1
|
Alqahtani S, Butcher MC, Ramage G, Dalby MJ, McLean W, Nile CJ. Acetylcholine Receptors in Mesenchymal Stem Cells. Stem Cells Dev 2023; 32:47-59. [PMID: 36355611 DOI: 10.1089/scd.2022.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are well known for their regenerative potential. Even though the ability of MSCs to proliferate and differentiate has been studied extensively, there remains much to learn about the signaling mechanisms and pathways that control proliferation and influence the differentiation phenotype. In recent years, there has been growing evidence for the utility of non-neuronal cholinergic signaling systems and that acetylcholine (ACh) plays an important ubiquitous role in cell-to-cell communication. Indeed, cholinergic signaling is hypothesized to occur in stem cells and ACh synthesis, as well as in ACh receptor (AChR) expression, has been identified in several stem cell populations, including MSCs. Furthermore, AChRs have been found to influence MSC regenerative potential. In humans, there are two major classes of AChRs, muscarinic AChRs and nicotinic AChRs, with each class possessing several subtypes or subunits. In this review, the expression and function of AChRs in different types of MSC are summarized with the aim of highlighting how AChRs play a pivotal role in regulating MSC regenerative function.
Collapse
Affiliation(s)
- Saeed Alqahtani
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Mark C Butcher
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Gordon Ramage
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Matthew J Dalby
- School of Molecular Biosciences, University of Glasgow, Glasgow, United Kingdom
| | - William McLean
- School of Medicine Dentistry and Nursing and University of Glasgow, Glasgow, United Kingdom
| | - Christopher J Nile
- Faculty of Medical Sciences, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Grassi F, Fucile S. Calcium influx through muscle nAChR-channels: One route, multiple roles. Neuroscience 2019; 439:117-124. [PMID: 30999028 DOI: 10.1016/j.neuroscience.2019.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 01/31/2023]
Abstract
Although Ca2+ influx through muscle nAChR-channels has been described over the past 40 years, its functions remain still poorly understood. In this review we suggest possible roles of Ca2+ entry at all stages of muscle development, summarizing the evidence present in literature. nAChRs are expressed in myoblasts prior to fusion, and can be activated in the absence of an ACh-releasing nerve terminal, with Ca2+ influx likely contributing to regulate cell fusion. Upon establishment of nerve-muscle contact, Ca2+ influx contributes to orchestrate the signaling required for the correct formation of the neuromuscular junction. Finally, in the mature synapse, Ca2+ entry through postsynaptic nAChR-channels - highly Ca2+ permeable, in particular in humans - acts on K+ and Na+ channels to shape endplate excitability. However, when genetic defects cause excessive channel activation, Ca2+ influx becomes toxic and causes endplate myopathy. Throughout the review, we highlight how Ricardo Miledi has contributed to construct this whole body of knowledge, from the initial description of Ca2+ permeability of endplate nAChR channels, to the rationale for the treatment of endplate excitotoxic damage under pathological conditions. This article is part of a Special Issue entitled: SI: Honoring Ricardo Miledi - outstanding neuroscientist of XX-XXI centuries.
