1
|
Renaud JM, Ørtenblad N, McKenna MJ, Overgaard K. Exercise and fatigue: integrating the role of K +, Na + and Cl - in the regulation of sarcolemmal excitability of skeletal muscle. Eur J Appl Physiol 2023; 123:2345-2378. [PMID: 37584745 PMCID: PMC10615939 DOI: 10.1007/s00421-023-05270-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.
Collapse
Affiliation(s)
- Jean-Marc Renaud
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| | - Niels Ørtenblad
- Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, VIC, 8001, Australia
- College of Physical Education, Southwest University, Chongqing, China
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Kristian Overgaard
- Exercise Biology, Department of Public Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Pirkmajer S, Chibalin AV. Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 2016; 311:E1-E31. [PMID: 27166285 DOI: 10.1152/ajpendo.00539.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Skeletal muscle contains one of the largest and the most dynamic pools of Na,K-ATPase (NKA) in the body. Under resting conditions, NKA in skeletal muscle operates at only a fraction of maximal pumping capacity, but it can be markedly activated when demands for ion transport increase, such as during exercise or following food intake. Given the size, capacity, and dynamic range of the NKA pool in skeletal muscle, its tight regulation is essential to maintain whole body homeostasis as well as muscle function. To reconcile functional needs of systemic homeostasis with those of skeletal muscle, NKA is regulated in a coordinated manner by extrinsic stimuli, such as hormones and nerve-derived factors, as well as by local stimuli arising in skeletal muscle fibers, such as contractions and muscle energy status. These stimuli regulate NKA acutely by controlling its enzymatic activity and/or its distribution between the plasma membrane and the intracellular storage compartment. They also regulate NKA chronically by controlling NKA gene expression, thus determining total NKA content in skeletal muscle and its maximal pumping capacity. This review focuses on molecular mechanisms that underlie regulation of NKA in skeletal muscle by major extrinsic and local stimuli. Special emphasis is given to stimuli and mechanisms linking regulation of NKA and energy metabolism in skeletal muscle, such as insulin and the energy-sensing AMP-activated protein kinase. Finally, the recently uncovered roles for glutathionylation, nitric oxide, and extracellular K(+) in the regulation of NKA in skeletal muscle are highlighted.
Collapse
Affiliation(s)
- Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia; and
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Clausen T. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance. ACTA ACUST UNITED AC 2014; 142:327-45. [PMID: 24081980 PMCID: PMC3787770 DOI: 10.1085/jgp.201310980] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During excitation, muscle cells gain Na+ and lose K+, leading to a rise in extracellular K+ ([K+]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na+,K+-ATPase (also known as the Na+,K+ pump) is often essential for adequate clearance of extracellular K+. As a result of their electrogenic action, Na+,K+ pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na+,K+-pump function and the capacity of the Na+,K+ pumps to fill these needs require quantification of the total content of Na+,K+ pumps in skeletal muscle. Inhibition of Na+,K+-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na+,K+-pump transport rate or increasing the content of Na+,K+ pumps enhances muscle excitability and contractility. Measurements of [3H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na+,K+ pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na+,K+-ATPase may show inconsistent results. Measurements of Na+ and K+ fluxes in intact isolated muscles show that, after Na+ loading or intense excitation, all the Na+,K+ pumps are functional, allowing calculation of the maximum Na+,K+-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na+,K+ pumps are regulated by exercise, inactivity, K+ deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na+,K+-ATPase have detected a relative increase in their number in response to exercise and the glucocorticoid dexamethasone but have not involved their quantification in molar units. Determination of ATPase activity in homogenates and plasma membranes obtained from muscle has shown ouabain-suppressible stimulatory effects of Na+ and K+.
