2
|
Majander A, Jurkute N, Burté F, Brock K, João C, Huang H, Neveu MM, Chan CM, Duncan HJ, Kelly S, Burkitt-Wright E, Khoyratty F, Lai YT, Subash M, Chinnery PF, Bitner-Glindzicz M, Arno G, Webster AR, Moore AT, Michaelides M, Stockman A, Robson AG, Yu-Wai-Man P. WFS1-Associated Optic Neuropathy: Genotype-Phenotype Correlations and Disease Progression. Am J Ophthalmol 2022; 241:9-27. [PMID: 35469785 DOI: 10.1016/j.ajo.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the pattern of vision loss and genotype-phenotype correlations in WFS1-associated optic neuropathy (WON). DESIGN Multicenter cohort study. METHODS The study involved 37 patients with WON carrying pathogenic or candidate pathogenic WFS1 variants. Genetic and clinical data were retrieved from the medical records. Thirteen patients underwent additional comprehensive ophthalmologic assessment. Deep phenotyping involved visual electrophysiology and advanced psychophysical testing with a complementary metabolomic study. MAIN OUTCOME MEASURES WFS1 variants, functional and structural optic nerve and retinal parameters, and metabolomic profile. RESULTS Twenty-two recessive and 5 dominant WFS1 variants were identified. Four variants were novel. All WFS1 variants caused loss of macular retinal ganglion cells (RGCs) as assessed by optical coherence tomography (OCT) and visual electrophysiology. Advanced psychophysical testing indicated involvement of the major RGC subpopulations. Modeling of vision loss showed an accelerated rate of deterioration with increasing age. Dominant WFS1 variants were associated with abnormal reflectivity of the outer plexiform layer (OPL) on OCT imaging. The dominant variants tended to cause less severe vision loss compared with recessive WFS1 variants, which resulted in more variable phenotypes ranging from isolated WON to severe multisystem disease depending on the WFS1 alleles. The metabolomic profile included markers seen in other neurodegenerative diseases and type 1 diabetes mellitus. CONCLUSIONS WFS1 variants result in heterogenous phenotypes influenced by the mode of inheritance and the disease-causing alleles. Biallelic WFS1 variants cause more variable, but generally more severe, vision and RGC loss compared with heterozygous variants. Abnormal cleftlike lamination of the OPL is a distinctive OCT feature that strongly points toward dominant WON.
Collapse
Affiliation(s)
- Anna Majander
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; Department of Ophthalmology, Helsinki University Hospital, University of Helsinki (A.M.), Helsinki, Finland.
| | - Neringa Jurkute
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Florence Burté
- Biosciences Institute, International Centre for Life, Newcastle University (F.B.), Newcastle upon Tyne, United Kingdom
| | - Kristian Brock
- Cancer Research UK Clinical Trials Unit, University of Birmingham (K.B.), Birmingham, United Kingdom
| | - Catarina João
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Houbin Huang
- Hainan Hospital of the General Hospital of Chinese People's Liberation Army (H.H.), Sanya, China
| | - Magella M Neveu
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Choi Mun Chan
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Holly J Duncan
- Newcastle Eye Centre, Royal Victoria Infirmary (H.J.D.), Newcastle upon Tyne, United Kingdom
| | - Simon Kelly
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Emma Burkitt-Wright
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust (E.B.-W.), Manchester, United Kingdom; Division of Evolution and Genomic Sciences, University of Manchester, Manchester Academic Health Sciences Centre (E.B.-W.), Manchester, United Kingdom
| | - Fadil Khoyratty
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Yoon Tse Lai
- Bolton NHS Foundation Trust (S.K., F.K., Y.T.L.), Bolton, United Kingdom
| | - Mala Subash
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Patrick F Chinnery
- MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge (P.F.C.), Cambridge, United Kingdom
| | | | - Gavin Arno
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Andrew R Webster
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Anthony T Moore
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; Department of Ophthalmology, UCSF School of Medicine (A.T.M.), San Francisco, California, USA
| | - Michel Michaelides
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Andrew Stockman
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Anthony G Robson
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom
| | - Patrick Yu-Wai-Man
- From the UCL Institute of Ophthalmology (A.M., N.J., C.J., M.M.N., C.M.C., M.S., G.A., A.R.W., A.T.M., M.M., A.S., A.G.R., P.Y.-W.-M.), London, United Kingdom; Moorfields Eye Hospital (A.M., N.J., M.M.N., C.M.C., G.A., A.R.W., A.T.M., M.M., A.G.R., P.Y.-W.-M.), London, United Kingdom; John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge (P.Y.-W.-M.), Cambridge, United Kingdom; and Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals (P.Y.-W.-M.), Cambridge, United Kingdom
| |
Collapse
|
3
|
Majander A, Robson AG, João C, Holder GE, Chinnery PF, Moore AT, Votruba M, Stockman A, Yu-Wai-Man P. The pattern of retinal ganglion cell dysfunction in Leber hereditary optic neuropathy. Mitochondrion 2017; 36:138-149. [PMID: 28729193 PMCID: PMC5644721 DOI: 10.1016/j.mito.2017.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 07/02/2017] [Accepted: 07/14/2017] [Indexed: 02/07/2023]
Abstract
Leber inherited optic neuropathy (LHON) is characterized by subacute bilateral loss of central vision due to dysfunction and loss of retinal ganglion cells (RGCs). Comprehensive visual electrophysiological investigations (including pattern reversal visual evoked potentials, pattern electroretinography and the photopic negative response) performed on 13 patients with acute and chronic LHON indicate early impairment of RGC cell body function and severe axonal dysfunction. Temporal, spatial and chromatic psychophysical tests performed on 7 patients with acute LHON and 4 patients with chronic LHON suggest severe involvement or loss of the midget, parasol and bistratified RGCs associated with all three principal visual pathways.
