVR and fallingVR, P = 0.015). It is suggested that experiencing a postural threat in VR efficiently modulates spinal excitability, despite remaining in a quiet standing posture. This study suggests that simulated falling mimics the neural adjustments observed during actual postural challenge tasks.NEW & NOTEWORTHY The present study showed a modulation of spinal excitability induced by virtual reality (VR). In the standing position, soleus H-reflex was downmodulated during a simulated falling, in the absence of apparent changes in body oscillations. Since the same behavior is usually observed during real falling, it was suggested that the visual cues provided by VR were sufficiently strong to lead the neuromuscular system to mimic the actual modulation.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- Laboratory Culture Sport Health and Society (C3S-UR 4660), Sport and Performance Department, University of Franche-Comté, Besançon, France
| | - Pauline Eon
- Laboratory Culture Sport Health and Society (C3S-UR 4660), Sport and Performance Department, University of Franche-Comté, Besançon, France
| | - Philémon Marcel-Millet
- Laboratory Culture Sport Health and Society (C3S-UR 4660), Sport and Performance Department, University of Franche-Comté, Besançon, France
| |
Collapse
|
10
|
Kato T, Sasaki A, Nakazawa K. Short-and long-latency afferent inhibition of the human leg motor cortex by H-reflex subthreshold electrical stimulation at the popliteal fossa. Exp Brain Res 2023; 241:249-261. [PMID: 36481937 PMCID: PMC9870969 DOI: 10.1007/s00221-022-06497-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
In humans, peripheral sensory stimulation inhibits subsequent motor evoked potentials (MEPs) induced by transcranial magnetic stimulation; this process is referred to as short- or long-latency afferent inhibition (SAI or LAI, respectively), depending on the inter-stimulus interval (ISI) length. Although upper limb SAI and LAI have been well studied, lower limb SAI and LAI remain under-investigated. Here, we examined the time course of the soleus (SOL) muscle MEP following electrical tibial nerve (TN) stimulation at the popliteal fossa at ISIs of 20-220 ms. When the conditioning stimulus intensity was three-fold the perceptual threshold, MEP amplitudes were inhibited at an ISI of 220 ms, but not at shorter ISIs. TN stimulation just below the Hoffman (H)-reflex threshold intensity inhibited MEP amplitudes at ISIs of 30, 35, 100, 180 and 200 ms. However, the relationship between MEP inhibition and the P30 latency of somatosensory evoked potentials (SEPs) did not show corresponding ISIs at the SEP P30 latency that maximizes MEP inhibition. To clarify whether the site of afferent-induced MEP inhibition occurs at the cortical or spinal level, we examined the time course of SOL H-reflex following TN stimulation. H-reflex amplitudes were not significantly inhibited at ISIs where MEP inhibition occurred but at an ISI of 120 ms. Our findings indicate that stronger peripheral sensory stimulation is required for lower limb than for upper limb SAI and LAI and that lower limb SAI and LAI are of cortical origin. Moreover, the direct pathway from the periphery to the primary motor cortex may contribute to lower limb SAI.
Collapse
Affiliation(s)
- Tatsuya Kato
- grid.26999.3d0000 0001 2151 536XGraduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, 153-8902 Tokyo, Japan ,grid.54432.340000 0001 0860 6072Japan Society for the Promotion of Science, Tokyo, 102-0083 Japan
| | - Atsushi Sasaki
- grid.54432.340000 0001 0860 6072Japan Society for the Promotion of Science, Tokyo, 102-0083 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, 560-8531 Japan
| | - Kimitaka Nakazawa
- grid.26999.3d0000 0001 2151 536XGraduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, 153-8902 Tokyo, Japan
| |
Collapse
|
11
|
Jankowska E, Kaczmarek D, Hammar I. Long-term modulation of the axonal refractory period. Eur J Neurosci 2022; 56:4983-4999. [PMID: 35999192 PMCID: PMC9826316 DOI: 10.1111/ejn.15801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 01/11/2023]
Abstract
The main question addressed in this study was whether the refractoriness of nerve fibres can be modulated by their depolarisation and, if so, whether depolarisation of nerve fibres evokes a long-term decrease in the duration of the refractory period as well as the previously demonstrated increase in their excitability. This was investigated on nerve fibres within the dorsal columns, dorsal roots and peripheral nerves in deeply anaesthetised rats in vivo. The results revealed major differences depending on the sites of fibre stimulation and polarisation. Firstly, the relative refractory period was found to be shorter in epidurally stimulated dorsal column fibres than in fibres stimulated at other sites. Secondly, the minimal effective interstimulus intervals reflecting the absolute refractory period were likewise shorter for nerve fibres within the dorsal columns even though action potentials evoked by the second of a pair of stimuli were similarly delayed with respect to the preceding action potentials at all the stimulation sites. Thirdly, the minimal interstimulus intervals were reduced by epidurally applied cathodal direct current polarisation but not at other stimulation sites. Consequently, higher proportions of dorsal column fibres could be excited at higher frequencies, especially following their depolarisation, at interstimulus intervals as short as 0.5-0.7 ms. The results demonstrate that epidural depolarisation results in long-lasting effects not only on the excitability but also on the refractoriness of dorsal column fibres. They also provide further evidence for specific features of afferent fibres traversing the dorsal columns previously linked to properties of their branching regions.
Collapse
Affiliation(s)
- Elzbieta Jankowska
- Department of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Dominik Kaczmarek
- Department of Physiology and BiochemistryPoznan University of Physical EducationPoznanPoland
| | - Ingela Hammar
- Department of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Carzoli JP, Alenazy M, Richmond SB, Enoka RM. Bursting TENS increases walking endurance more than Continuous TENS in middle-aged adults. J Electromyogr Kinesiol 2022; 63:102644. [DOI: 10.1016/j.jelekin.2022.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
|
13
|
Carroll AS, Howells J, Lin CS, Park SB, Simon N, Reilly MM, Vucic S, Kiernan MC. Differences in nerve excitability properties across upper limb sensory and motor axons. Clin Neurophysiol 2021; 136:138-149. [DOI: 10.1016/j.clinph.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/24/2022]
|
14
|
Vitry F, Papaiordanidou M, Martin A. Mechanisms modulating spinal excitability after nerve stimulation inducing extra torque. J Appl Physiol (1985) 2021; 131:1162-1175. [PMID: 34264132 DOI: 10.1152/japplphysiol.00005.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The study included three experiments aiming to examine the mechanisms responsible for spinal excitability modulation, as assessed by the H-reflex, following stimulation trains delivered at two different frequencies (20 and 100 Hz) inducing extra torque (ET). A first experiment (n = 15) was conducted to evaluate changes in presynaptic inhibition acting on Ia afferents induced by these electrical stimulation trains, assessed by conditioning the soleus H-reflex (tibial nerve stimulation) with stimulation of the common peroneal nerve (D1 inhibition) and of the femoral nerve (heteronymous Ia facilitation, HF). A second experiment (n = 12) permitted to investigate homosynaptic postactivation depression (HPAD) changes after the stimulation trains. A third experiment (n = 14) analyzed changes in motoneuron intrinsic properties after the stimulation trains, by electrically stimulating the descending corticospinal tract at the thoracic level, evoking thoracic motor-evoked potentials (TMEP). Main results showed that in all experiments, spinal excitability decreased after the 20-Hz train (P < 0.05), whereas this parameter significantly increased after the 100-Hz stimulation (P < 0.05). D1 and HF were not significantly modified after either stimulation. HPAD was significantly decreased only after the 20-Hz train, whereas TMEP was significantly increased only after the 100-Hz train (P < 0.05). It is concluded that the decreased spinal excitability observed after the 20-Hz train cannot be attributed to D1 presynaptic inhibition but rather to increased HPAD of the Ia afferents terminals, whereas the increase of this parameter obtained after the 100-Hz train can be assigned to changes in intrinsic motoneuron properties allowing to maintain Ia-α-motoneurons transmission efficacy.NEW & NOTEWORTHY Using different electrophysiological techniques, results show that the downregulation of spinal excitability observed after the 20-Hz train could be ascribed to homosynaptic postactivation depression of the Ia afferents terminals, whereas changes in intrinsic motoneuron properties could explain the increased spinal excitability observed after the 100-Hz train. A novel methodology for assessing soleus D1 presynaptic inhibition and heteronymous Ia facilitation, accounting for eventual modulations of test reflex amplitude throughout the session, was developed.
