1
|
Allison BJ, Brain KL, Niu Y, Kane AD, Herrera EA, Thakor AS, Botting KJ, Cross CM, Itani N, Shaw CJ, Skeffington KL, Beck C, Giussani DA. Altered Cardiovascular Defense to Hypotensive Stress in the Chronically Hypoxic Fetus. Hypertension 2020; 76:1195-1207. [PMID: 32862711 PMCID: PMC7480941 DOI: 10.1161/hypertensionaha.120.15384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. The hypoxic fetus is at greater risk of cardiovascular demise during a challenge, but the reasons behind this are unknown. Clinically, progress has been hampered by the inability to study the human fetus non-invasively for long period of gestation. Using experimental animals, there has also been an inability to induce gestational hypoxia while recording fetal cardiovascular function as the hypoxic pregnancy is occurring. We use novel technology in sheep pregnancy that combines induction of controlled chronic hypoxia with simultaneous, wireless recording of blood pressure and blood flow signals from the fetus. Here, we investigated the cardiovascular defense of the hypoxic fetus to superimposed acute hypotension. Pregnant ewes carrying singleton fetuses surgically prepared with catheters and flow probes were randomly exposed to normoxia or chronic hypoxia from 121±1 days of gestation (term ≈145 days). After 10 days of exposure, fetuses were subjected to acute hypotension via fetal nitroprusside intravenous infusion. Underlying in vivo mechanisms were explored by (1) analyzing fetal cardiac and peripheral vasomotor baroreflex function; (2) measuring the fetal plasma catecholamines; and (3) establishing fetal femoral vasoconstrictor responses to the α1-adrenergic agonist phenylephrine. Relative to controls, chronically hypoxic fetal sheep had reversed cardiac and impaired vasomotor baroreflex function, despite similar noradrenaline and greater adrenaline increments in plasma during hypotension. Chronic hypoxia markedly diminished the fetal vasopressor responses to phenylephrine. Therefore, we show that the chronically hypoxic fetus displays markedly different cardiovascular responses to acute hypotension, providing in vivo evidence of mechanisms linking its greater susceptibility to superimposed stress.
Collapse
Affiliation(s)
- Beth J Allison
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Kirsty L Brain
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Youguo Niu
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Andrew D Kane
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | | | - Avnesh S Thakor
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Kimberley J Botting
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Christine M Cross
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Nozomi Itani
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Caroline J Shaw
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.).,Institute of Reproductive and Developmental Biology, Imperial College, London United Kingdom (C.J.S.)
| | - Katie L Skeffington
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Chritian Beck
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.)
| | - Dino A Giussani
- From the Department of Physiology, Development and Neuroscience, University of Cambridge, United Kingdom (B.J.A., K.L.B., Y.N., A.D.K., E.A.H., A.S.T., K.J.B., C.M.C., N.I., C.J.S., K.L.S., C.B., D.A.G.).,Cambridge Cardiovascular Strategic Research Initiative (D.A.G.).,Cambridge Strategic Research Initiative in Reproduction (D.A.G.)
| |
Collapse
|
3
|
Fowden AL, Giussani DA, Forhead AJ. Physiological development of the equine fetus during late gestation. Equine Vet J 2020; 52:165-173. [PMID: 31721295 DOI: 10.1111/evj.13206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/08/2019] [Indexed: 02/02/2023]
Abstract
In many species, the pattern of growth and physiological development in utero has an important role in determining not only neonatal viability but also adult phenotype and disease susceptibility. Changes in fetal development induced by a range of environmental factors including maternal nutrition, disease, placental insufficiency and social stresses have all been shown to induce adult cardiovascular and metabolic dysfunction that often lead to ill health in later life. Compared to other precocious animals, much less is known about the physiological development of the fetal horse or the longer-term impacts on its phenotype of altered development in early life because of its inaccessibility in utero, large size and long lifespan. This review summaries the available data on the normal metabolic, cardiovascular and endocrine development of the fetal horse during the second half of gestation. It also examines the responsiveness of these physiological systems to stresses such as hypoglycaemia and hypotension during late gestation. Particular emphasis is placed on the role of the equine placenta and fetal endocrine glands in mediating the changes in fetal development seen towards term and in response to nutritional and other environmental cues. The final part of the review presents the evidence that the early life environment of the horse can alter its subsequent metabolic, cardiovascular and endocrine phenotype as well as its postnatal growth and bone development. It also highlights the immediate neonatal environment as a key window of susceptibility for programming of equine phenotype. Although further studies are needed to identify the cellular and molecular mechanisms involved, developmental programming of physiological phenotype is likely to have important implications for the health and potential athletic performance of horses, particularly if born with abnormal bodyweight, premature or dysmature characteristics or produced by assisted reproductive technologies, indicative of an altered early life environment.