Collapse
Affiliation(s)
- Torben Clausen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Clausen T. Excitation-induced exchange of Na+, K+, and Cl- in rat EDL muscle in vitro and in vivo: physiology and pathophysiology. J Gen Physiol 2013; 141:179-92. [PMID: 23319728 PMCID: PMC3557307 DOI: 10.1085/jgp.201210892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 12/19/2012] [Indexed: 11/20/2022] Open
Abstract
In skeletal muscle, excitation leads to increased [Na(+)](i), loss of K(+), increased [K(+)](o), depolarization, and Cl(-) influx. This study quantifies these changes in rat extensor digitorum longus (EDL) muscles in vitro and in vivo using flame photometric determination of Na(+) and K(+) and (36)Cl as a tracer for Cl(-). In vitro, 5-Hz stimulation for 300 s increased intracellular Na(+) content by 4.6 ± 1.2 µmol/g wet wt (P < 0.002) and decreased intracellular K(+) content by 5.5 ± 2.3 µmol/g wet wt (P < 0.03). This would increase [K(+)](o) by 28 ± 12 mM, sufficient to cause severe loss of excitability as the result of inactivation of Na(+) channels. In rat EDL, in vivo stimulation at 5 Hz for 300 s or 60 Hz for 60 s induced significant loss of K(+) (P < 0.01), sufficient to increase [K(+)](o) by 71 ± 22 mM and 73 ± 15 mM, respectively. In spite of this, excitability may be maintained by the rapid and marked stimulation of the electrogenic Na(+),K(+) pumps already documented. This may require full utilization of the transport capacity of Na(+),K(+) pumps, which then becomes a limiting factor for physical performance. In buffer containing (36)Cl, depolarization induced by increasing [K(+)](o) to 40-80 mM augmented intracellular (36)Cl by 120-399% (P < 0.001). Stimulation for 120-300 s at 5-20 Hz increased intracellular (36)Cl by 100-188% (P < 0.001). In rats, Cl(-) transport in vivo was examined by injecting (36)Cl, where electrical stimulation at 5 Hz for 300 s or 60 Hz for 60 s increased (36)Cl uptake by 81% (P < 0.001) and 84% (P < 0.001), respectively, indicating excitation-induced depolarization. Cl(-) influx favors repolarization, improving K(+) clearance and maintenance of excitability. In conclusion, excitation-induced fluxes of Na(+), K(+), and Cl(-) can be quantified in vivo, providing new evidence that in working muscles, extracellular accumulation of K(+) is considerably higher than previously observed and the resulting depression of membrane excitability may be a major cause of muscle fatigue.
Collapse
Affiliation(s)
- Torben Clausen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark. tc@fi.au.dk
| |
Collapse
|
5
|
Trejo E, Borges A, Nañez B, Lippo de Becemberg I, González de Alfonzo R, Alfonzo MJ. Tityus zulianus venom induces massive catecholamine release from PC12 cells and in a mouse envenomation model. Toxicon 2012; 59:117-23. [DOI: 10.1016/j.toxicon.2011.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/22/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
6
|
Clausen T. Hormonal and pharmacological modification of plasma potassium homeostasis. Fundam Clin Pharmacol 2010; 24:595-605. [DOI: 10.1111/j.1472-8206.2010.00859.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Cairns SP, Lindinger MI. Do multiple ionic interactions contribute to skeletal muscle fatigue? J Physiol 2008; 586:4039-54. [PMID: 18591187 DOI: 10.1113/jphysiol.2008.155424] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During intense exercise or electrical stimulation of skeletal muscle the concentrations of several ions change simultaneously in interstitial, transverse tubular and intracellular compartments. Consequently the functional effects of multiple ionic changes need to be considered together. A diminished transsarcolemmal K(+) gradient per se can reduce maximal force in non-fatigued muscle suggesting that K(+) causes fatigue. However, this effect requires extremely large, although physiological, K(+) shifts. In contrast, moderate elevations of extracellular [K(+)] ([K(+)](o)) potentiate submaximal contractions, enhance local blood flow and influence afferent feedback to assist exercise performance. Changed transsarcolemmal Na(+), Ca(2+), Cl(-) and H(+) gradients are insufficient by themselves to cause much fatigue but each ion can interact with K(+) effects. Lowered Na(+), Ca(2+) and Cl(-) gradients further impair force by modulating the peak tetanic force-[K(+)](o) and peak tetanic force-resting membrane potential relationships. In contrast, raised [Ca(2+)](o), acidosis and reduced Cl(-) conductance during late fatigue provide resistance against K(+)-induced force depression. The detrimental effects of K(+) are exacerbated by metabolic changes such as lowered [ATP](i), depleted carbohydrate, and possibly reactive oxygen species. We hypothesize that during high-intensity exercise a rundown of the transsarcolemmal K(+) gradient is the dominant cellular process around which interactions with other ions and metabolites occur, thereby contributing to fatigue.
Collapse
Affiliation(s)
- S P Cairns
- Institute of Sport and Recreation Research New Zealand, Faculty of Health and Environmental Sciences, AUT University, Auckland 1020, New Zealand.