Collapse
Affiliation(s)
- Florian Vitry
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| |
Collapse
|
15
|
Bastos JAI, Martins W, Junior GC, Collins DF, Durigan JLQ. CONTRACTION FATIGUE, STRENGTH ADAPTATIONS, AND DISCOMFORT DURING CONVENTIONAL VERSUS WIDE-PULSE, HIGH-FREQUENCY, NEUROMUSCULAR ELECTRICAL STIMULATION: A SYSTEMATIC REVIEW. Appl Physiol Nutr Metab 2021; 46:1314-1321. [PMID: 34260861 DOI: 10.1139/apnm-2021-0269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuromuscular electrical stimulation (NMES) can be delivered in a conventional form (CONVNMES) and using relatively wide-pulses and high-frequencies (WPHFNMES). WPHFNMES is proposed to reduce contraction fatigability and generate larger contractions with less discomfort than CONVNMES, however, there are no systematic reviews to guide the selection of NMES types. This systematic review compared the effects of CONVNMES versus WPHFNMES on contraction fatigability, strength adaptations, and perceived discomfort in clinical and non-clinical populations. Eight studies were included. When averaged across all non-clinical participants in individual short- and long-term studies, there was either no difference between CONVNMES and WPHFNMES for all outcomes or WPHFNMES produced more fatigability. In a subset of non-clinical participants ("responders"), however, WPHFNMES reduced contraction fatigability during a single session. Long-term studies found no differences between protocols for strength adaptations in non-clinical participants and those with multiple sclerosis. We concluded that WPHFNMES reduces contraction fatigability only in the short-term and in non-clinical responder participants and may exacerbate fatigability in non-responders. This review was registered in the prospective international registry of systematic reviews/PROSPERO (Registration Number: CRD42020153907, accessed at https://www.crd.york.ac.uk/PROSPERO/). Novelty bullets: • WPHF NMES may reduce fatigue in some participants and exacerbate fatigue in others. • There were no differences in long-term between WPHF and CONV NMES on strength adaptations. • Future high-quality research is needed to optimize outcomes of NMES-based programs.
Collapse
Affiliation(s)
| | - Wagner Martins
- Universidade de Brasilia, 28127, Faculdade de Fisioterapia, Ceilândia , Distrito Federal, Brazil;
| | | | - David F Collins
- University of Alberta, 3158, Kinesiology, Sport, and Recreation, Edmonton, Alberta, Canada, T6G 2R3;
| | - Joao Luiz Quaglioti Durigan
- UnB, Physical Therapy, D- Graduate program of Science and Technology of Health and Graduate program of Physical Education, University of Brasília, Distrito Federal, Brazil, Brasiia, Select a State / Province, Brazil, 13560210;
| |
Collapse
|
16
|
Luu MJ, Jones KE, Collins DF. Decreased excitability of motor axons contributes substantially to contraction fatigability during neuromuscular electrical stimulation. Appl Physiol Nutr Metab 2021; 46:346-355. [DOI: 10.1139/apnm-2020-0366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was designed to (i) determine the time course of changes in motor axon excitability during and after neuromuscular electrical stimulation (NMES); and (ii) characterize the relationship between contraction fatigability, NMES frequency, and changes at the axon, neuromuscular junction, and muscle. Eight neurologically intact participants attended 3 sessions. NMES was delivered over the common peroneal nerve at 20, 40, or 60 Hz for 8 min (0.3 s “on”, 0.7 s “off”). Threshold tracking was used to measure changes in axonal excitability. Supramaximal stimuli were used to assess neuromuscular transmission and force-generating capacity of the tibialis anterior muscle. Torque decreased by 49% and 62% during 8 min of 40 and 60 Hz NMES, respectively. Maximal twitch torque decreased only during 60 Hz NMES. Motor axon excitability decreased by 14%, 27%, and 35% during 20, 40, and 60 Hz NMES, respectively. Excitability recovered to baseline immediately (20 Hz) and at 2 min (40 Hz) and 4 min (60 Hz) following NMES. Overall, decreases in axonal excitability best predicted how torque declined over 8 min of NMES. During NMES, motor axons become less excitable and motor units “drop out” of the contraction, contributing substantially to contraction fatigability and its dependence on NMES frequency. Novelty: The excitability of motor axons decreased during NMES in a frequency-dependent manner. As excitability decreased, axons failed to reach threshold and motor units dropped out of the contraction. Overall, decreased excitability best predicted how torque declined and thus is a key contributor to fatigability during NMES.
Collapse
Affiliation(s)
- M. John Luu
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - Kelvin E. Jones
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| | - David F. Collins
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
- Faculty of Kinesiology, Sport, and Recreation, Neuroscience and Mental Health Institute, Sensorimotor Rehabilitation Neuroscience Group, University of Alberta, Edmonton, AB T6G 2H9, Canada
| |
Collapse
|
17
|
Focal Vibration Alters Human Digital Sensory Nerve Action Potentials: A Pilot Study. Neural Plast 2021; 2021:8819169. [PMID: 33763127 PMCID: PMC7949868 DOI: 10.1155/2021/8819169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction We studied the impact of vibratory stimulation on the electrophysiological features of digital sensory nerve action potential (SNAP). Methods The antidromic digit 3 SNAP was recorded in 19 healthy adults before, during, and after applying a vibration to either 3rd or 5th metacarpal phalangeal joint (MCPJ) at 60 Hz and amplitude of 2 mm. 100% supramaximal stimulus intensity was performed in 5 subjects (randomly selected from the 19 subjects) where the SNAP sizes were recorded. Results The amplitude of digit 3 SNAP declined to 58.9 ± 8.6% when a vibration was applied to MCPJ digit 3. These impacts did not change by increasing the electrical stimulus intensity. The SNAP regained its baseline value immediately after the cessation of vibration stimulation. The magnitude of size reduction of digit 3 SNAP was less when vibration was moved to from MCPJ of digit 3 to MCPJ of digit 5. Discussion. The marked drop of the SNAP size during vibratory stimulation reflects the decreased responsiveness of Aβ afferents to electrical stimulation, which deserve further investigation in the study of focal vibration in neurorehabilitation.
Collapse
|
18
|
Gmel GE, Santos Escapa R, Parker JL, Mugan D, Al-Kaisy A, Palmisani S. The Effect of Spinal Cord Stimulation Frequency on the Neural Response and Perceived Sensation in Patients With Chronic Pain. Front Neurosci 2021; 15:625835. [PMID: 33551738 PMCID: PMC7859107 DOI: 10.3389/fnins.2021.625835] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/05/2021] [Indexed: 11/30/2022] Open
Abstract
Background The effect of spinal cord stimulation (SCS) amplitude on the activation of dorsal column fibres has been widely studied through the recording of Evoked Compound Action Potentials (ECAPs), the sum of all action potentials elicited by an electrical stimulus applied to the fibres. ECAP amplitude grows linearly with stimulus current after a threshold, and a larger ECAP results in a stronger stimulus sensation for patients. This study investigates the effect of stimulus frequency on both the ECAP amplitude as well as the perceived stimulus sensation in patients undergoing SCS therapy for chronic back and/or leg pain. Methods Patients suffering with chronic neuropathic lower-back and/or lower-limb pain undergoing an epidural SCS trial were recruited. Patients were implanted according to standard practice, having two 8-contact leads (8 mm inter-electrode spacing) which overlapped 2–4 contacts around the T9/T10 interspace. Both lead together thus spanning about three vertebral levels. Neurophysiological recordings were taken during the patient’s trial phase at two routine follow-ups using a custom external stimulator capable of recording ECAPs in real-time from all non-stimulating contacts. Stimulation was performed at various vertebral levels, varying the frequency (ranging from 2 to 455 Hz) while all other stimulating variables were kept constant. During the experiments subjects were asked to rate the stimulation-induced sensation (paraesthesia) on a scale from 0 to 10. Results Frequency response curves showed an inverse relationship between stimulation sensation strength and ECAP amplitude, with higher frequencies generating smaller ECAPs but stronger stimulation-induced paraesthesia (at constant stimulation amplitude). Both relationships followed logarithmic trends against stimulus frequency meaning that the effects on ECAP amplitude and sensation are larger for smaller frequencies. Conclusion This work supports the hypothesis that SCS-induced paraesthesia is conveyed through both frequency coding and population coding, fitting known psychophysics of tactile sensory information processing. The inverse relationship between ECAP amplitude and sensation for increasing frequencies at fixed stimulus amplitude questions common assumptions of monotonic relationships between ECAP amplitude and sensation strength.