Collapse
Affiliation(s)
- A L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - D A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1123-R1153. [PMID: 30325659 DOI: 10.1152/ajpregu.00391.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Kimberley J Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Victoria , Australia
| | - Emilio A Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia , Perth, Western Australia , Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria , Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Mark H Oliver
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology and Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute , London, Ontario , Canada
| | - Claire T Roberts
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Dembek KA, Hurcombe SD, Stewart AJ, Barr BS, MacGillivray KC, Kinee M, Elam J, Toribio RE. Association of aldosterone and arginine vasopressin concentrations and clinical markers of hypoperfusion in neonatal foals. Equine Vet J 2015; 48:176-81. [PMID: 25421257 DOI: 10.1111/evj.12393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 11/19/2014] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Critically ill foals often present to veterinary hospitals with impaired organ perfusion which can be demonstrated by increased blood L-lactate concentrations. As a compensatory mechanism to low blood pressure and electrolyte abnormalities, aldosterone and arginine vasopressin (AVP) are released to restore organ perfusion and function. Several studies have investigated the ability of blood L-lactate concentrations to predict severity of disease and outcome in critically ill human patients, adult horses and foals. However, information on the aldosterone and AVP response to hypoperfusion and its association with L-lactate concentrations in neonatal foals is limited. OBJECTIVES To determine the association between clinical hypoperfusion and endocrine markers of reduced tissue perfusion in normo- and hypoperfused foals. STUDY DESIGN Prospective, multicentre, cross-sectional observational study. METHODS Blood samples were collected on admission from 72 clinically hypoperfused, 110 normoperfused (73 hospitalised and 37 healthy) foals of ≤4 days of age. Foals were considered clinically hypoperfused if they had L-lactate concentrations ≥2.5 mmol/l and one of the 3 following findings: heart rate >120 beats/min, packed cell volume (PCV) >0.44 l/l or azotaemia (increased creatinine and blood urea nitrogen [BUN]). Blood concentrations of aldosterone and AVP were determined by radioimmunoassays. RESULTS Aldosterone, AVP, creatinine and BUN concentrations and heart rate, PCV and blood osmolality were higher in clinically hypoperfused compared with normoperfused foals (P<0.05). Risk of hypoperfusion increased with the presence of hypothermic extremities (OR = 5.26) and with each one unit increase in albumin concentrations (OR = 3.5) (P<0.05). The proposed admission L-lactate cut-off value above which nonsurvival could be reliably predicted in hospitalised foals was 10.6 mmol/l with 82% of sensitivity and 74% of specificity. CONCLUSIONS Hyperaldosteronaemia and hypervasopressinaemia as well as hypothermic extremities and increased albumin concentrations are potent predictors of hypoperfusion in hospitalised foals.
Collapse
Affiliation(s)
- K A Dembek
- College of Veterinary Medicine, The Ohio State University, Columbus, USA
| | - S D Hurcombe
- College of Veterinary Medicine, The Ohio State University, Columbus, USA
| | - A J Stewart
- College of Veterinary Medicine, Auburn University, Alabama, USA
| | - B S Barr
- Rood and Riddle Equine Hospital, Lexington, Kentucky, USA
| | | | - M Kinee
- Rood and Riddle Equine Hospital, Lexington, Kentucky, USA
| | - J Elam
- Hagyard Equine Medical Institute, Lexington, Kentucky, USA
| | - R E Toribio
- College of Veterinary Medicine, The Ohio State University, Columbus, USA
| |
Collapse
|