Collapse
Affiliation(s)
- Francesca Grassi
- Department of Physiology and Pharmacology, Sapienza University, piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Sergio Fucile
- Department of Physiology and Pharmacology, Sapienza University, piazzale Aldo Moro 5, 00185, Rome, Italy; IRCCS Neuromed, Viale dell'Elettronica, 86077, Pozzilli, Italy
| |
Collapse
|
3
|
Lenzi J, Pagani F, De Santis R, Limatola C, Bozzoni I, Di Angelantonio S, Rosa A. Differentiation of control and ALS mutant human iPSCs into functional skeletal muscle cells, a tool for the study of neuromuscolar diseases. Stem Cell Res 2016; 17:140-7. [PMID: 27318155 PMCID: PMC5009183 DOI: 10.1016/j.scr.2016.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disease characterized by progressive loss of motoneurons, muscle atrophy and paralysis. Recent evidence suggests that ALS should be considered as a multi-systemic disease, in which several cell types contribute to motoneuron degeneration. In this view, mutations in ALS linked genes in other neural and non-neural cell types may exert non-cell autonomous effects on motoneuron survival and function. Induced Pluripotent Stem Cells (iPSCs) have been recently derived from several patients with ALS mutations and it has been shown that they can generate motoneurons in vitro, providing a valuable tool to study ALS. However, the potential of iPSCs could be further valorized by generating other cell types that may be relevant to the pathology. In this paper, by taking advantage of a novel inducible system for MyoD expression, we show that both control iPSCs and iPSCs carrying mutations in ALS genes can generate skeletal muscle cells. We provide evidence that both control and mutant iPSC-derived myotubes are functionally active. This in vitro system will be instrumental to dissect the molecular and cellular pathways impairing the complex motoneuron microenvironment in ALS. A novel method for inducing iPSCs differentiation into muscle is presented Multiple inducible lines can be easily generated by a new transposable vector Both control and iPSCs carrying ALS mutations can generate functional muscle fibers This system will be instrumental to study non-cell autonomous contributions to ALS
Collapse
Affiliation(s)
- Jessica Lenzi
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesca Pagani
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Riccardo De Santis
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Cristina Limatola
- Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Irene Bozzoni
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
4
|
La Rovere RML, Quattrocelli M, Pietrangelo T, Di Filippo ES, Maccatrozzo L, Cassano M, Mascarello F, Barthélémy I, Blot S, Sampaolesi M, Fulle S. Myogenic potential of canine craniofacial satellite cells. Front Aging Neurosci 2014; 6:90. [PMID: 24860499 PMCID: PMC4026742 DOI: 10.3389/fnagi.2014.00090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/27/2014] [Indexed: 12/29/2022] Open
Abstract
The skeletal fibers have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterize also the adult muscle stem cells, known as satellite cells (SCs) and responsible for the fiber growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here, we isolated SCs from canine somitic [somite-derived muscle (SDM): vastus lateralis, rectus abdominis, gluteus superficialis, biceps femoris, psoas] and presomitic [pre-somite-derived muscle (PSDM): lateral rectus, temporalis, and retractor bulbi] muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM-SCs were obtained also from golden retrievers affected by muscular dystrophy (GRMD). We characterized the lifespan, the myogenic potential and functions, and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with aging and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD) and late (myosin heavy chain, myogenin) myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together, our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD SCs and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches.
Collapse
Affiliation(s)
- Rita Maria Laura La Rovere
- Department of Neuroscience and Imaging, University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Interuniversity Institute of Myology (IIM), University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Center for Excellence on Ageing (CeSI), G d'Annunzio Foundation , Chieti , Italy
| | - Mattia Quattrocelli
- Interuniversity Institute of Myology (IIM), University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven , Leuven , Belgium
| | - Tiziana Pietrangelo
- Department of Neuroscience and Imaging, University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Interuniversity Institute of Myology (IIM), University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Center for Excellence on Ageing (CeSI), G d'Annunzio Foundation , Chieti , Italy
| | - Ester Sara Di Filippo
- Department of Neuroscience and Imaging, University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Interuniversity Institute of Myology (IIM), University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Center for Excellence on Ageing (CeSI), G d'Annunzio Foundation , Chieti , Italy