Collapse
Affiliation(s)
| | | | | | - Dave Mugan
- Saluda Medical Pty Ltd., Artarmon, NSW, Australia
| | - Adnan Al-Kaisy
- Guy's & St. Thomas' NHS Foundation Trust, London, United Kingdom
| | | |
Collapse
|
19
|
Insausti-Delgado A, López-Larraz E, Omedes J, Ramos-Murguialday A. Intensity and Dose of Neuromuscular Electrical Stimulation Influence Sensorimotor Cortical Excitability. Front Neurosci 2021; 14:593360. [PMID: 33519355 PMCID: PMC7845652 DOI: 10.3389/fnins.2020.593360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Neuromuscular electrical stimulation (NMES) of the nervous system has been extensively used in neurorehabilitation due to its capacity to engage the muscle fibers, improving muscle tone, and the neural pathways, sending afferent volleys toward the brain. Although different neuroimaging tools suggested the capability of NMES to regulate the excitability of sensorimotor cortex and corticospinal circuits, how the intensity and dose of NMES can neuromodulate the brain oscillatory activity measured with electroencephalography (EEG) is still unknown to date. We quantified the effect of NMES parameters on brain oscillatory activity of 12 healthy participants who underwent stimulation of wrist extensors during rest. Three different NMES intensities were included, two below and one above the individual motor threshold, fixing the stimulation frequency to 35 Hz and the pulse width to 300 μs. Firstly, we efficiently removed stimulation artifacts from the EEG recordings. Secondly, we analyzed the effect of amplitude and dose on the sensorimotor oscillatory activity. On the one hand, we observed a significant NMES intensity-dependent modulation of brain activity, demonstrating the direct effect of afferent receptor recruitment. On the other hand, we described a significant NMES intensity-dependent dose-effect on sensorimotor activity modulation over time, with below-motor-threshold intensities causing cortical inhibition and above-motor-threshold intensities causing cortical facilitation. Our results highlight the relevance of intensity and dose of NMES, and show that these parameters can influence the recruitment of the sensorimotor pathways from the muscle to the brain, which should be carefully considered for the design of novel neuromodulation interventions based on NMES.
Collapse
Affiliation(s)
- Ainhoa Insausti-Delgado
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience, Tübingen, Germany
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eduardo López-Larraz
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Bitbrain, Zaragoza, Spain
| | - Jason Omedes
- Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain
- Departamento de Informática e Ingeniería de Sistemas (DIIS), University of Zaragoza, Zaragoza, Spain
| | - Ander Ramos-Murguialday
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
- Neurotechnology Laboratory, TECNALIA, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| |
Collapse
|
20
|
Does Essential Tremor Alter the Axonal Excitability Properties of Lower Motor Neurons? J Clin Neurophysiol 2020; 39:492-496. [PMID: 33369992 DOI: 10.1097/wnp.0000000000000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Automated nerve excitability testing has identified that the altered excitability of lower motor neuron (LMN) axons in central diseases is because of trans-synaptic plasticity. Essential tremor (ET) is considered a central disorder caused by an altered cerebellar circuit. This study aimed to identify alterations in the excitability of distal motor axons in subjects with ET, with the intention of clarifying whether a trans-synaptic mechanism or LMN adaptation for tremor affects the LMNs of subjects with ET. METHODS Twenty-one consecutive patients diagnosed with ET underwent a clinical and electrophysiological evaluation. For the enrolled cases and 45 age- and gender-matched healthy controls, automated nerve excitability testing with threshold tracking techniques (QTRACS software with TRONDF multiple-excitability protocol) was used to evaluate multiple nerve excitability indices in distal median nerve motor axons. RESULTS The automated protocol calculated the strength-duration time constant, parameters of threshold electrotonus and current-threshold relationship, and the recovery cycle of excitability. Comparisons of the automated nerve excitability testing parameters revealed no significant differences between the ET and control groups in any of strength-duration time constant, threshold electrotonus, current-threshold relationship, and recovery cycle, whereas the rheobase was higher in the ET group (3.4 ± 1.1 vs. 2.3 ± 1.1, mean ± standard error mean; P < 0.01). CONCLUSIONS With the exception of an increased rheobase in ET subjects, no significant differences were observed in LMN excitability between the ET subjects and their controls. The extent of plasticity or adaptation in LMNs may be limited to a major change in central processes that exert marked effects on the pool of LMNs.
Collapse
|
21
|
Excitability of motor and sensory axons in multifocal motor neuropathy. Clin Neurophysiol 2020; 131:2641-2650. [PMID: 32947198 DOI: 10.1016/j.clinph.2020.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/18/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To assess excitability differences between motor and sensory axons of affected nerves in patients with multifocal motor neuropathy (MMN). METHODS We performed motor and sensory excitability tests in affected median nerves of 20 MMN patients and in 20 age-matched normal subjects. CMAPs were recorded from the thenar and SNAPs from the 3rd digit. Clinical tests included assessment of muscle strength, two-point discrimination and joint position. RESULTS All MMN patients had weakness of the thenar muscle and normal sensory tests. Motor excitability testing in MMN showed an increased threshold for a 50% CMAP, increased rheobase, decreased stimulus-response slope, fanning-out of threshold electrotonus, decreased resting I/V slope, shortened refractory period, and more pronounced superexcitability. Sensory excitability testing in MMN revealed decreased accommodation half-time and S2-accommodation and less pronounced subexcitability. Mathematical modeling indicated increased Barrett-Barrett conductance for motor fibers and increase in internodal fast potassium conductance for sensory fibers. CONCLUSIONS Excitability findings in MMN suggest myelin sheath or paranodal seal involvement in motor fibers and, possibly, paranodal detachment in sensory fibers. SIGNIFICANCE Excitability properties of affected nerves in MMN differ between motor and sensory nerve fibers.
Collapse
|
22
|
Neuropathy in sporadic inclusion body myositis: A multi-modality neurophysiological study. Clin Neurophysiol 2020; 131:2766-2776. [PMID: 32928695 DOI: 10.1016/j.clinph.2020.07.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Sporadic inclusion body myositis (sIBM) has been associated with neuropathy. This study employs nerve excitability studies to re-examine this association and attempt to understand underlying pathophysiological mechanisms. METHODS Twenty patients with sIBM underwent median nerve motor and sensory excitability studies, clinical assessments, conventional nerve conduction testing (NCS) and quantitative thermal threshold studies. These results were compared to established normal controls, or results from a normal cohort of older control individuals. RESULTS Seven sIBM patients (35%) demonstrated abnormalities in conventional NCS, with ten patients (50%) demonstrating abnormalities in thermal thresholds. Median nerve motor and sensory excitability differed significantly in sIBM patients when compared to normal controls. None of these neurophysiological markers correlated significantly with clinical markers of sIBM severity. CONCLUSION A concurrent neuropathy exists in a significant proportion of sIBM patients, with nerve excitability studies revealing changes possibly consistent with axolemmal depolarization or concurrent neuronal adaptation to myopathy. Neuropathy in sIBM does not correlate with muscle disease severity and may reflect a differing tissue response to a common pathogenic factor. SIGNIFICANCE This study affirms the presence of a concurrent neuropathy in a large proportion of sIBM patients that appears independent of the severity of myopathy.
Collapse
|
23
|
Kandula T, Park SB, Carey KA, Lin CSY, Farrar MA. Peripheral nerve maturation and excitability properties from early childhood: Comparison of motor and sensory nerves. Clin Neurophysiol 2020; 131:2452-2459. [PMID: 32829292 DOI: 10.1016/j.clinph.2020.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Understanding of maturational properties of sensory and motor axons is of central importance for determining the impact of nerve changes in health and in disease in children and young adults. METHODS This study investigated maturation of sensory axons using axonal excitability parameters of the median nerve in 47 children, adolescents and young adults (25 males, 22 females; age range 1-25 years) and compared them to concurrent motor studies. RESULTS The overall pattern of sensory maturation was similar to motor maturation demonstrating prolongation of the strength duration time constant (P < 0.001), reduction of hyperpolarising threshold electrotonus (P = 0.002), prolongation of accommodation half-time (P = 0.005), reduction in hyperpolarising current-threshold slope (P = 0.03), and a shift to the right of the refractory cycle curve (P < 0.001), reflecting changes in passive membrane properties and fast potassium channel conductances. Sensory axons, however, had a greater increase in strength duration time constant and more attenuated changes in depolarising threshold electrotonus and current-threshold parameters, attributable to a more depolarised resting membrane potential evident from early childhood and maintained in adults. Peak amplitude was established early in sensory axons whereas motor amplitude increased with age (P < 0.001), reflecting non-axonal motor unit changes. CONCLUSIONS Maturational trajectories of sensory and motor axons were broadly parallel in children and young adults, but sensory-motor differences were initiated early in maturation. SIGNIFICANCE Identifying the evolution of biophysical changes within and between sensory and motor axons through childhood and adolescence is fundamental to understanding developmental physiology and interpreting disease-related changes in immature nerves.