| | | |
Collapse
|
8
|
Hayward LJ, Kim JS, Lee MY, Zhou H, Kim JW, Misra K, Salajegheh M, Wu FF, Matsuda C, Reid V, Cros D, Hoffman EP, Renaud JM, Cannon SC, Brown RH. Targeted mutation of mouse skeletal muscle sodium channel produces myotonia and potassium-sensitive weakness. J Clin Invest 2008; 118:1437-49. [PMID: 18317596 DOI: 10.1172/jci32638] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 01/16/2008] [Indexed: 11/17/2022] Open
Abstract
Hyperkalemic periodic paralysis (HyperKPP) produces myotonia and attacks of muscle weakness triggered by rest after exercise or by K+ ingestion. We introduced a missense substitution corresponding to a human familial HyperKPP mutation (Met1592Val) into the mouse gene encoding the skeletal muscle voltage-gated Na+ channel NaV1.4. Mice heterozygous for this mutation exhibited prominent myotonia at rest and muscle fiber-type switching to a more oxidative phenotype compared with controls. Isolated mutant extensor digitorum longus muscles were abnormally sensitive to the Na+/K+ pump inhibitor ouabain and exhibited age-dependent changes, including delayed relaxation and altered generation of tetanic force. Moreover, rapid and sustained weakness of isolated mutant muscles was induced when the extracellular K+ concentration was increased from 4 mM to 10 mM, a level observed in the muscle interstitium of humans during exercise. Mutant muscle recovered from stimulation-induced fatigue more slowly than did control muscle, and the extent of recovery was decreased in the presence of high extracellular K+ levels. These findings demonstrate that expression of the Met1592ValNa+ channel in mouse muscle is sufficient to produce important features of HyperKPP, including myotonia, K+-sensitive paralysis, and susceptibility to delayed weakness during recovery from fatigue.
Collapse
Affiliation(s)
- Lawrence J Hayward
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
McKenna MJ, Bangsbo J, Renaud JM. Muscle K+, Na+, and Cl− disturbances and Na+-K+ pump inactivation: implications for fatigue. J Appl Physiol (1985) 2008; 104:288-95. [DOI: 10.1152/japplphysiol.01037.2007] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane excitability is a critical regulatory step in skeletal muscle contraction and is modulated by local ionic concentrations, conductances, ion transporter activities, temperature, and humoral factors. Intense fatiguing contractions induce cellular K+ efflux and Na+ and Cl− influx, causing pronounced perturbations in extracellular (interstitial) and intracellular K+ and Na+ concentrations. Muscle interstitial K+ concentration may increase 1- to 2-fold to 11–13 mM and intracellular K+ concentration fall by 1.3- to 1.7-fold; interstitial Na+ concentration may decline by 10 mM and intracellular Na+ concentration rise by 1.5- to 2.0-fold. Muscle Cl− concentration changes reported with muscle contractions are less consistent, with reports of both unchanged and increased intracellular Cl− concentrations, depending on contraction type and the muscles studied. When considered together, these ionic changes depolarize sarcolemmal and t-tubular membranes to depress tetanic force and are thus likely to contribute to fatigue. Interestingly, less severe local ionic changes can also augment subtetanic force, suggesting that they may potentiate muscle contractility early in exercise. Increased Na+-K+-ATPase activity during exercise stabilizes Na+ and K+ concentration gradients and membrane excitability and thus protects against fatigue. However, during intense contraction some Na+-K+ pumps are inactivated and together with further ionic disturbances, likely precipitate muscle fatigue.
Collapse
|
10
|
Murphy KT, Clausen T. The importance of limitations in aerobic metabolism, glycolysis, and membrane excitability for the development of high-frequency fatigue in isolated rat soleus muscle. Am J Physiol Regul Integr Comp Physiol 2007; 292:R2001-11. [PMID: 17234955 DOI: 10.1152/ajpregu.00714.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the role of limitations in aerobic metabolism, glycolysis, and membrane excitability for development of high-frequency fatigue in isolated rat soleus muscle. Muscles mounted on force transducers were incubated in buffer bubbled with 5% CO2 and either 95% O2 (oxygenated) or 95% N2 (anoxic) and stimulated at 60 Hz continuously for 30–120 s or intermittently for 120 s. Cyanide (2 mM) and 2-deoxyglucose (10 mM) were used to inhibit aerobic metabolism and both glycolysis and aerobic metabolism, respectively. Excitability was reduced by carbacholine (10 μM), a nicotinic ACh receptor agonist, or ouabain (10 μM), an Na+-K+ pump inhibitor. Membrane excitability was measured by recording M waves. Intracellular Na+ and K+ contents and membrane potentials were measured by flame photometry and microelectrodes, respectively. During 120 s of continuous stimulation, oxygenated and anoxic muscles showed the same force loss. In oxygenated muscles, cyanide did not alter force loss for up to 90 s, whereas 2-deoxyglucose increased force loss (by 19–69%; P < 0.01) from 14 s of stimulation. In oxygenated muscles, 60 s of stimulation reduced force, M wave area, and amplitude by 70–90% ( P < 0.001). Carbacholine or ouabain increased intracellular Na+ content ( P < 0.001), induced a 7- to 8-mV membrane depolarization ( P < 0.001), and accelerated the rate of force loss (by 250–414%) during 30 s of stimulation ( P < 0.001). Similar effects were seen with intermittent stimulation. In conclusion, limitations in glycolysis and subsequently also in aerobic metabolism, as well as membrane excitability but not aerobic metabolism alone, appear to play an important role in the development of high-frequency fatigue in isolated rat soleus muscle.