| | - Lisa Maccatrozzo
- Interuniversity Institute of Myology (IIM), University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Department of Experimental Veterinary Sciences, Faculty of Veterinary Medicine, University of Padua , Padua , Italy
| | - Marco Cassano
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Francesco Mascarello
- Interuniversity Institute of Myology (IIM), University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Department of Comparative Biomedicine and Food Safety, University of Padua , Padua , Italy
| | - Inès Barthélémy
- Laboratoire de Neurobiologie, Ecole Nationale Vétérinaire d'Alfort , Maisons-Alfort , France
| | - Stephane Blot
- Laboratoire de Neurobiologie, Ecole Nationale Vétérinaire d'Alfort , Maisons-Alfort , France
| | - Maurilio Sampaolesi
- Interuniversity Institute of Myology (IIM), University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven , Leuven , Belgium ; Department of Public Health, Experimental and Forensic Medicine, Division of Human Anatomy, University of Pavia , Pavia , Italy
| | - Stefania Fulle
- Department of Neuroscience and Imaging, University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Interuniversity Institute of Myology (IIM), University "G. d'Annunzio" Chieti-Pescara , Chieti , Italy ; Center for Excellence on Ageing (CeSI), G d'Annunzio Foundation , Chieti , Italy
| |
Collapse
|
5
|
Tang JM, Yuan J, Li Q, Wang JN, Kong X, Zheng F, Zhang L, Chen L, Guo LY, Huang YH, Yang JY, Chen SY. Acetylcholine induces mesenchymal stem cell migration via Ca2+ /PKC/ERK1/2 signal pathway. J Cell Biochem 2012; 113:2704-13. [PMID: 22441978 DOI: 10.1002/jcb.24148] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acetylcholine (ACh) plays an important role in neural and non-neural function, but its role in mesenchymal stem cell (MSC) migration remains to be determined. In the present study, we have found that ACh induces MSC migration via muscarinic acetylcholine receptors (mAChRs). Among several mAChRs, MSCs express mAChR subtype 1 (m1AChR). ACh induces MSC migration via interaction with mAChR1. MEK1/2 inhibitor PD98059 blocks ERK1/2 phosphorylation while partially inhibiting the ACh-induced MSC migration. InsP3Rs inhibitor 2-APB that inhibits MAPK/ERK phosphorylation completely blocks ACh-mediated MSC migration. Interestingly, intracellular Ca(2+) ATPase-specific inhibitor thapsigargin also completely blocks ACh-induced MSC migration through the depletion of intracellular Ca(2+) storage. PKCα or PKCβ inhibitor or their siRNAs only partially inhibit ACh-induced MSC migration, but PKC-ζ siRNA completely inhibits ACh-induced MSC migration via blocking ERK1/2 phosphorylation. These results indicate that ACh induces MSC migration via Ca(2+), PKC, and ERK1/2 signal pathways.
Collapse
Affiliation(s)
- Jun-Ming Tang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, Hubei 442000, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Physiological characterization of human muscle acetylcholine receptors from ALS patients. Proc Natl Acad Sci U S A 2011; 108:20184-8. [PMID: 22128328 DOI: 10.1073/pnas.1117975108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: "microtransplantation" of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease.
Collapse
|
7
|
Yu T, Yamaguchi H, Noshita T, Kidachi Y, Umetsu H, Ryoyama K. Selective cytotoxicity of glycyrrhetinic acid against tumorigenic r/m HM-SFME-1 cells: potential involvement of H-Ras downregulation. Toxicol Lett 2009; 192:425-30. [PMID: 19958823 DOI: 10.1016/j.toxlet.2009.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 11/23/2009] [Accepted: 11/23/2009] [Indexed: 11/18/2022]
Abstract
With the intensive need for the development of more effective and safer agents for chemoprevention and therapy of human cancer, natural products from plants have been expected to play significant roles in creating new and better chemopreventive and therapeutic agents. Selectivity is also an important issue in cancer prevention and therapy. In the present study, normal serum-free mouse embryo (SFME) and tumorigenic human c-Ha-ras and mouse c-myc cotransfected highly metastatic serum-free mouse embryo-1 (r/m HM-SFME-1) cells were treated with various concentrations of clinically available antitumor agents or glycyrrhetinic acid (GA), and the antiproliferative effects of these compounds were determined by the MTT assay. Western blotting analysis, RT-PCR, fluorescence staining and confocal laser scanning microscopic observation were adopted to analyze H-Ras regulation. GA exhibited the tumor cell-selective toxicity through H-Ras downregulation, and its selectivity was superior to those of all the clinically available antitumor agents examined. For the selective toxicity of tumor cells, GA was most effective at 10 microM. Interestingly, this concentration was the same as the previously reported maximum plasma GA level reached in humans ingesting licorice. These results in the present study suggest that GA with its cytotoxic effects could be utilized as a promising chemopreventive and therapeutic antitumor agent.