Collapse
Affiliation(s)
- Tejaswi Kandula
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, High Street, Randwick, NSW 2031, Australia; Department of Neurology, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW 2051, Australia
| | - Kate A Carey
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, High Street, Randwick, NSW 2031, Australia
| | - Cindy S-Y Lin
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Camperdown, NSW 2051, Australia
| | - Michelle A Farrar
- School of Women's and Children's Health, UNSW Medicine, UNSW Sydney, High Street, Randwick, NSW 2031, Australia; Department of Neurology, Sydney Children's Hospital, High Street, Randwick, NSW 2031, Australia.
| |
Collapse
|
24
|
Enoka RM, Amiridis IG, Duchateau J. Electrical Stimulation of Muscle: Electrophysiology and Rehabilitation. Physiology (Bethesda) 2020; 35:40-56. [DOI: 10.1152/physiol.00015.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The generation of action potentials in intramuscular motor and sensory axons in response to an imposed external current source can evoke muscle contractions and elicit widespread responses throughout the nervous system that impact sensorimotor function. The benefits experienced by individuals exposed to several weeks of treatment with electrical stimulation of muscle suggest that the underlying adaptations involve several physiological systems, but little is known about the specific changes elicited by such interventions.
Collapse
Affiliation(s)
- Roger M. Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Colorado
| | - Ioannis G. Amiridis
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jacques Duchateau
- Laboratory of Applied Biology and Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
25
|
Sensory nerve stimulation causes an immediate improvement in motor function of persons with multiple sclerosis: A pilot study. Mult Scler Relat Disord 2019; 38:101508. [PMID: 31715503 DOI: 10.1016/j.msard.2019.101508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) symptoms reported in the first year of the disease include sensory impairment, fatigue, reduced mobility, and declines in hand function. The progressive reduction in motor function experienced by persons living with MS is invariably preceded by changes in sensory processing, which are strongly associated with the declines in both walking performance and manual dexterity. AIMS To assess the influence of concurrent sensory stimulation using augmented transcutaneous electrical nerve stimulation (aTENS) applied to leg and hand muscles on clinical tests of motor function in individuals whose mobility was compromised by MS. METHODS Thirteen persons with MS (52 ± 8 years; 6 women) and 12 age- and sex-matched healthy adults (52 ± 9 years) met the inclusion criteria. Participants visited the lab on two occasions with one week between visits. Each visit involved the participant performing four tests of motor function and completing two health-related questionnaires (PDDS and MSWS-12). The tests assessed walking performance (6-min test and 25-ft test), dynamic balance (chair-rise tes, and manual dexterity (grooved pegboard test). aTENS was applied through pads attached to the limbs over the tibialis anterior and rectus femoris muscles of the affected leg, and over the median nerve and the thenar eminence of the dominant hand. The pads were attached during both visits, but the current was only applied during the second visit. The stimulation comprised continuous asymmetrical biphasic pulses (0.2 ms) at a rate of 50 Hz and an intensity that elicited slight muscle contractions. RESULTS At baseline and during both treatment sessions, the performance on all four tests of motor function was worse for the MS group than the Control group. The MS group experienced significant improvements in all outcomes during the aTENS session with medium-to-large effect sizes. PDDS ratings improved (from 2.8 ± 1.3 to 2.0 ± 1.5; effect size d = -0.70) and the MSWS-12 scores declined (from 36 ± 11 to 28 ± 12; effect size d = -1.52). The concurrent application of aTENS enabled the MS group to walk further during the 6-min test (from 397 ± 174 m to 415 ± 172 m; effect size d = 0.81), to complete the 25-ft test in less time (6.7 ± 3.0 s to 6.3 ± 2.9 s; effect size d = -0.76), to increase the counts in the chair-rise test (from 11.2 ± 3.8 to 13.6 ± 4.8; effect size d = 1.52), and to perform the grooved pegboard test more quickly (from 110 ± 43 s to 99 ± 37 s; effect size d = -0.98). The only significant effect for the Control group was a significant increase in the 6-min walk distance (from 725 ± 79 to 740 ± 82 m; effect size d = 0.87). CONCLUSIONS Stimulation of sensory fibers with aTENS evoked clinically significant improvements in four tests of motor function and the self-reported level of walking limitations in persons who were moderately disabled by MS. Moreover, the improvements in function elicited by the concurrent application of aTENS were immediate.
Collapse
|
26
|
Vitry F, Martin A, Papaiordanidou M. Torque gains and neural adaptations following low-intensity motor nerve electrical stimulation training. J Appl Physiol (1985) 2019; 127:1469-1477. [DOI: 10.1152/japplphysiol.00513.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to assess neural adaptations of the plantar-flexors induced by an electrical stimulation training applied over the motor nerve at low intensity using two different stimulation frequencies. Thirty subjects were randomly assigned into 3 groups: 20 Hz, 100 Hz, and control group. The training consisted of 15 sessions of 25 stimulation trains applied over the tibial nerve and delivered at an intensity evoking 10% maximal voluntary isometric contraction (MVIC). Before and after training, MVIC was assessed and neural adaptations were evaluated by the voluntary activation level (VAL) and the V-wave (normalized by the superimposed muscle compound action potential, V/MSUP). H-reflex and motor-evoked potential (MEP) recorded during MVIC were studied to assess spinal and corticospinal excitabilities [i.e., maximal H-reflex during maximal voluntary isometric contraction (HSUP)/MSUPand maximal motor-evoked potential during maximal voluntary isometric contraction (MEPSUP)/MSUP]. MVIC significantly increased after training only for the two training groups ( P = 0.017). This increase was accompanied by a significant increase of VAL only for these groups ( P = 0.014), whereas statistical analysis revealed a time effect for V/MSUP( P = 0.022). HSUP/MSUPand MEPSUP/MSUPwere significantly increased at post conditions only for the 100 Hz group ( P = 0.021 and P = 0.029). Results show that low-intensity electrical stimulation training applied over the motor nerve can induce torque gains, accompanied by neural adaptations. Stimulation frequency differentially affected spinal and corticospinal excitabilities, indicating that neural adaptations could have a supraspinal origin for the 20-Hz protocol, whereas spinal and supraspinal mechanisms were implicated in the torque increases after the 100-Hz training.NEW & NOTEWORTHY This study brings new insights into the neurophysiological mechanisms responsible for torque gains after electrical stimulation training using wide pulse duration and low stimulation intensity applied over the motor nerve. Stimulation frequency had a distinct impact on spinal and/or supraspinal origins of the observed neural adaptations. The use of the aforementioned stimulation parameters in rehabilitation settings can be proved beneficial in terms of strength gains while avoiding any serious discomfort because of stimulation.
Collapse
Affiliation(s)
- Florian Vitry
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| |
Collapse
|
27
|
Daur N, Zhang Y, Nadim F, Bucher D. Mutual Suppression of Proximal and Distal Axonal Spike Initiation Determines the Output Patterns of a Motor Neuron. Front Cell Neurosci 2019; 13:477. [PMID: 31708748 PMCID: PMC6819512 DOI: 10.3389/fncel.2019.00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
Axonal spike initiation at sites far from somatodendritic integration occurs in a range of systems, but its contribution to neuronal output activity is not well understood. We studied the interactions of distal and proximal spike initiation in an unmyelinated motor axon of the stomatogastric nervous system in the lobster, Homarus americanus. The peripheral axons of the pyloric dilator (PD) neurons generate tonic spiking in response to dopamine application. Centrally generated bursting activity and peripheral spike initiation had mutually suppressive effects. The two PD neurons and the electrically coupled oscillatory anterior burster (AB) neuron form the pacemaker ensemble of the pyloric central pattern generator, and antidromic invasion of central compartments by peripherally generated spikes caused spikelets in AB. Antidromic spikes suppressed burst generation in an activity-dependent manner: slower rhythms were diminished or completely disrupted, while fast rhythmic activity remained robust. Suppression of bursting was based on interference with the underlying slow wave oscillations in AB and PD, rather than a direct effect on spike initiation. A simplified multi-compartment circuit model of the pacemaker ensemble replicated this behavior. Antidromic activity disrupted slow wave oscillations by resetting the inward and outward current trajectories in each spike interval. Centrally generated bursting activity in turn suppressed peripheral spike initiation in an activity-dependent manner. Fast bursting eliminated peripheral spike initiation, while slower bursting allowed peripheral spike initiation to continue during the intervals between bursts. The suppression of peripheral spike initiation was associated with a small after-hyperpolarization in the sub-millivolt range. A realistic model of the PD axon replicated this behavior and showed that a sub-millivolt cumulative after-hyperpolarization across bursts was sufficient to eliminate peripheral spike initiation. This effect was based on the dynamic interaction between slow activity-dependent hyperpolarization caused by the Na+/K+-pump and inward rectification through the hyperpolarization-activated inward current, I h . These results demonstrate that interactions between different spike initiation sites based on spike propagation can shift the relative contributions of different types of activity in an activity-dependent manner. Therefore, distal axonal spike initiation can play an important role in shaping neural output, conditional on the relative level of centrally generated activity.