Collapse
Affiliation(s)
- A Majander
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK; Department of Ophthalmology, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.
| | - A G Robson
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK
| | - C João
- UCL Institute of Ophthalmology, London, UK
| | - G E Holder
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK
| | - P F Chinnery
- MRC-Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - A T Moore
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK; Ophthalmology Department, UCSF School of Medicine, San Francisco, CA, United States
| | - M Votruba
- School of Optometry and Vision Sciences, Cardiff University, and Cardiff Eye Unit, University Hospital Wales, Cardiff, UK
| | - A Stockman
- UCL Institute of Ophthalmology, London, UK
| | - P Yu-Wai-Man
- UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; Wellcome Trust Centre for Mitochondrial Research, Newcastle University, and Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK.
| |
Collapse
|
4
|
Majander A, João C, Rider AT, Henning GB, Votruba M, Moore AT, Yu-Wai-Man P, Stockman A. The Pattern of Retinal Ganglion Cell Loss in OPA1-Related Autosomal Dominant Optic Atrophy Inferred From Temporal, Spatial, and Chromatic Sensitivity Losses. Invest Ophthalmol Vis Sci 2017; 58:502-516. [PMID: 28125838 PMCID: PMC5283089 DOI: 10.1167/iovs.16-20309] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Progressive retinal ganglion cell (RGC) loss is the pathological hallmark of autosomal dominant optic atrophy (DOA) caused by pathogenic OPA1 mutations. The aim of this study was to conduct an in-depth psychophysical study of the visual losses in DOA and to infer any selective vulnerability of visual pathways subserved by different RGC subtypes. Methods We recruited 25 patients carrying pathogenic OPA1 mutations and age-matched healthy individuals. Spatial contrast sensitivity functions (SCSFs) and chromatic contrast sensitivity were quantified, the latter using the Cambridge Colour Test. In 11 patients, long (L) and short (S) wavelength-sensitive cone temporal acuities were measured as a function of target illuminance, and L-cone temporal contrast sensitivity (TCSF) as a function of temporal frequency. Results Spatial contrast sensitivity functions were abnormal, with the loss of sensitivity increasing with spatial frequency. Further, the highest L-cone temporal acuity fell on average by 10 Hz and the TCSFs by 0.66 log10 unit. Chromatic thresholds along the protan, deutan, and tritan axes were 8, 9, and 14 times higher than normal, respectively, with losses increasing with age and S-cone temporal acuity showing the most significant age-related decline. Conclusions Losses of midget parvocellular, parasol magnocellular, and bistratified koniocellular RGCs could account for the losses of high spatial frequency sensitivity and protan and deutan sensitivities, high temporal frequency sensitivity, and S-cone temporal and tritan sensitivities, respectively. The S-cone-related losses showed a significant deterioration with increasing patient age and could therefore prove useful biomarkers of disease progression in DOA.
Collapse
Affiliation(s)
- Anna Majander
- University College London, Institute of Ophthalmology, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom 3Department of Ophthalmology, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - Catarina João
- University College London, Institute of Ophthalmology, London, United Kingdom
| | - Andrew T Rider
- University College London, Institute of Ophthalmology, London, United Kingdom
| | - G Bruce Henning
- University College London, Institute of Ophthalmology, London, United Kingdom
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University Cardiff, and Cardiff Eye Unit, University Hospital Wales, Cardiff, United Kingdom
| | - Anthony T Moore
- University College London, Institute of Ophthalmology, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom 5Ophthalmology Department, University of California-San Francisco School of Medicine, San Francisco, California, United States
| | - Patrick Yu-Wai-Man
- University College London, Institute of Ophthalmology, London, United Kingdom 2Moorfields Eye Hospital, London, United Kingdom 6Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University and Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Andrew Stockman
- University College London, Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|