Collapse
Affiliation(s)
- K T Murphy
- Institute of Physiology and Biophysics, Univ of Aarhus, Ole Worms Allé 160, Arhus C, Denmark.
| | | |
Collapse
|
11
|
Abstract
Skeletal muscles have a high content of Na+-K+-ATPase, an enzyme that is identical to the Na+-K+ pump, a transport system mediating active extrusion of Na+ from the cells and accumulation of K+ in the cells. The major function of the Na+-K+ pumps is to maintain the concentration gradients for Na+ and K+ across the plasma membrane. This generates the resting membrane potential, allowing the propagation of action potentials, excitation-contraction coupling and force development. Muscles exposed to (1) high extracellular K+ or (2) low extracellular Na+ show a considerable loss of force. A similar force decline is elicited by (3) increasing Na+ permeability or (4) decreasing K+ permeability. Under all of these four conditions, stimulation of the Na+-K+ pumps can restore contractility. Following exposure to electroporation or fatiguing stimulation, muscle cell membranes develop leaks to Na+ and K+ and a partially reversible loss of force. The restoration of force is abolished by blocking the Na+-K+ pumps and markedly improved by stimulating the Na+-K+ pumps with beta 2-agonists, calcitonin gene-related peptide, or dbcAMP. These observations indicate that the Na+-K+ pumps are important for the functional compensation of the commonly occurring loss of muscle cell integrity. Stimulation of the Na+-K+ pumps with beta 2-agonists or other agents may be of therapeutic value in the treatment of muscle cell damage induced by electrical shocks, prolonged exercise, burns, or bruises.
Collapse
Affiliation(s)
- Torben Clausen
- Institute of Physiology and Biophysics, University of Aarhus, Ole Worms Alle 160, Universitetsparken, DK-8000 Arhus C., Denmark.
| |
Collapse
|
12
|
Murphy KT, Macdonald WA, McKenna MJ, Clausen T. Ionic mechanisms of excitation-induced regulation of Na+-K+-ATPase mRNA expression in isolated rat EDL muscle. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1397-406. [PMID: 16357096 DOI: 10.1152/ajpregu.00707.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of electrical stimulation on Na+-K+-ATPase isoform mRNA, with the aim to identify factors modulating Na+-K+-ATPase mRNA in isolated rat extensor digitorum longus (EDL) muscle. Interventions designed to mimic exercise-induced increases in intracellular Na+and Ca2+contents and membrane depolarization were examined. Muscles were mounted on force transducers and stimulated with 60-Hz 10-s pulse trains producing tetanic contractions three times at 10-min intervals. Ouabain (1.0 mM, 120 min), veratridine (0.1 mM, 30 min), and monensin (0.1 mM, 30 min) were used to increase intracellular Na+content. High extracellular K+(13 mM, 60 min) and the Ca2+ionophore A-23187 (0.02 mM, 30 min) were used to induce membrane depolarization and elevated intracellular Ca2+content, respectively. Muscles were analyzed for Na+-K+-ATPase α1–α3and β1–β3mRNA (real-time RT-PCR). Electrical stimulation had no immediate effect on Na+-K+-ATPase mRNA; however at 3 h after stimulation, it increased α1, α2, and α3mRNA by 223, 621, and 892%, respectively ( P = 0.010), without changing β mRNA. Ouabain, veratridine, and monensin increased intracellular Na+content by 769, 724, and 598%, respectively ( P = 0.001) but did not increase mRNA of any isoform. High intracellular K+concentration elevated α1mRNA by 160% ( P = 0.021), whereas A-23187 elevated α3mRNA by 123% ( P = 0.035) but reduced β1mRNA by 76% ( P = 0.001). In conclusion, electrical stimulation induced subunit-specific increases in Na+-K+-ATPase mRNA in isolated rat EDL muscle. Furthermore, Na+-K+-ATPase mRNA appears to be regulated by different stimuli, including cellular changes associated with membrane depolarization and increased intracellular Ca2+content but not increased intracellular Na+content.
Collapse
Affiliation(s)
- K T Murphy
- School of Human Movement, Recreation and Performance, Centre for Ageing, Rehabilitation and Sport Science, Victoria University of Technology, Melbourne, Australia.
| | | | | | | |
Collapse
|