Collapse
Affiliation(s)
- Nelly Daur
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| | - Yang Zhang
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States.,Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark, Newark, NJ, United States
| |
Collapse
|
28
|
Vitry F, Martin A, Papaiordanidou M. Impact of stimulation frequency on neuromuscular fatigue. Eur J Appl Physiol 2019; 119:2609-2616. [PMID: 31605203 DOI: 10.1007/s00421-019-04239-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/01/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of the present study was to examine the frequency effects (20 Hz and 100 Hz) on neuromuscular fatigue using stimulation parameters favoring an indirect motor unit recruitment through the afferent pathway. METHODS Nineteen subjects were divided into two groups: 20 Hz (n = 10) and 100 Hz (n = 9). The electrical stimulation session consisted of 25 stimulation trains (20 s ON/20 s OFF, pulse width: 1 ms) applied over the tibial nerve and delivered at an intensity evoking 10% maximal voluntary isometric contraction (MVIC). Before and after these protocols, MVIC was assessed, while neural changes were evaluated by the level of activation (VAL) and muscle changes were evaluated by the twitch associated with the maximal M-wave (Pt). For all stimulation trains, the real and the theoretical values of the torque-time integral (TTIr and TTIth, respectively) were calculated. The TTIr/TTIth ratio of the first train was calculated to evaluate the presence of extra torque. RESULTS The main results showed a similar decrease in MVIC torque after both protocols accompanied by neural and muscle changes, as evidenced by the decrease in VAL and Pt. TTIr values across the 20-Hz trains remained constant, whereas they significantly decreased during the 100-Hz stimulation trains. The relative MVIC decrease was negatively correlated with TTIr/TTIth. CONCLUSION Results give evidence of an identical neuromuscular fatigue development between protocols, while lower stimulation frequency permitted preservation of a given torque level during the stimulation trains. The negative correlation between this fatigue development and TTIr/TTIth suggests that extra torque production induces greater voluntary torque losses.
Collapse
Affiliation(s)
- Florian Vitry
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France.
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France
| | - Maria Papaiordanidou
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France
| |
Collapse
|
29
|
Sleutjes BTHM, Kovalchuk MO, Durmus N, Buitenweg JR, van Putten MJAM, van den Berg LH, Franssen H. Simulating perinodal changes observed in immune-mediated neuropathies: impact on conduction in a model of myelinated motor and sensory axons. J Neurophysiol 2019; 122:1036-1049. [PMID: 31291151 DOI: 10.1152/jn.00326.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immune-mediated neuropathies affect myelinated axons, resulting in conduction slowing or block that may affect motor and sensory axons differently. The underlying mechanisms of these neuropathies are not well understood. Using a myelinated axon model, we studied the impact of perinodal changes on conduction. We extended a longitudinal axon model (41 nodes of Ranvier) with biophysical properties unique to human myelinated motor and sensory axons. We simulated effects of temperature and axonal diameter on conduction and strength-duration properties. We then studied effects of impaired nodal sodium channel conductance and paranodal myelin detachment by reducing periaxonal resistance, as well as their interaction, on conduction in the 9 middle nodes and enclosed paranodes. Finally, we assessed the impact of reducing the affected region (5 nodes) and adding nodal widening. Physiological motor and sensory conduction velocities and changes to axonal diameter and temperature were observed. The sensory axon had a longer strength-duration time constant. Reducing sodium channel conductance and paranodal periaxonal resistance induced progressive conduction slowing. In motor axons, conduction block occurred with a 4-fold drop in sodium channel conductance or a 7.7-fold drop in periaxonal resistance. In sensory axons, block arose with a 4.8-fold drop in sodium channel conductance or a 9-fold drop in periaxonal resistance. This indicated that motor axons are more vulnerable to developing block. A boundary of block emerged when the two mechanisms interacted. This boundary shifted in opposite directions for a smaller affected region and nodal widening. These differences may contribute to the predominance of motor deficits observed in some immune-mediated neuropathies.NEW & NOTEWORTHY Immune-mediated neuropathies may affect myelinated motor and sensory axons differently. By the development of a computational model, we quantitatively studied the impact of perinodal changes on conduction in motor and sensory axons. Simulations of increasing nodal sodium channel dysfunction and paranodal myelin detachment induced progressive conduction slowing. Sensory axons were more resistant to block than motor axons. This could explain the greater predisposition of motor axons to functional deficits observed in some immune-mediated neuropathies.
Collapse
Affiliation(s)
- Boudewijn T H M Sleutjes
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria O Kovalchuk
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Naric Durmus
- Biomedical Signals and Systems, MIRA, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.,Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Jan R Buitenweg
- Biomedical Signals and Systems, MIRA, Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands.,Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hessel Franssen
- Department of Neurology, Brain Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
30
|
Neyroud D, Gonzalez M, Mueller S, Agostino D, Grosprêtre S, Maffiuletti NA, Kayser B, Place N. Neuromuscular adaptations to wide-pulse high-frequency neuromuscular electrical stimulation training. Eur J Appl Physiol 2019; 119:1105-1116. [DOI: 10.1007/s00421-019-04100-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
|
31
|
Cortical and Subcortical Contributions to Neuroplasticity after Repetitive Transspinal Stimulation in Humans. Neural Plast 2019; 2019:4750768. [PMID: 30881443 PMCID: PMC6383395 DOI: 10.1155/2019/4750768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/26/2018] [Accepted: 12/17/2018] [Indexed: 01/13/2023] Open
Abstract
The objectives of this study were to establish cortical and subcortical contributions to neuroplasticity induced by noninvasive repetitive transspinal stimulation in human subjects free of any neurological disorder. To meet our objectives, before and after 40 minutes of transspinal stimulation we established changes in tibialis anterior (TA) motor-evoked potentials (MEPs) in response to paired transcranial magnetic stimulation (TMS) pulses at interstimulus intervals (ISIs) consistent with I-wave periodicity. In order to establish to what extent similar actions are exerted at the spinal cord and motor axons, changes in soleus H-reflex and transspinal evoked potential (TEP) amplitude following transspinal and group Ia afferent conditioning stimulation, respectively, were established. After 40 min of transspinal stimulation, the TA MEP consecutive peaks of facilitation produced by paired TMS pulses were significantly decreased supporting for depression of I-waves. Additionally, the soleus H-reflex and ankle TEP depression following transspinal and group Ia afferent conditioning stimulation was potentiated at intervals when both responses interacted at the spinal cord and nerve axons. These findings support the notion that repetitive transspinal stimulation decreases corticocortical inputs onto corticospinal neurons and promotes a surround inhibition in the spinal cord and nerve axons. This novel method may be a suitable neuromodulation tool to alter excitability at cortical and subcortical levels in neurological disorders.
Collapse
|
32
|
Relations between sensory symptoms, touch sensation, and sensory neurography in the assessment of the ulnar neuropathy at the elbow. Clin Neurophysiol 2019; 130:199-206. [DOI: 10.1016/j.clinph.2018.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 11/11/2018] [Indexed: 11/23/2022]
|
33
|
Zheng Y, Shin H, Hu X. Muscle Fatigue Post-stroke Elicited From Kilohertz-Frequency Subthreshold Nerve Stimulation. Front Neurol 2018; 9:1061. [PMID: 30564190 PMCID: PMC6288233 DOI: 10.3389/fneur.2018.01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/21/2018] [Indexed: 11/13/2022] Open
Abstract
Purpose: Rapid muscle fatigue limits clinical applications of functional electrical stimulation (FES) for individuals with motor impairments. This study aimed to characterize the sustainability of muscle force elicited with a novel transcutaneous nerve stimulation technique. Method: A hemiplegic chronic stroke survivor was recruited in this case study. Clustered subthreshold pulses of 60-μs with kilohertz (12.5 kHz) carrier frequency (high-frequency mode, HF) were delivered transcutaneously to the proximal segment of the median/ulnar nerve bundles to evaluate the finger flexor muscle fatigue on both sides of the stroke survivor. Conventional nerve stimulation technique with 600-μs pulses at 30 Hz (low-frequency mode, LF) served as the control condition. Fatigue was evoked by intermittently delivering 3-s stimulation trains with 1-s resting. For fair comparison, initial contraction forces (approximately 30% of the maximal voluntary contraction) were matched between the HF and LF modes. Muscle fatigue was evaluated through elicited finger flexion forces (amplitude and fluctuation) and muscle activation patterns quantified by high-density electromyography (EMG). Result: Compared with those from the LF stimuli, the elicited forces declined more slowly, and the force plateau was higher under the HF stimulation for both the affected and contralateral sides, resulting in a more sustainable force output at higher levels. Meanwhile, the force fluctuation under the HF stimulation increased more slowly, and, thus, was smaller after successive stimulation trains compared with the LF stimuli, indicating a less synchronized activation of muscle fibers. The efficiency of the muscle activation, measured as the force-EMG ratio, was also higher in the HF stimulation mode. Conclusion: Our results indicated that the HF nerve stimulation technique can reduce muscle fatigue in stroke survivors by maintaining a higher efficiency of muscle activations compared with the LF stimulation. The technique can help improve the performance of neurorehabilitation methods based on electrical stimulation, and facilitate the utility of FES in clinical populations.