Collapse
Affiliation(s)
- Tao Yu
- Graduate School of Medicine, Department of Functional Diagnostic Science, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Wilschut KJ, Jaksani S, Van Den Dolder J, Haagsman HP, Roelen BAJ. Isolation and characterization of porcine adult muscle-derived progenitor cells. J Cell Biochem 2009; 105:1228-39. [PMID: 18821573 DOI: 10.1002/jcb.21921] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we report the isolation of progenitor cells from pig skeletal muscle tissue fragments. Muscle progenitor cells were stimulated to migrate from protease-digested tissue fragments and cultured in the presence of 5 ng/ml basic fibroblast growth factor. The cells showed a sustained long-term expansion capacity (>120 population doublings) while maintaining a normal karyotype. The proliferating progenitor cells expressed PAX3, DESMIN, SMOOTH MUSCLE ACTIN, VIMENTIN, CD31, NANOG and THY-1, while MYF5 and OCT3/4 were only expressed in the lower or higher cell passages. Myogenic differentiation of porcine progenitor cells was induced in a coculture system with murine C2C12 myoblasts resulting in the formation of myotubes. Further, the cells showed adipogenic and osteogenic lineage commitment when exposed to specific differentiation conditions. These observations were determined by Von Kossa and Oil-Red-O staining and confirmed by quantitative RT-PCR analysis. In conclusion, the porcine muscle-derived progenitor cells possess long-term expansion capacity and a multilineage differentiation capacity.
Collapse
Affiliation(s)
- Karlijn J Wilschut
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Di Castro A, Bonci D, Musumeci M, Grassi F. Green fluorescent protein incorporation by mouse myoblasts may yield false evidence of myogenic differentiation of human haematopoietic stem cells. Acta Physiol (Oxf) 2008; 193:249-56. [PMID: 18284377 DOI: 10.1111/j.1748-1716.2008.01833.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS Haematopoietic CD34+ stem cells are able to differentiate into skeletal muscle, a potentially invaluable tool for treating degenerative diseases such as muscular dystrophy. However, some studies argue that the differentiative potential of these cells might have been overestimated. In vitro studies provide a controlled environment in which to investigate this point. METHODS CD34+ stem cells from human peripheral blood, labelled with green fluorescent protein (GFP), were co-cultured with mouse myogenic C2C12 cells. The functional properties of mononucleated GFP+ cells were determined using electrophysiological techniques and were related to protein profiling determined by immunofluorescence staining and single-cell RT-PCR. Mouse mesoangioblasts co-cultured with human myotubes provided methodological controls. RESULTS After 2-4 days, mononucleated adherent GFP+ cells showed acetylcholine-evoked current responses, typical of myogenic cells, as if stem cells had integrated into the host environment. In contrast to this hypothesis, human nuclei could not be detected in adherent GFP+ cells by immunofluorescence. Moreover, single-cell RT-PCR showed that adherent GFP+ cells responsive to acetylcholine expressed mouse markers while loose unresponsive GFP+ cells were of human origin. The transcripts of the human alpha1 subunit of the acetylcholine muscle receptor were not amplified in co-cultures. CONCLUSION Single-cell analysis of functional properties combined with other markers revealed that, under the co-culture conditions used, GFP was transferred from human CD34+ stem cells to C2C12 myoblasts by mechanisms unrelated to myogenic stem cell differentiation. Our results emphasize the need for careful controls using several markers when investigating the myogenic differentiation of circulating stem cells.
Collapse
Affiliation(s)
- A Di Castro
- Department of Human Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | | | | |
Collapse
|
10
|
Danièle N, Richard I, Bartoli M. Ins and outs of therapy in limb girdle muscular dystrophies. Int J Biochem Cell Biol 2007; 39:1608-24. [PMID: 17339125 DOI: 10.1016/j.biocel.2007.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are hereditary degenerative muscle diseases that cause life-long disability in patients. They comprise the well-known Duchenne Muscular Dystrophy (DMD) but also the group of Limb Girdle Muscular Dystrophies (LGMD) which account for a third to a fourth of DMD cases. From the clinical point of view, LGMD are characterised by predominant effects on the proximal limb muscles. The LGMD group is still growing today and consists of 19 autosomal dominant and recessive forms (LGMD1A to LGMD1G and LGMD2A to LGMD2M). The proteins involved are very diverse and include sarcomeric, sarcolemmal and enzymatic proteins. With respect to this variability and in line with the intense search for a potent therapeutic approach for DMD, many different strategies have been tested in rodent models. These include replacing the lost function by gene transfer or stem cell transplantation, using a related protein for functional substitution, increasing muscle mass, or blocking the molecular pathological mechanisms by pharmacological means to alleviate the symptoms. The purpose of this review is to summarize current data arising from these preclinical studies and to examine the potential of the tested strategies to lead to clinical applications.
Collapse
|