Collapse
Affiliation(s)
- Yang Zheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Henry Shin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
34
|
Giuriato G, Pedrinolla A, Schena F, Venturelli M. Muscle cramps: A comparison of the two-leading hypothesis. J Electromyogr Kinesiol 2018; 41:89-95. [PMID: 29857264 DOI: 10.1016/j.jelekin.2018.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
Exercise-Associated Muscle Cramps (EAMC) are a common painful condition of muscle spasms. Despite scientists tried to understand the physiological mechanism that underlies these common phenomena, the etiology is still unclear. From 1900 to nowadays, the scientific world retracted several times the original hypothesis of heat cramps. However, recent literature seems to focus on two potential mechanisms: the dehydration or electrolyte depletion mechanism, and the neuromuscular mechanism. The aim of this review is to examine the recent literature, in terms of physiological mechanisms of EAMC. A comprehensive search was conducted on PubMed and Google Scholar. The following terminology was applied: muscle cramps, neuromuscular hypothesis (or thesis), dehydration hypothesis, Exercise-Associated muscle cramps, nocturnal cramps, muscle spasm, muscle fatigue. From the initial literature of 424 manuscripts, sixty-nine manuscripts were included, analyzed, compared and summarized. Literature analysis indicates that neuromuscular hypothesis may prevails over the initial hypothesis of the dehydration as the trigger event of muscle cramps. New evidence suggests that the action potentials during a muscle cramp are generated in the motoneuron soma, likely accompanied by an imbalance between the rising excitatory drive from the muscle spindles (Ia) and the decreasing inhibitory drive from the Golgi tendon organs. In conclusion, from the latest investigations there seem to be a spinal involvement rather than a peripheral excitation of the motoneurons.
Collapse
Affiliation(s)
- Gaia Giuriato
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Anna Pedrinolla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy; Department of Internal Medicine, University of Utah, USA.
| |
Collapse
|
35
|
Hageman S, Kovalchuk MO, Sleutjes BTHM, van Schelven LJ, van den Berg LH, Franssen H. Sodium-potassium pump assessment by submaximal electrical nerve stimulation. Clin Neurophysiol 2018; 129:809-814. [PMID: 29477980 DOI: 10.1016/j.clinph.2018.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/15/2017] [Accepted: 01/07/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Sodium-potassium pump dysfunction in peripheral nerve is usually assessed by determining axonal hyperpolarization following maximal voluntary contraction (MVC) or maximal electrical nerve stimulation. As MVC may be unreliable and maximal electrical stimulation too painful, we assessed if hyperpolarization can also be induced by submaximal electrical nerve stimulation. METHODS In 8 healthy volunteers different submaximal electrical stimulus trains were given to the median nerve at the wrist, followed by 5 min assessment of thresholds for compound muscle action potentials of 20%, 40% or 60% of maximal. RESULTS Threshold increase after submaximal electrical nerve stimulation was most prominent after an 8 Hz train of at least 5 min duration evoking submaximal CMAPs of 60%. It induced minimal discomfort and was not painful. Threshold increase after MVC was not significantly higher than this stimulus train. CONCLUSIONS Submaximal electrical stimulation evokes activity dependent hyperpolarization in healthy test subjects without causing significant discomfort. SIGNIFICANCE Sodium-potassium pump function may be assessed using submaximal electrical stimulation.
Collapse
Affiliation(s)
- Steven Hageman
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, The Netherlands
| | - Maria O Kovalchuk
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, The Netherlands
| | - Boudewijn T H M Sleutjes
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, The Netherlands
| | - Leonard J van Schelven
- Department of Medical Technology & Clinical Physics, University Medical Centre Utrecht, The Netherlands
| | - Leonard H van den Berg
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, The Netherlands
| | - Hessel Franssen
- Brain Centre Rudolf Magnus, Department of Neurology and Neurosurgery, University Medical Centre Utrecht, The Netherlands.
| |
Collapse
|
36
|
Kovalchuk MO, Franssen H, Van Schelven LJ, Sleutjes BTHM. Comparing excitability at 37°C versus at 20°C: Differences between motor and sensory axons. Muscle Nerve 2017; 57:574-580. [DOI: 10.1002/mus.25960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Maria O. Kovalchuk
- Department of Neurology and Neurosurgery, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Hessel Franssen
- Department of Neurology and Neurosurgery, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Leonard J. Van Schelven
- Department of Medical Technology and Clinical PhysicsUniversity Medical Center UtrechtUtrecht the Netherlands
| | - Boudewijn T. H. M. Sleutjes
- Department of Neurology and Neurosurgery, Brain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht The Netherlands
| |
Collapse
|
37
|
Parissis D, Syntila SA, Ioannidis P. Corticosteroids in neurological disorders: The dark side. J Clin Neurosci 2017. [DOI: 10.1016/j.jocn.2017.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Martin A, Grosprêtre S, Vilmen C, Guye M, Mattei JP, LE Fur Y, Bendahan D, Gondin J. The Etiology of Muscle Fatigue Differs between Two Electrical Stimulation Protocols. Med Sci Sports Exerc 2017; 48:1474-84. [PMID: 27031743 DOI: 10.1249/mss.0000000000000930] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE This study aimed at investigating the mechanisms involved in the force reduction induced by two electrical stimulation (ES) protocols that were designed to activate motor units differently. METHODS The triceps surae of 11 healthy subjects (8 men; age, ~28 yr) was activated using ES applied over the tibial nerve. Two ES protocols (conventional [CONV]: 20 Hz, 0.05 ms vs wide-pulse high-frequency [WPHF]: 80 Hz, 1 ms) were performed and involved 40 trains (6 s on-6 s off) delivered at an intensity (IES) evoking 20% of maximal voluntary contraction. To analyze the mechanical properties of the motor units activated at IES, force-frequency relation was evoked before and after each protocol. H-reflex and M-wave responses evoked by the last stimulation pulse were also assessed during each ES protocol. Electromyographic responses (∑EMG) were recorded after each train to analyze the behavior of the motor units activated at IES. Metabolic variables, including relative concentrations of phosphocreatine and inorganic phosphate as well as intracellular pH, were assessed using P-MR spectroscopy during each protocol. RESULTS Larger H-reflex amplitudes were observed during WPHF as compared with CONV, whereas opposite findings were observed for M-wave amplitudes. Despite this difference, both the force reduction (-26%) and metabolic changes were similar between the two protocols. The CONV protocol induced a rightward shift of the force-frequency relation, whereas a significant reduction of the ∑EMG evoked at IES was observed only for the WPHF. CONCLUSIONS These results suggest that a decreased number of active motor units mainly contributed to WPHF-induced force decrease, whereas intracellular processes were most likely involved in the force reduction occurring during CONV stimulation.
Collapse
Affiliation(s)
- Alain Martin
- 1Aix-Marseille University, CNRS, Center for Magnetic Resonance in Biology and Medicine (CRMBM) UMR 7339, Marseille, FRANCE; 2INSERM, Cognition, Action, and Sensorimotor Plasticity (CAPS) UMR 1093, University of Burgundy, Faculty of Sport Sciences, Dijon, FRANCE; 3APHM, La Timone Hospital, Imaging Center, CEMEREM, Marseille, FRANCE; and 4Deparment of Rheumatology, Sainte Marguerite Hospital, Marseille, FRANCE
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Barss TS, Ainsley EN, Claveria-Gonzalez FC, Luu MJ, Miller DJ, Wiest MJ, Collins DF. Utilizing Physiological Principles of Motor Unit Recruitment to Reduce Fatigability of Electrically-Evoked Contractions: A Narrative Review. Arch Phys Med Rehabil 2017; 99:779-791. [PMID: 28935232 DOI: 10.1016/j.apmr.2017.08.478] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022]
Abstract
Neuromuscular electrical stimulation (NMES) is used to produce contractions to restore movement and reduce secondary complications for individuals experiencing motor impairment. NMES is conventionally delivered through a single pair of electrodes over a muscle belly or nerve trunk using short pulse durations and frequencies between 20 and 40Hz (conventional NMES). Unfortunately, the benefits and widespread use of conventional NMES are limited by contraction fatigability, which is in large part because of the nonphysiological way that contractions are generated. This review provides a summary of approaches designed to reduce fatigability during NMES, by using physiological principles that help minimize fatigability of voluntary contractions. First, relevant principles of the recruitment and discharge of motor units (MUs) inherent to voluntary contractions and conventional NMES are introduced, and the main mechanisms of fatigability for each contraction type are briefly discussed. A variety of NMES approaches are then described that were designed to reduce fatigability by generating contractions that more closely mimic voluntary contractions. These approaches include altering stimulation parameters, to recruit MUs in their physiological order, and stimulating through multiple electrodes, to reduce MU discharge rates. Although each approach has unique advantages and disadvantages, approaches that minimize MU discharge rates hold the most promise for imminent translation into rehabilitation practice. The way that NMES is currently delivered limits its utility as a rehabilitative tool. Reducing fatigability by delivering NMES in ways that better mimic voluntary contractions holds promise for optimizing the benefits and widespread use of NMES-based programs.
Collapse
Affiliation(s)
- Trevor S Barss
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Emily N Ainsley
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Francisca C Claveria-Gonzalez
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, Canada
| | - M John Luu
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Dylan J Miller
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Matheus J Wiest
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Biomechanics Laboratory, Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Brazil
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
40
|
de Carvalho M, Kiernan MC, Swash M. Fasciculation in amyotrophic lateral sclerosis: origin and pathophysiological relevance. J Neurol Neurosurg Psychiatry 2017; 88:773-779. [PMID: 28490504 DOI: 10.1136/jnnp-2017-315574] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/20/2017] [Accepted: 03/29/2017] [Indexed: 12/11/2022]
Abstract
This review considers the origin and significance of fasciculations in neurological practice, with an emphasis on fasciculations in amyotrophic lateral sclerosis (ALS), and in benign fasciculation syndromes. Fasciculation represents a brief spontaneous contraction that affects a small number of muscle fibres, causing a flicker of movement under the skin. While an understanding of the role of fasciculation in ALS remains incomplete, fasciculations derive from ectopic activity generated in the motor system. A proximal origin seems likely to contribute to the generation of fasciculation in the early stages of ALS, while distal sites of origin become more prominent later in the disease, associated with distal motor axonal sprouting as part of the reinnervation response that develops secondary to loss of motor neurons. Fasciculations are distinct from the recurrent trains of axonal firing described in neuromyotonia. Fasciculation without weakness, muscle atrophy or increased tendon reflexes suggests a benign fasciculation syndrome, even when of sudden onset. Regardless of origin, fasciculations often present as the initial abnormality in ALS, an early harbinger of dysfunction and aberrant firing of motor neurons.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Department of Neurosciences and Mental Health, Hospital de Santa Maria-CHLN, Lisbon, Portugal.,Institute of Physiology-IMM, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Sydney Medical School, University of Sydney, Brain & Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Michael Swash
- Institute of Physiology-IMM, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Department of Neurology, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
41
|
Neyroud D, Grosprêtre S, Gondin J, Kayser B, Place N. Test-retest reliability of wide-pulse high-frequency neuromuscular electrical stimulation evoked force. Muscle Nerve 2017; 57:E70-E77. [PMID: 28722822 DOI: 10.1002/mus.25747] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 01/13/2023]
Abstract
INTRODUCTION We compare forces evoked by wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (NMES) delivered to a nerve trunk versus muscle belly and assess their test-retest intraindividual and interindividual reliability. METHODS Forces evoked during 2 sessions with WPHF NMES delivered over the tibial nerve trunk and 2 sessions over the triceps surae muscle belly were compared. Ten individuals participated in 4 sessions involving ten 20-s WPHF NMES contractions interspaced by 40-s recovery. Mean evoked force and force time integral of each contraction were quantified. RESULTS For both nerve trunk and muscle belly stimulation, intraindividual test-retest reliability was good (intraclass correlation coefficient > 0.9), and interindividual variability was large (coefficient of variation between 140% and 180%). Nerve trunk and muscle belly stimulation resulted in similar evoked forces. DISCUSSION WPHF NMES locations might be chosen by individual preference because intraindividual reliability was relatively good for both locations. Muscle Nerve 57: E70-E77, 2018.
Collapse
Affiliation(s)
- Daria Neyroud
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sidney Grosprêtre
- EA4660-C3S Laboratory, Culture, Sport, Health and Society, University of Bourgogne Franche-Comté, Besançon, France
| | - Julien Gondin
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France
| | - Bengt Kayser
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
42
|
Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks. J Neurosci 2017; 37:906-921. [PMID: 28123025 PMCID: PMC5296784 DOI: 10.1523/jneurosci.2005-16.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more "natural" locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. SIGNIFICANCE STATEMENT The sodium pump is ubiquitously expressed and responsible for at least half of total brain energy consumption. The pumps maintain ionic gradients and the resting membrane potential of neurons, but increasing evidence suggests that activity- and state-dependent changes in pump activity also influence neuronal firing. Here we demonstrate that changes in sodium pump activity regulate locomotor output in the spinal cord of neonatal mice. We describe a sodium pump-mediated afterhyperpolarization in spinal neurons, mediated by spike-dependent increases in pump activity, which is affected by dopamine. Understanding how sodium pumps contribute to network regulation and are targeted by neuromodulators, including dopamine, has clinical relevance due to the role of the sodium pump in diseases, including amyotrophic lateral sclerosis, parkinsonism, epilepsy, and hemiplegic migraine.
Collapse
|
43
|
GROSPRÊTRE SIDNEY, GUEUGNEAU NICOLAS, MARTIN ALAIN, LEPERS ROMUALD. Central Contribution to Electrically Induced Fatigue depends on Stimulation Frequency. Med Sci Sports Exerc 2017; 49:1530-1540. [DOI: 10.1249/mss.0000000000001270] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Zhang Y, Bucher D, Nadim F. Ionic mechanisms underlying history-dependence of conduction delay in an unmyelinated axon. eLife 2017; 6. [PMID: 28691900 PMCID: PMC5519330 DOI: 10.7554/elife.25382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Axonal conduction velocity can change substantially during ongoing activity, thus modifying spike interval structures and, potentially, temporal coding. We used a biophysical model to unmask mechanisms underlying the history-dependence of conduction. The model replicates activity in the unmyelinated axon of the crustacean stomatogastric pyloric dilator neuron. At the timescale of a single burst, conduction delay has a non-monotonic relationship with instantaneous frequency, which depends on the gating rates of the fast voltage-gated Na+ current. At the slower timescale of minutes, the mean value and variability of conduction delay increase. These effects are because of hyperpolarization of the baseline membrane potential by the Na+/K+ pump, balanced by an h-current, both of which affect the gating of the Na+ current. We explore the mechanisms of history-dependence of conduction delay in axons and develop an empirical equation that accurately predicts this history-dependence, both in the model and in experimental measurements.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States
| | - Dirk Bucher
- Federated Department of Biological Sciences, NJIT and Rutgers University, Newark, United States
| | - Farzan Nadim
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, United States.,Federated Department of Biological Sciences, NJIT and Rutgers University, Newark, United States
| |
Collapse
|
45
|
Wegrzyk J, Ranjeva JP, Fouré A, Kavounoudias A, Vilmen C, Mattei JP, Guye M, Maffiuletti NA, Place N, Bendahan D, Gondin J. Specific brain activation patterns associated with two neuromuscular electrical stimulation protocols. Sci Rep 2017; 7:2742. [PMID: 28577338 PMCID: PMC5457446 DOI: 10.1038/s41598-017-03188-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/27/2017] [Indexed: 11/24/2022] Open
Abstract
The influence of neuromuscular electrical stimulation (NMES) parameters on brain activation has been scarcely investigated. We aimed at comparing two frequently used NMES protocols - designed to vary in the extent of sensory input. Whole-brain functional magnetic resonance imaging was performed in sixteen healthy subjects during wide-pulse high-frequency (WPHF, 100 Hz–1 ms) and conventional (CONV, 25 Hz–0.05 ms) NMES applied over the triceps surae. Each protocol included 20 isometric contractions performed at 10% of maximal force. Voluntary plantar flexions (VOL) were performed as control trial. Mean force was not different among the three protocols, however, total current charge was higher for WPHF than for CONV. All protocols elicited significant activations of the sensorimotor network, cerebellum and thalamus. WPHF resulted in lower deactivation in the secondary somatosensory cortex and precuneus. Bilateral thalami and caudate nuclei were hyperactivated for CONV. The modulation of the NMES parameters resulted in differently activated/deactivated regions related to total current charge of the stimulation but not to mean force. By targeting different cerebral brain regions, the two NMES protocols might allow for individually-designed rehabilitation training in patients who can no longer execute voluntary movements.
Collapse
Affiliation(s)
- Jennifer Wegrzyk
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | | | - Alexandre Fouré
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Anne Kavounoudias
- Aix Marseille Univ, CNRS, Laboratoire Neurosciences Intégratives et Adaptatives, UMR 7260, 13385, Marseille, France
| | | | - Jean-Pierre Mattei
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de Sainte Marguerite, Service de Rhumatologie, Pôle Appareil Locomoteur, 13005, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France.,AP-HM, Hôpital de la Timone, CEMEREM, Pôle Imagerie Médicale, 13005, Marseille, France
| | | | - Nicolas Place
- University of Lausanne, Faculty of Biology and Medicine, Institute of Sport Sciences and Department of Physiology, Lausanne, Switzerland
| | - David Bendahan
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France
| | - Julien Gondin
- Aix Marseille Univ, CNRS, CRMBM, UMR 7339, 13385, Marseille, France. .,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1217, CNRS UMR 5310, Villeurbanne, France.
| |
Collapse
|
46
|
Affiliation(s)
- Matthew C Kiernan
- Bushell Professor of Neurology, Royal Prince Alfred Hospital; and Brain and Mind Centre, University of Sydney, Sydney, NSW, 2040, Australia
| |
Collapse
|
47
|
Picton LD, Zhang H, Sillar KT. Sodium pump regulation of locomotor control circuits. J Neurophysiol 2017; 118:1070-1081. [PMID: 28539392 DOI: 10.1152/jn.00066.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Sodium pumps are ubiquitously expressed membrane proteins that extrude three Na+ ions in exchange for two K+ ions, using ATP as an energy source. Recent studies have illuminated additional, dynamic roles for sodium pumps in regulating the excitability of neuronal networks in an activity-dependent fashion. We review their role in a novel form of short-term memory within rhythmic locomotor networks. The data we review derives mainly from recent studies on Xenopus tadpoles and neonatal mice. The role and underlying mechanisms of pump action broadly match previously published data from an invertebrate, the Drosophila larva. We therefore propose a highly conserved mechanism by which sodium pump activity increases following a bout of locomotion. This results in an ultraslow afterhyperpolarization (usAHP) of the membrane potential that lasts around 1 min, but which only occurs in around half the network neurons. This usAHP in turn alters network excitability so that network output is reduced in a locomotor interval-dependent manner. The pumps therefore confer on spinal locomotor networks a temporary memory trace of recent network performance.
Collapse
Affiliation(s)
- Laurence D Picton
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews, Fife, Scotland, United Kingdom; and
| | - HongYan Zhang
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St. Andrews, St Andrews, Fife, Scotland, United Kingdom; and
| |
Collapse
|
48
|
Sung JY, Tani J, Chang TS, Lin CSY. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy. PLoS One 2017; 12:e0171223. [PMID: 28182728 PMCID: PMC5300160 DOI: 10.1371/journal.pone.0171223] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/17/2017] [Indexed: 12/02/2022] Open
Abstract
This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.
Collapse
Affiliation(s)
- Jia-Ying Sung
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jowy Tani
- Department of Neurology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes
| | - Tsui-San Chang
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cindy Shin-Yi Lin
- Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes.,Translational Neuroscience, Department of Physiology, School of Medicine Science, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
49
|
Ginanneschi F, Mignarri A, Lucchiari S, Ulzi G, Comi GP, Rossi A, Dotti MT. Neuromuscular excitability changes produced by sustained voluntary contraction and response to mexiletine in myotonia congenita. Neurophysiol Clin 2017; 47:247-252. [PMID: 28153715 DOI: 10.1016/j.neucli.2017.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/03/2017] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE To investigate the cause of transient weakness in myotonia congenita (MC) and the mechanism of action of mexiletine in reducing weakness. METHODS The changes in neuromuscular excitability produced by 1min of maximal voluntary contractions (MVC) were measured on the amplitude of compound muscle action potentials (CMAP) in two patients with either recessive or dominant MC, compared to control values obtained in 20 healthy subjects. Measurements were performed again in MC patients after mexiletine therapy. RESULTS Transient reduction in maximal CMAP amplitude lasting several minutes after MVC was evident in MC patients, whereas no change was observed in controls. Mexiletine efficiently reduced this transient CMAP depression in both patients. DISCUSSION Transient CMAP depression following sustained MVC may represent the electrophysiological correlate of the weakness clinically experienced by the patients. In MC, the low chloride conductance could induce self-sustaining action potentials after MVC, determining progressive membrane depolarization and a loss of excitability of muscle fibers, thus resulting in transient paresis. Mexiletine may prevent conduction block due to excessive membrane depolarization, thus reducing the transient CMAP depression following sustained MVC.
Collapse
Affiliation(s)
- Federica Ginanneschi
- Department of Medical, Surgical and Neurological Sciences, Neurology-Neurophysiology Unit, University of Siena, Policlinico Le Scotte, Viale Bracci 1, 53100 Siena, Italy.
| | - Andrea Mignarri
- Department of Medical, Surgical and Neurological Sciences, Neurology-Neurophysiology Unit, University of Siena, Policlinico Le Scotte, Viale Bracci 1, 53100 Siena, Italy
| | - Sabrina Lucchiari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianna Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandro Rossi
- Department of Medical, Surgical and Neurological Sciences, Neurology-Neurophysiology Unit, University of Siena, Policlinico Le Scotte, Viale Bracci 1, 53100 Siena, Italy
| | - Maria Teresa Dotti
- Department of Medical, Surgical and Neurological Sciences, Neurology-Neurophysiology Unit, University of Siena, Policlinico Le Scotte, Viale Bracci 1, 53100 Siena, Italy
| |
Collapse
|
50
|
Lou JWH, Bergquist AJ, Aldayel A, Czitron J, Collins DF. Interleaved neuromuscular electrical stimulation reduces muscle fatigue. Muscle Nerve 2016; 55:179-189. [PMID: 27313001 DOI: 10.1002/mus.25224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 06/06/2016] [Accepted: 06/15/2016] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Neuromuscular electrical stimulation (NMES) can be delivered over a muscle belly (mNMES) or nerve trunk (nNMES). Both methods generate contractions that fatigue rapidly due, in part, to non-physiologically high motor unit (MU) discharge frequencies. In this study we introduce interleaved NMES (iNMES), whereby stimulus pulses are alternated between mNMES and nNMES. iNMES was developed to recruit different MU populations with every other stimulus pulse, with a goal of reducing discharge frequencies and muscle fatigue. METHODS Torque and electromyography were recorded during fatigue protocols (12 min, 240 contractions) delivered using mNMES, nNMES, and iNMES. RESULTS Torque declined significantly 3 min into iNMES and 1 min into both mNMES and nNMES. Torque decreased by 39% during iNMES and by 67% and 58% during mNMES and nNMES, respectively. CONCLUSIONS iNMES resulted in less muscle fatigue than mNMES and nNMES. Delivering NMES in ways that reduce MU discharge frequencies holds promise for reducing muscle fatigue during NMES-based rehabilitation. Muscle Nerve, 2016 Muscle Nerve 55: 179-189, 2017.
Collapse
Affiliation(s)
- Jenny W H Lou
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, E-488 Van Vliet Centre, Edmonton, Alberta, T6G 2H9, Canada
| | - Austin J Bergquist
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
| | - Abdulaziz Aldayel
- Department of Exercise Physiology, College of Sport Science and Physical Activity, King Saud University, Riyadh, Saudi Arabia
| | - Jennifer Czitron
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, E-488 Van Vliet Centre, Edmonton, Alberta, T6G 2H9, Canada
| | - David F Collins
- Human Neurophysiology Laboratory, Faculty of Physical Education and Recreation, University of Alberta, E-488 Van Vliet Centre, Edmonton, Alberta, T6G 2H9, Canada
| |
Collapse
|